
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 21, No. 2, April 2023, pp. 333~345

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v21i2.22429 333

Journal homepage: http://telkomnika.uad.ac.id

Hybrid models for computing fault tolerance of IoT networks

Bhupati Chokara, Sastry Kodanda Rama Jammalamadaka
Department of Electronics and Computer Engineering, KELF University, Vaddeswaram, Guntur District, Andhra Pradesh, India

Article Info ABSTRACT

Article history:

Received Dec 09, 2021

Revised Oct 26, 2022

Accepted Nov 12, 2022

 Many Internet of Things (IoT) - based networks are being built to develop

applications spanning multiple domains. Many small to large devices

connected in various ways increases the risk of IoT networks failing. Small

devices in the devices layer frequently fail due to their small size and high

usage. Intermittent failures of the IoT networks lead to catastrophes at times.

The IoT systems must be designed to be fault-tolerant. Fault tolerance of IoT

networks must be computable so that the same can be considered while

designing IoT networks. However, the computation of fault tolerance of IoT

networks is complex, especially when heterogeneous structures are used for

building a specific IoT network. Fault tree-based models are not suitable for

computing fault-tolerance of complex models, which requires probability

assessment. Hybrid fault tolerance computing models have been presented in

this paper that consider both linear and probabilistic methods of computing

the fault tolerance considering many complex networking topologies used in

each layer of IoT networks. The fault-tolerance computing models are

formal methods that can be used to compute the fault tolerance of any IoT

network built with any internal processing. The accuracy of fault tolerance

computing is 12.9% higher than other methods.

Keywords:

Complex structures

Fault tolerance

IoT networks

Networking topology

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sastry Kodanda Rama Jammalamadaka

Department of Electronics and Computer Engineering, KELF University

Vaddeswaram, Guntur District, Andhra Pradesh, India

Email: drsastry@kluniversity.in

1. INTRODUCTION

Internet of Things (IoT) networks are built using different layers, with each layer built using

different devices and networking topologies to connect those devices. The devices used in each layer differ in

size and tolerance to different environmental variations on those devices [1]. Small devices often fail, not

coping with adverse environmental conditions.

A correct model is required to calculate the fault tolerance of IoT networks when multiple topologies

are used for networking with low-level devices connected through clustered devices. The devices situated in a

layer need to communicate using different protocols. Some devices use strong protocols such as ethernet.

Some devices use lightweight protocols such as message queue telemetry transport (MQTT), constrained

application protocol (CoAP), and web sockets to meet certain purposes, ignoring failures, errors, flooding,

and congestion.

The communication between lightweight and strong devices often fails due to huge latency [2], and

the fault tolerance is normally low. The communication between the devices fails quite often due to

insignificant paths affecting communications. The network used is generally hierarchical and star type, which

localizes the faults and sometimes propagates up the hierarchy. The thin devices in the bottom-most layer of

the IoT networks fail quite often as they get exposed to weather conditions and run out of power quite

quickly. In IoT networks, the devices, the network, or the software that runs within devices can fail, and the

faults can propagate down the line up to the root node.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

334

There is a need to compute the fault rate of an IoT network considering different issues that include

failures within the devices, network, and software. However, a device can be considered a failed device if

any hardware-software failure occurs within those devices. In the absence of fault tolerance mechanisms built

into IoT-based devices and networks, the networks are bound to fail and do not serve any purpose leading to

huge wastage of effort and money.

IoT-based systems must be continuously available to be used effectively, fulfilling the application

requirement. The IoT network may fail due to security breaches, malfunctions, or breakdowns. Some of the

failures could be latency and sluggishness, leading to poor performance. IoT systems must be designed to

incorporate fault tolerance mechanisms so that the IoT systems are highly available [3]. When a device or a

network fails, the IoT networks become inoperative.

A computational model such as fault tree analysis (FTA) could be used to compute the fault

tolerance of an IoT network if the network is simple and linear, without any redundancy or complicated

networking. The linearity suffers, especially when clustering connects the devices in different layers. If the

networking is complicated and the FTA methods cannot be employed, converting a complex to a linear

structure is sometimes infeasible. Too much redundancy will cost the network heavily. A typical network

provides alternate paths for communication so that redundant paths exist to affect the communication.

Having more paths for effecting the same communication will also enhance the performance of the IoT

networks. Incorporating redundancy built into the design of IoT networks to handle failures is one of the

regularly built-in features. A different networking topology could connect the devices existing in a specific

layer. The network topology is determined by the devices to be networked [4].

There is a need to compute the fault tolerance of the IoT networks considering different failure

situations, whether due to hardware, software, or network. Complex networking topologies are to be used to

create redundancy so that the failure situations can be handled without causing the breakdown. Fault

tolerance of an IoT network must be computed to find the extent to which the network is tolerable to various

faults happening within the IoT network to arrive at its reliability and availability for carrying out continuous

operations.

FTA models cannot be used to compute the fault tolerance of a network built using complex

networking topologies. Graph models are linear models which can be converted to FTA models. Most of the

authors suggested various methods that contribute to improving the fault tolerance and not much covered the

way the Fault rate or success rate of the entire network can be computed as a representable value.

Fault tolerance computing models must compute the entire network’s fault tolerance, which

involves linear and nonlinear models. Probability models are required for computing fault tolerance of the

IoT networks when complex structures are used. Some IoT networks are built using both the linear and

complex connectivity of the devices requiring the use of hybrid models that considers both FTA and

Probability models for computing the fault tolerance of the IoT network.

 The IoT networks are to be built by introducing redundancy at the device and network levels or some

at the software levels to handle failures and keep the network running. Too much redundancy will cost the

network heavily. Redundancy improves the fault tolerance of IoT networks, but it comes at a cost. A typical

network provides alternate paths for communication, so the absence does not affect the network’s overall

performance [5].

The IoT network may fail due to security breaches, malfunctions, or breakdowns. When a device or

a network fails, the IoT networks become inoperative. An IoT network is fault-tolerant when it continues to

work even when a fault occurs. Sensors, for example, are fragile and therefore must be protected. Small

device failures can lead to catastrophic failures in medical equipment. Even minor flaws in the equipment

must be dealt with severely [6]. Data is lost when a device or network malfunctions. The networks must have

mechanisms to preserve data even in case of failure. Non-volatile memory is used to store data even when the

system fails. The IoT network must be fault-tolerant, even at increased costs.

Most failure situations can be handled by creating redundancy of devices, network paths, and

software instances. All three elements’ combined effect can be achieved through composite networks in

different layers and then establishing an interconnection between the layers through appropriate means. It is

difficult and straightforward to compute the fault rate when such composite networks are introduced into the

IoT. Modeling a scenario where the adversary is malicious should allow for a dynamic topology in which

system changes may occur without the (nonfaulty) processors being aware of these [7].

The fault tolerance of a communication system is calculated using several models. In situations

where multiple faults occur simultaneously, several models must be developed. Authorized communication

in large-scale open systems using directed and gate (AND) / or gate (OR) graphs has been proposed in the

literature [8]. The FTA models help compute the fault tolerance of the linear IoT network. FTA models are not

suitable when complex networking topologies are used to connect the things in the network. Lack of knowledge

on the fault tolerance level of the IoT network will lead to deploying low available IoT networks to implement

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

335

applications that require high availability and response time. No single fault tolerance computing method will

suffice for every possible IoT network built using complex structures that include different networking

topologies, parallel and synchronous communication, and linear connectivity, represented by probabilistic and

logical representations. Composite computing models are required for computing fault tolerance of any IoT

network.

A directed multi-graph with colored edges is used by Burmester et al. [9], which is equivalent to a

AND/OR graph to deal with independent faults. AND/OR graphs have been used to model problem-solving

processes in artificial intelligence, and the same are used to model fault-tolerant computations with multiple

inputs. An AND/OR graph is a directed graph with two types of vertices and labeled V-vertices. The graph must

have one input (source) and one output (sink) vertex. The AND/OR graphs can also model the dependent faults.

General faults are modeled using adversary structures [10]. This structure is a monotone family of

subsets of the system’s components. Also, AND/OR graphs are used here. Adversary structures can represent

general flaws. Graphs show the relationships between the devices. The fault tolerance of IoT networks is

computed using the fault-tolerant and fog computing models [11]. The data transmission and energy

minimization strategies, which also use tree-based graphs, have been used to deal with the issue of fault

tolerance. A method to compute moments of failure times and a residual lifetime has been used based on

continuous-time Markov chains for computing the fault rate of the devices connected to a network.

Fault tolerance schemes have been designed for modeling crash failures and silent data corruption

within cloud computing systems using a parallel computing model [12]-[15]. The failure mechanisms have

been modeled through the construction of an Optimisation problem. But developing such graphs is infeasible

when an IoT network is complex.

Most of the approaches in the literature focus on increasing fault tolerance by using non-volatile

memory to store data in case of failures and modeling crash failures and recommending provisions to counter

such failures, using Markov models to predict uncertainty, and introducing redundancy. However, the overall

fault rate of the entire network when such methods are implemented has not been presented. The computation

of fault rate of the entire liner networks has been presented using the FTA models in the literature. No

recommendations have been presented that focus on computing the fault rate when complex networking

topologies are used to build the IoT network.

− Solution

To develop hybrid fault-tolerance computing models that can be used to compute fault tolerance of

the IoT networks built using both linear and complex networking topologies. The hybrid models can be

developed using linear FTA models and probability models that compute fault tolerance of complex

topologies. The fault computation model computes the probability of failure and the probability model suited

to a particular networking topology like cross bar, butterfly, and multistage needs to be used.

− Value proposition

The hybrid models are used by any industry that develops an IoT network to implement an application

covering different domains. The industry concerned can compute the fault tolerance value of the network

developed by them, make modifications without much adding to the cost, and deliver the same to the customers

with the guaranteed operational time of the network. Major contributions of the paper include the following:

1) A method to convert simple clusters to linear models.

2) A method to convert complex structures to a linear model.

3) A probability-based computational model to compute the fault value of the IoT network built with

complex topologies.

4) A method to compute the fault value of a linear IoT network.

5) A hybrid model to compute the fault value of an IoT network built with composite structures, including

linear and complex topologies.

2. PROPOSED METHOD

In this, a hybrid approach to computing the fault rate of complex IoT networks is presented.

The method follows the steps shown in Figure 1. The fault computation approach presented is based on the

initial decision of whether the IoT network is linear or complex. If the model is linear, the clusters are

converted into linear structures, the fault tree is constructed, the fault computation table is generated, and the

overall fault is computed. Suppose the IoT model is found to be complex in that case, the complex structures

are converted into butterfly models or through any topological model, and then the fault rate is computed

using the probability models. The complex structures are then reduced into a single thing that is attached to

the fault rate of the entire complex structure. The complex IoT model is then converted into a linear model

for which a fault tree is constructed, a fault computing table is generated, and then the final fault rate of the

entire network is computed.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

336

If a cluster of mobile devices is used to inquire about the IoT, the mobile devices are formed into a

cluster, and then the cluster is directly interfaced with the web services server forming into mobile edge

computing as proposed by Samanta et al. [16]. Barrier scheduling is a frequently used technique to select a node

that effectively communicates with the outside world. The barrier scheduling scheme considers the quality of

service (QoS) considerations such as coverage, connectivity, and energy efficiency of the network. If there

are too many clusters, each cluster is connected to a cluster head, which is one of the devices operating in the

cluster. The failure of cluster nodes is traced, and the cluster is dynamically adjusted through weighted

graphs as proposed by Thomas et al. [17]. The dynamically adjusted graphs are then treated as a linear

model, and then FTA is constructed.

The controller layer is generally linear. A lightweight software-defined network (SDN) can be

constructed using several microcontrollers that replace heavyweight controllers, as proposed by

Chattopadhyay et al. [18]. The controller layer can then be converted into a cluster and a linear model.

Reduced variable neighborhood search-based sensors data processing considering the reliability of data

transmission and processing speed can be implemented in cluster head as proposed by Wang et al. [19]. The

method proposed includes fault-tolerant data transmission, self-adaptive filtering, and data load reduction.

Kumar et al. [20] have presented a dynamic and artificial intelligent fault-tolerant mechanism for

software-defined IoT, which considers network failures; the natural redundancy of functionality across

devices, software, and hardware has been exploited by the method proposed by them. They have proposed to

achieve fault tolerance by making the data backed up on virtual machines to maintain connectivity in case of

network failures between the devices. Centralized edge computing within IoT puts overhead in cluster

formation and management. Decentralized edge computing help achieve latency requirements by making the

computing available closer to the computing edge of the users. Mudassar et al. [21] have proposed grouping

heterogeneous edge nodes decentralized and processing the tasks in parallel to meet the deadlines. Fault

tolerance has been the major criterion for the resources of limited edge devices that depend on the local

information rather than the entire IoT network. The authors have proposed a method that runs in a decentralized

manner to find the reliability of edge nodes locally while improving the overall network availability.

Figure 1. The proposed method of computing the fault tolerance rate of IoT networks using hybrid models

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

337

3. METHODS AND TECHNIQUES

3.1. Computing the fault rate of linear IoT networks using the FTA method

IoT defect rate can be calculated FTA. Any network’s fault tolerance can be calculated using FTA.

The fault tree is built for a linear IoT network and then computes the fault. A fault tree depicts a system’s

flaws. Criticality, safety, operation, and environmental variables are shown. FTA shows the critical factors

that can cause a network to fail. A fault tree is a graph that depicts the flaws that can cause a network to fail

sequentially or concurrently. Software, hardware, and network defects can cause the failure of an IoT

network.

Given a network, the fault tree of the network can be developed considering the failure model.

The fault tree diagram also shows the relationships between the faults and how the faults propagate across the

network leading to failures. The aggregate effect of all network faults can be attributed to the root node’s

fault rate. While fault tree analysis can predict severe issues, it cannot represent all faults that may occur over

the life of a network.

The root node of the fault tree represents a networking event. Determining the root node’s fault rate

can be difficult when the system has many faults. As a result, fault tree analysis models a few essential and

ancient faults. AND-OR gate logics connect devices to represent how the faults originated at a specific

device and propagate to reach the network’s root.

The FTA model connects devices and networks using AND-OR gates. Faults are propagated to the

root node by the gates. FTA simulates higher-order events caused by lower-order events. Incoming errors

affect outgoing devices hierarchically and sequentially. The OR gate sends the highest effective low order

event to the output device, while the AND gate sends the combined effect of the incoming faults.

The devices are connected via AND-OR gates to form an FTA failure model. The failure rates of the

incoming devices are determined using the AND-OR rules. AND-OR gates are not logic gates, so logic rules do

not apply. Data related to the fault rates of the devices can be collected and stored in a database. The database

also stores AND-OR connections between devices in different networking tiers. The database also stores each

device’s fault rate using mean time between failures (MTBF) data from the device makers. The required

dependencies between devices are built with faults among linked devices in mind and their impact on

outputs. Each layer is considered independently, and the FTAs formed for each layer are linked. The FTA

diagram includes dummy devices to connect AND-OR gates wherever necessary.

3.2. Converting device clusters into a fault tree

Device clusters exist in IoT networks in the device layer. Developing an FTA model is complicated

when clusters are situated in the device layer of an IoT network. Figure 2 shows a device cluster involving

three devices.

It is necessary to convert the device layer clusters into linear models to convert the network into a

linear model. More intermittent devices are added, like the intermittent devices T12, T23, and T31 shown in

Figure 3, to convert a cluster into a linear model. All clusters must be converted to linear models to compute

the IoT network’s fault tolerance level using the FTA method. FTA graph the linear models using AND-OR

gates. Figure 4 depicts the linear model’s fault tree diagram.

The conversion of the linear model to an FTA model is done using AND-OR logic, as shown in

Figure 4. The conversion of clusters into linear models depends on the number of devices in a cluster and

how the devices are connected in a specific layout. AND logics are used when an outgoing fault arises

considering the combined effect of both the incoming faults. OR gate is used when one of the incoming faults

has the dominating effect on the other fault. The fault rate of an outgoing device is the combined fault rate of

the incoming devices if the AND logic is used. The fault rate of an outgoing device is the highest of the fault

rate of the incoming faults when it comes to OR logic.

Figure 2. Cluster representation Figure 3. Converting a

cluster into a linear model

Figure 4. FTA equivalent for

three-way cluster

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

338

3.3. Algorithm for generating FTA models from linear IoT networks

Given an IoT network containing device clusters, linear IoT models can be developed by converting

clusters into linear models. The linear models relating to the clusters are combined with the remaining part of

the network to form a wholesome linear network. The Algorithm that generates clusters in to a FTA model is

shown in Table 1.

Table 1. Algorithm for generating clusters into linear models
Step number Process undertaken

1 Capture an IoT network’s hierarchy of hardware elements and update a database

2 Capture the clusters existing in the IoT diagram, convert it to a hierarchical model, and update the items in the database

3 Update the database with the failure rate of the devices obtained from the manufacturers
4 Capture the relationship (OR, AND) between each device and its predecessors and update the database

5 Generate the linear tree into a graph model

3.4. Algorithm for computing fault rate – computing the fault rate of linear IoT networks

Given a linear tree, the details of which are stored in a database, the fault rate of the network can be

computed using the algorithm shown in Table 2 by implementing FTA-related rules. The fault rate of the

respected devices used to develop the network are taken from the respective manufacturers. The incoming

devices and the outgoing devices were all connected via gates. The AND-OR gates determine the fault rates

affected by the precedence rule and device connectivity.

Table 2. Algorithm for computing the fault rate of a linear IoT network
Step

number
Process undertaken

1 Query the elements from the database in the hierarchical order of preceding relationships connecting from the child
nodes

2 Using AND-OR rules, compute the outgoing device’s fault rate

3 To calculate an outgoing device’s fault rate, multiply it by the incoming device’s fault rate
4 If the relationship between the devices is an OR relationship, the outgoing device’s fault rate is the lowest of the

incoming devices’ fault rates

5 Calculate the fault rate of the root device. A root device has no parents
6 Generate fault computation table

3.5. Handling complexity of device clusters from computing the fault rate of IoT networks

Handling clusters in IoT networks becomes difficult when multiple devices are linked together.

The complexity can be reduced by converting a cluster into network topology and computing fault rates using

probability models. Such conversions increase dramatically as the number of devices in a cluster grows.

Butterfly, crossbar, mesh, and other topologies can be explored for networking a cluster.

Clusters are sometimes formed using complex structures, as shown in Figure 5. Developing linear

models for such kind of cluster structure is quite complex. In such a case, different networking topologies

such as butterfly and crossbar, can be used for converting complex cluster structures into networking

topologies. A complex device cluster can be represented in network topologies such as butterfly and crossbar.

Probability models can then compute the entire network’s fault rate. The representation of the complex

structure is shown in Figure 6 as a butterfly network.

The fault rate of a butterfly network can be computed using reliability models. A network with

distinct topologies cannot have an FTA. The system’s input goes through several stages to produce the

output. The network uses multiple switches to process input and output. An alternate method for transporting

data from the input to the output stage is chosen if the paths between stages are defective. Less than half of

the failures of hierarchical networks occur in multistage networks.

𝑁 × 𝑁 switches are needed when processing 𝑁 inputs to produce 𝑁 outputs. It is possible to achieve

upper and lower broadcast, straight broadcast, and vertical broadcast. Two butterfly networks (2 × 2) must

be used to build a 4 × 4 network. The probability of a fault in a network is determined by the fact that at least

one line out of a switch box at the output stage is functional, where 𝑞𝑙 is the probability that a link will fail,

and 𝛷(0) is the failure probability.

Ф(0)=1-ql
2
 (1)

The following equation defines the probability that a switch box in stage 𝑖 can fail, which is the failure of the

entire network.

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

339

Ф(i)=1-(1 − 𝑝𝑙Ф(𝑖 − 1))2 (2)

Sample calculations:

𝑝𝑙 = 0.9, 𝑞𝑙 = 0.1, from the (1) and (2), Ф(i)=1-(1 − 𝑝𝑙Ф(𝑖 − 1))2

Ф(1)=1-(1 − 0.9Ф(1 − 1))2, Ф(1)=1-(1 − 0.9Ф(0))2

Ф(1)=1-(1 − 0.9(1-ql
2))2, Ф(1)=1-(1 − 0.9(1-(0.1)2))2

Ф(1)=1-(1 − 0.9(1-0.01))2, Ф(1)=1-(1 − 0.891)2, Ф(1)= 0.98

Figure 5. Complex cluster structure

3.6. Representing a hybrid network built combining butterfly + linear network

IoT layers can be built using alternative networking topologies. At the same time, some parts of the

network are represented through a linear network; other parts of the network can be represented using

complex topologies. The complex topologies can then be reduced into a single device in the network

representing the entire topology. The fault rate of the device can be computed using its related probability

model, which can be combined with the fault rate finding using FTA-related rules and regulations. A hybrid

IoT network with a crossbar network for representing the device clusters and the rest of the network represented

as a linear network is shown in Figure 7. The network representation is called a hybrid as both butterfly and

linear networks are combined to form an overall network. The fault rate of the butterfly network is computed

using its related probability model, and the fault rate of the rest of the network is computed using the FTA rules.

The butterfly network is replaced by a single device to form a linear network. The fault rate of a single device

replacing the butterfly network is obtained through computation achieved through the probability model.

Figure 6. Conversion of a complex cluster into butterfly networking topology

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

340

Figure 7. A hybrid IoT network (combining the butterfly with linear IoT structure)

The linear model that represents the hybrid model is shown in Figure 8. A single device replaces the

butterfly part of the IoT network. The fault rate is the same as the fault rate of the butterfly network, which is

computed using its related probability model.

Figure 8. Equivalent linear model representing hybrid model

4. RESULTS AND DISCUSSION

Accurate fault diagnosis and taking alternate actions are the key. Fault detection accuracy, false

alarm rate, false positive rate, network lifetime, and throughput indicate the fault tolerance rate of the IoT

network. However, no combined method exists that computes fault rate considering all the parameters. Fault

tolerance rate is the parameter used to assess the fault tolerance of the IoT network.

Lavanya et al. [22] have used a support vector machine (SVM)-based learning model to diagnose the

kind of fault with the wireless sensor network (WSN) network implemented at the device layer. Within the

SVM model, they have used a grasshopper-based optimization method to determine the tunning parameters of

the classifier. They have achieved a 99% accuracy in fault diagnosis, a 1.5% false alarm rate, a success rate of

0.710, and a life extension of 23 months when applied on a pilot project.

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

341

Energy-efficient fault detection and recovery management system represented in terms hidden poison

Markov model has been proposed by Prasanth [23]. They have shown that fault diagnosis accuracy is 99%, and

the false alarm rate is 2%. They have achieved a success rate of 0.700 and a life extension of 38 months when

applied on a pilot project. An algorithm based on the multi-objective – deep reinforcement learning method has

been proposed by Agarwal et al. [24]. They have achieved fault diagnosis accuracy of 98%, a success rate of

0.690, and a fault alarm rate of 3%. The lifetime of the IoT network is extended by 36 months.

An approach that helps select the cluster head and broker node simultaneously has been proposed by

Bukhsh et al. [25]. They have implemented an energy-aware fault-tolerant system that schedules the

messages for transmission within a broker node. They have achieved 98% accuracy in fault detection, a false

alarm rate of 4%, The have achieved a fault rate of 0.698, and enhance the lifetime by 33 months

A sample IoT network is shown in Figure 9, which monitors temperature and humidity and controls air

circulation through fans and air conditioning. The clusters are directly connected to the base stations for onward

transmission to the controllers. Network and the linearized network are shown in Figure 9 and Figure 10.

The FTA equivalent of the network shown in Figure 10 is shown in Figure 11. The sample fault computations

generated are shown in Table 1.

The fault computation of the sample IoT network using the FTA method is carried out as per the FTA

rules and regulations. The computations are shown in Table 3. The root node, or internet node, has a success

rate of 0.717, which is the success rate of the entire IoT network. The network shown in Figure 10 is complex

due to too many clusters. The complexity can be reduced by introducing a butterfly network replacing the

clusters to make the network simple. The sample network that shows the butterfly network replacing the

clusters is shown in Figure 12. Further simplification of the above network is undertaken by replacing the

butterfly network with a single device attributed with a fault value that is the same as the fault value of the

butterfly network computed using probability expressions.

Figure 9. Sample IoT network with nonlinear cluster devices

Figure 10. Linearized IoT network

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

342

Figure 11. FTA diagram for sample linear IoT network

Figure 12. Sample hybridised IoT network built with butterfly network

The simplified network is shown in Figure 13. The FTA diagram is generated for the simplified

network, shown in Figure 14, and the fault calculations of the same are shown in Table 4. It can be seen from

Table 4 and Table 5 that there is an improvement in the success rate by 11.87% (0.796 – 0.710) when

butterfly networks are used to replace the complex device clusters. The success rate is 0.796, and the false

alarm rate is 0% as fault rates of manufacturer-supplied data are considered. The life of the IoT network is

extended by 48 months due to using the cluster butterfly network at the device level. The model’s accuracy is

100%, as the computations are made on empirical formulations. The comparison of different models for

estimating the accuracy of fault computation, compute fault rate, false alarm rate, and the extension of the life

of the pilot project in months is shown in Table 5. From which it could be seen that the hybrid model of

computing the success rate is the highest in the case of hybrid model.

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

343

Table 3. FTA calculation for sample linear IoT network

Serial

number

Device

Success

rate

Gates were used

for the connection

Preceding devices

Device

name D1

Device

name D2

Device

name D3

Device

name D4

Device

name D5
Combined

Success rate

S1

Success

rate S2

Success

rate S3

Success

rate S4

Success

rate S5

Success

rate

1 Temp-sensor-

1,2,3

0.950 0.950

4 T12, T23,

T13-dummy

0.950 OR T1 T2 0.950

 0.950 0.95

 0.950 0.95

7 T-123 0.950 OR T12 T23 T13 0.950

 0.950 0.950 0.950

 0.950 0.950

14 H-123 0.950 OR H12 H23 H31 0.950

 0.950 0.950 0.950

15 FAN-1,2,3 0.950 0.950

 0.950 0.950

21 F-123 0.950 OR F12 F23 F13 0.950

 0.950 0.950 0.950

22 Light 1,2,3 0.950 0.950

 0.950 0.950

28 L-123 0.950 OR L12 L23 L13

 0.950 0.950 0.950 0.950

29 Base station 0.950 OR T-123 H-123 F-123 L-123 0.950

 0.950 0.950 0.950 0.950

30 Controller 0.900 AND Base station 0.855

 0.950

31 Restful server 0.900 AND Controller 0.770

 0.855

32 Gateway 0.980 AND Restful

server

 0.755

 0.770

33 Internet 0.950 AND Gateway 0.717

 0.755

Figure 13. Simplified IoT network replacing the complex structures with a simple device

Figure 14. FTA diagram for simplified IoT network

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 2, April 2023: 333-345

344

Table 4. Fault calculations of the hybrid IoT network using FTA diagram

Serial

number
Device

Success

rate

Gates used for

connection

Preceding Devices

Device

name D1

Device

name D2

Device

name D3

Device

name D4

Device

name D5 Combined

success rate Success rate

S1

Success

rate S2

Success

rate S3

Success

rate S4

Success

rate S5

1 Cluster

head1

0.980

0.980

2 Cluster

head2

0.980

0.980

3 Cluster

head3

0.980

0.980

4 Cluster

head4

0.980

0.980

5 Base

station1

0.95 OR Cluster

head1

Cluster

head2

0.980

0.980 0.980

6 Base

station2

0.950 OR Cluster

head3

Cluster

head4

0.980

0.980 0.980

7 Controller 0.900 OR Base

station1

Base

station2

0.950

0.950 0.950

8 Services

server

0.9 AND Controller

0.855

0.950

9 Gateway 0.980 AND Service

server

0.838

0.855

10 Internet 0.950 AND Gateway

0.796

0.838

Table 5. Comparative analysis of comparable models

Parameter
Hybrid

model

SVM model

[22]

Hidden Markov

model [23]

Multi-objective deep

hidden [24]

Cluster-broker

selection [25]

Accuracy

(percentage)

100.000 99.000 99.000 98.000 98.000

Success rate 0.796 0.710 0.700 0.690 0.698

False alarm rate (%) 0.000 0.150 0.200 0.300 0.400

Life extension
(months)

48.000 23.000 38.000 36.000 33.000

5. CONCLUSIONS

The research focuses on developing linear and hybrid models that can be used to compute the fault

rate of any IoT network. Simple clusters are to be converted into linear models, and complex clusters are to

be converted into networking topologies, the fault rate of which can be computed using probability models.

The success rate increased to 0.796 when butterfly models were used in the device layer from 0.717,

achieved when linear transformations were carried out on the device clusters.

The accuracy of the fault rate is 100% when hybrid models are used for computing the fault

tolerance of the IoT into which butterfly networks are introduced in the device layer, and the fault rate is

computed using probability models. The success rate achieved using the hybrid model is 0.796, which is

12.36% more than the nearest model implemented through SVM. The life of the IoT networks gets extended

by 48 months which is the highest compared to the nearest models. The false alarm rate is 0% which is the

most significant achievement that one will get through the hybrid model.

REFERENCES
[1] N. Mardiyah, N. Setyawan, B. Retno, and Z. Has, “Active Fault Tolerance Control for Sensor Fault Problem in Wind Turbine

Using SMO with LMI Approach,” in 2018 5th International Conference on Electrical Engineering, Computer Science, and

Informatics (EECSI), 2018, pp. 336-340, doi: 10.1109/EECSI.2018.8752721.
[2] W. Najjar and J. -L. Gaudiot, “Network resilience: a measure of network fault tolerance,” IEEE Transactions on Computers, vol. 39,

no. 2, pp. 174-181, 1990, doi: 10.1109/12.45203.

[3] M. T. Moghaddam and H. Muccini, “Fault-Tolerant IoT: A Systematic Mapping Study,” International Workshop on Software

Engineering for Resilient Systems, 2019, pp. 67-84, doi: 10.1007/978-3-030-30856-8_5.
[4] G. De Masi, “The impact of topology on Internet of Things: A multidisciplinary review,” in 2018 Advances in Science and

Engineering Technology International Conferences (ASET), 2018, pp. 1-6, doi: 10.1109/ICASET.2018.8376837.

[5] A. Rullo, E. Serra, and J. Lobo, “Redundancy as a Measure of Fault-Tolerance for the Internet of Things: A Review,” Policy-Based
Autonomic Data Governance, Lecture Notes in Computer Science book series (LNISA), vol. 11550, 2019, doi: 10.1007/978-3-030-

17277-0_11.

[6] P. Vedavalli and C. Deepak, “Enhancing Reliability and Fault Tolerance in IoT,” in 2020 International Conference on Artificial
Intelligence and Signal Processing (AISP), 2020, pp. 1-6, doi: 10.1109/AISP48273.2020.9073174.

TELKOMNIKA Telecommun Comput El Control

Hybrid models for computing fault tolerance of IoT networks (Bhupati Chokara)

345

[7] M. Burmester, Y. Desmedt, and Y. Wang, “A Critical Analysis of Models for Fault-Tolerant and Secure Computation,” Proc.
Comm., Network, and Info. Security, 2003, pp. 147-152. [Online]. Available: https://www.cs.fsu.edu/~burmeste/bdw03.pdf

[8] M. Reiter and S. G. Stubblebine, “Towards acceptable metrics of authentication,” in Proc. 1997 IEEE Symposium on Security and

Privacy, 1997, pp. 10-20, doi: 10.1109/SECPRI.1997.601308.
[9] M. Burmester, Y. Desmedt and Y. Wang, “Using Approximation hardness to achieve dependable computation,” International Workshop

on Randomization and Approximation Techniques in Computer Science, 1998, pp. 172-186, doi: 10.1007/3-540-49543-6_15.

[10] M. Hirt and U. Maurer, “Player Simulation and General Adversary Structures in Perfect Multiparty Computation,” Journal of
Cryptology, vol. 13, pp. 31-60, 2000, doi: 10.1007/s001459910003.

[11] R. Oma, S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa, “A fault-tolerant tree-based fog computing model,”

International Journal of Web and Grid Services, vol. 15, no. 3, 2019, doi: 10.1504/IJWGS.2019.10022420.
[12] X. Cui, Z. Hussain, T. Znati, and R. Melhem, “A systematic fault-tolerant computational model for both crash failures and silent

data corruption,” in 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), 2018, pp. 1-8,

doi: 10.1109/ICIN.2018.8401596.
[13] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems,” IEEE

Transactions on Reliability, vol. 41, no. 3, 1992, doi: 10.1109/24.159800.

[14] L. Vihman, M. Kruusmaa, and J. Raik, “Systematic Review of Fault-Tolerant Techniques in Underwater Sensor Networks,”
Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21093264.

[15] Bhupathi and S. Jammalamadaka, “A framework for effecting fault tolerance within IoT network,” Journal of Advanced Research

in Dynamical and Control Systems, vol. 10, pp. 424-432, 2018. [Online]. Available:
https://www.researchgate.net/publication/325735593_A_framework_for_effecting_fault_tolerance_within_IoT_network

[16] A. Samanta, F. Esposito, and T. G. Nguyen, “Fault-Tolerant Mechanism for Edge-Based IoT Networks with Demand

Uncertainty,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 16963-16971, 2021, doi: 10.1109/JIOT.2021.3075681.
[17] D. Thomas, M. Orgun, M. Hitchens, R. Shankaran, S. C. Mukhopadhyay, and W. Ni, “A Graph-Based Fault-Tolerant Approach

to Modeling QoS for IoT-Based Surveillance Applications,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3587-3604, 2021,

doi: 10.1109/JIOT.2020.3022941.
[18] S. Chattopadhyay, S. Chatterjee, S. Nandi, and S. Chakraborty, “Aloe: Fault-Tolerant Network Management and Orchestration

Framework for IoT Applications,” IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2396-2409, 2020,

doi: 10.1109/TNSM.2020.3008426.
[19] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo, “Adaptive and Fault-Tolerant Data Processing in Healthcare IoT Based on Fog

Computing,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 1, pp. 263-273, 2020,

doi: 10.1109/TNSE.2018.2859307.
[20] S. Kumar, P. Ranjan, P. Singh, and M. R. Tripathy, “Design and Implementation of Fault Tolerance Technique for Internet of

Things (IoT),” 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), 2020,

pp. 154-159, doi: 10.1109/CICN49253.2020.9242553.
[21] M. Mudassar, Y. Zhai, L. Liao, and J. Shen, “A Decentralized Latency-Aware Task Allocation and Group Formation Approach

with Fault Tolerance for IoT Applications,” IEEE Access, vol. 8, pp. 49212-49223, 2020, doi: 10.1109/ACCESS.2020.2979939.

[22] S. Lavanya, A. Prasanth, S. Jayachitra, and A. Shenbagarajan, “A Tuned classification approach for efficient heterogeneous fault
diagnosis in IoT-enabled WSN applications,” Measurement, vol. 183, 2021, doi: 10.1016/j.measurement.2021.109771.

[23] A. Prasanth, “Certain Investigations on Energy-Efficient Fault Detection and Recovery Management in Underwater Wireless

Sensor Networks,” Journal of Circuits, Systems and Computers, vol. 30, no. 08, 2021, doi: 10.1142/s0218126621501371.
[24] V. Agarwal, S. Tapaswi and P. Chanak, “Intelligent Fault-Tolerance Data Routing Scheme for IoT-enabled WSNs,” IEEE

Internet of Things Journal, vol. 9, no. 17, pp. 16332-16342, 2022, doi: 10.1109/JIOT.2022.3151501.

[25] M. Bukhsh, S. Abdullah, A. Rahman, M. N. Asghar, H. Arshad and A. Alabdulatif, “An Energy-Aware, Highly Available, and Fault-
Tolerant Method for Reliable IoT Systems,” IEEE Access, vol. 9, pp. 145363-145381, 2021, doi: 10.1109/ACCESS.2021.3121033.

BIOGRAPHIES OF AUTHORS

Bhupati Chokara is presently serving as an Assistant professor of Electronics and

Computer Engineering at KLEF University. He is also a scholar at the same University and about

to graduate from his Ph.D. program. He has been actively managing a huge IoT infrastructure at

KLEF University. He has pioneered many aspects that enhance the fault tolerance of many

mission-critical IoT-based applications. He has published two SCI papers and 4 SCOPUS Indexed

papers. He can be contacted at email: bhupati@kluniversity.in and bhpati406@gmail.com.

Sastry Kodanda Rama Jammalamadaka has 30 Years of IT Experience and 16

Years of academic experience. Double doctorate in CSE and MGT. Has been qualified in BE

(Electrical), ME (Control Engineering), MBA (Finance), and M.Sc. (Stat). Has guided 23 Scholars

and has published 288 Papers, 21 In SCI, 124 in SCOPUS, and the rest indexed in Google Scholar.

The number of citations of the papers published by Dr. Sastry has crossed 800. He specializes in

AI, ML, DL, Embedded Systems, IoT, Web technologies, Cloud computing, Software engineering,

and Big Data Analytics. Twenty-three scholars have been awarded Ph.D. under the guidance of Dr.

Sastry. He is presently working as a Professor at KLEF University, Vaddeswaram, Guntur District,

India. He can be contacted at email: drsastry@kluniversity.in and drjkrsastry@gmail.com.

https://orcid.org/0000-0001-9635-3780
https://scholar.google.com/citations?user=EaZg500AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57201257757
https://www.webofscience.com/wos/author/record/2101770
https://orcid.org/0000-0001-9271-6839
https://scholar.google.com/citations?user=-nbXtNwAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/3734161

