
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 20, No. 1, February 2022, pp. 81~88

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i1.22464 81

Journal homepage: http://telkomnika.uad.ac.id

Optimized load balance scheduling algorithm

Rawaa Mohammed Abdul-Hussein 1, Ahmed Hashim Mohammed 2

1Computer Engineering Department, Faculty of Engineering, Mustansiriyah University, Iraq
2Department of Computer Science, College of Education, Mustansiriyah University, Iraq

Article Info ABSTRACT

Article history:

Received Jun 02, 2021

Revised Dec 17, 2021

Accepted Dec 28, 2021

 The cloud computing environment faces several challenges as a federation of

clouds, controlling the traffic flow, scalability, and balancing the load on

virtual machines that are considered the most crucial issue due to their

impact on the execution time, resource utilization, and cost. This paper is

interested in some of the existing algorithms that distribute the workload

evenly. These algorithms aim to avoid the blind assignment that often results

in some over-loaded servers while another node might be under-loaded. In

this work a combination of two inspired metaheuristic algorithms BAT and

cuckoo search was proposed; the first algorithm can utilize fast exploration

using global search, the latter algorithm can avoid trapping into BAT local

optimum problem using levy flight with a far random walk. Additonaly, the

proposed algorithm could be used to mitigate distributed denial of service

(DDoS) attack that aims to cause endless load on the servers and stop the

service. Experimental results for five virtual machine (VM), ten VM, with

the varying number of tasks showed that the proposed algorithm has better

resource utilization and less makespan time in almost all the cases.

Keywords:

BAT algorithm

Cloud computing

Cuckoo search

DDoS cyber-attack

Inspired metaheuristic

Load balance

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ahmed H. Mohammed

Department of Computer Science, Mustansiriyah University

Iraq, Baghdad

Email: dr.ahmedh@uomustansiriyah.edu.iq

1. INTRODUCTION

Vast applications and resources storing the data of many users worldwide are provided as a service

via a cloud computing system. Although the cloud applications increase rapidly every day, many challenges

need to be considered such as security and load balance [1], [2]. The name “cloud” refers to virtual networks

that provide software services with high performance at a low cost [3]. Nowadays, cloud computing extends

this trend towards hardware, even infrastructure, to be provided as a service [4]. As the requirement of the

services was increasing, the need for more parallel and distributed servers will also increase with the need for

algorithms to balance the load equally. Without balancing the load there may be some idle nodes while others

are fully loaded with a list of demands[5], [6]. The goal of applying these algorithms is to give every server

an equal load, so at any time, all the servers are busy with a specified work. This will improve the services by

minimizing the response time, improving resource utilization and the overall performance[7]. The main

challenge is allocating a suitable resource at the time of a task. These algorithms depend on predicting the

number of loads, relations between nodes, implementation of the system. The measured load is different in

many aspects, such as central processing unit (CPU) load, the used memory, and time delay[8], [9]. Load

balance algorithms can be classified into either static or dynamic resource allocation. In a static algorithm the

current state is not considered because it relies on its previous information [10]. Dynamic algorithm depends

on present state, and there is no need for prior knowledge of the system. Dynamic algorithm can be classified

into distributed and non-distributed algorithm [11]. In distributed algorithm, the work load is harmonized

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 1, February 2022: 81-88

82

between all the nodes collectively. It can be applied in two forms: cooperative that relies on each node to

reach the goal, and non-cooperative form that balances the load on each node independently[12]. Whereas,

non-distributed algorithm, balance the load by one node or node-set. This algorithm is classified into two

types: non-distributed centralized that relies, on a centralized node in balancing the load, and semi distributed

that divides the node into sets of clusters and inside each group the central node balances the load. These

clusters interact to produce the final decision of the whole system [13].

Balancing the load in cloud environment has advantages related to security when hundreds of

attackers start to send the unwanted traffic packets in order to acquire the memory, network resources and

completely deplete them this attack is known as distributed denial of service (DDoS) attack [14]. One of the

most crucial attack is DDoS attacks that are based on a joint attack platform that intends to send incomplete

requests traffic that exaust network bandwidth or system resources. resulted in prevention of legitimate users’

requests. Addition layer of security can be added by balancing the load as a result of its effect in controlling

and avoiding DDoS attacks. Dynamic allocation of resources can be used to mitigate DDoS attack

effectivily [15].

Manasrah and Ali [16] have combined the genetic algorithm (GA) and particle swarm optimizations

(PSO) optimization algorithm. At first the preliminary solution is found by GA algorithm that is passed to the

PSO algorithm to produce the final solution. Results show improvement in the performance (16% over GA

and 4% above PSO) by reducing the overall execution time and cost. Fabrizio et al. [17] used asymmetrically

clipped optical (ACO) heuristic algorithm to balance heterogeneous load by performing scheduling

simultaneously. The tasks graph is mapped and placed on a heterogeneous reconfigurable devices to support

PDR based field-programmable gate arrays (FPGAs). The performance comparison shows an improvement

of 16.5% over other heuristic algorithms. Jain [18] examined machine learning techniques based on multi-

level swam optimization to allocate suitable resources that can utilize continuous data streams, minimize time

cost, and increase load balance degree. Hong [19] introduced genetic ant colony algorithm to solve virtual

machine (VM) problem by analyzing ant placement between pair of virtual machines (VMs) which is done

by monitoring the pheromone during the ant movements. These results will be optimized using a genetic

algorithm. The evaluation shows that the physical servers are chosen efficiently resulted in resource

utilization improvement. Dave et al. [20] presented PSO for balancing the load running in cloud environment

using different applications to generate the load. The comparison shows considerable improvement in the

performance of VMs running applications. Awad et al [21] developed load balance mutation particle swarm

optimization (LBMPSO) that reassigned failed task and finished scheduling of the distributed tasks as earlier

as possible. Results present improvement in round trip time and execution time over other algorithms. Jena

[22] proposed multi-objective PSO framework (MOPSO) for scheduling task by combining PSO and an

evolutionary algorithm such as a mutation operator with concepts commonly used in multiobjective

evolutionary algorithms (MOEAs) based on Pareto dominance with better mechanism for spreading the

solutions. The experimental results show improvement in resource utilization and reduction in energy and

make span. X. Lu and Z. Gu [23] applied adaptive global expansion factor on ant colony optimization to

speed up the convergence process.

The proposed model monitors the nodes to detect the overloaded VM then applying ACO to

distribute load on the idle once. The results showed that adaptive cloud resource eliminate hot spots and

balance the load efficiently which results in high CPU utilization. Dhinesh and Venkata [24] applied honey

bee behavior to balance the load by classifying VMs into over loaded and under loaded nodes then removing

the load from the hot spot node (over loaded) node to the idle (under loaded) node according to the priority of

each task. This work improves the task execution and waiting time that can be proved by the simulation. Lili

and Xu et al. [25] produced a green cloud task algorithm based on binary particle swarm optimization

(BPSO). This work uses pipeline number for VMs and reassigns the particle position and velocity instead of

using matrix operations. Results showed improvement in the performance by minimizing execution time and

resource consumption in VMs. Xue et al. [26] has proposed load balance based on Ant colony optimization

by considering the average virtual machine load. The standard ACO pheromone value is updated according

to the distance while in the proposed algorithm, the pheromone value is selected according to the

computational capabilities. The transformed probability problem of ants is solved by using the roulette

algorithm. When tasks have selected the same virtual machine, the algorithm will select other idle virtual

machines to minimize the waiting period. Nakrani and Tovey [27] have been inspired by the behavior of

some kind of bees known as forager honey bees. This technique is based on the natural procedure that

allocates suitable servers to the requested task efficiently. Results showed improvement in the performance

over static or greedy algorithm for high request loads, but in low variability greedy algorithm can outperform.

Alnusairi et al. [28] has combined particle swarm algorithm with gravitational search algorithm. The

proposed algorithm uses PSO exploitation for global search and gravitational search algorithm (GSA)

TELKOMNIKA Telecommun Comput El Control

 Optimized load balance scheduling algorithm… (Rawaa Mohammed Abdul-Hussein)

83

exploration for local search. The experimental results show that the proposed algorithm balances the load

over time and enhances the overall utilization.

The contribution of this paper was in: proposing hybrid algorithm, the first one is BAT algorithm

that has the capability of fast convergence and the second algorithm is Cuckoo that overcomes the problem of

trapping in local optimum solution. Secondly, this algorithm could be used to mitigate DDoS attack that aims

to cause endless load on the servers and stop the service. Balancing the load is the best way to prohibit

attackers from DDoS attack by fairly distribution of workloads.

2. PROPOSED HYBRID OPTIMIZATION ALGORITHM

A new hybrid algorithm has been proposed by combining the BAT and Cuckoo metaheuristic

Search algorithm. BAT algorithm can reach towards optimum global region quickly (fast exploration) for the

best solution over a large population. However, after a sequence of iterations, the local search strategy of

BAT algorithm can trap into the local optimum. Consequently, the proposed algorithm uses Cuckoo search

algorithm to replace the local search of BAT algorithm by passing the BAT best solution to cuckoo algorithm

which uses Lévy flights strategy to overcome BAT local optimum problem.

The proposed algorithm starts to search for a new solution, which is generated in three stages: i)

BAT algorithm is applied to find the first solution using global search; ii) Cuckoo algorithm generates a new

solution around the best BAT solution; and iii) The proposed algorithm chooses the best solution between

BAT and Cuckoo algorithm.

2.1. BAT optimization algorithm

BAT could be classified into three types after studing 1000 species of them: micro BAT, mega

BAT, ghost BAT. Micro BAT uses a sonar called echolocation by generating a loud sound wave with low

frequency and low pulse rate. When the BAT found the prey, the loudness decreases while the frequency and

pulse rate increase with a short time (frequency tuning) to detect the location of prey accurately. This strategy

is used in the global BAT search. The BAT algorithm is based on micro BAT behavior, so every BAT is

assigned:

− Frequency: number of waves in particular unit time denoted by fi, the minimum frequency fmin and

maximum frequency fmax of the sound wave will be used to calculate the frequency at each iteration.

− 2-Position: the location of each BAT in the population denoted by xi.

− Velocity: speed of BAT toward the prey vi.

− Loudness: the intensity of sound wave Ai, the loudness value range between maximum loudness value A1

and minimum loudness value A0, as the BAT becomes closer to the target, the loudness is minimized.

− Pulse rate: the vibration of sound denoted by ri, as the BAT becomes closer to the prey, the pulse rate is

increased.

In the BAT algorithm the searching strategies are classified into two types: i) Local search: is used

for generating a new solution around the position of the current best solution, by checking if the random

value is greater than the pulse rate; and ii) Global search: a new solution is generated by flying randomly then

checking if the fitness of the new solution is lower than the fitness of the current best solution and the

loudness value is greater than a random value, then accept the new solution, Increase the pulse rate, and

decrease the loudness.

2.2. Cuckoo optimization algorithm

This algorithm is a meta-heuristic algorithm proposed by Yang and Deb in 2009 by analyzing some

cuckoo bird behavior that lay their eggs in the nests of other birds. This strange breeding behavior increases

their survival and productivity.

Many host birds cannot differentiate Cuckoo bird from their birds, and these host birds will brood

cuckoo eggs until they hatch and finally feeding them until chicks grow up. Although many cuckoo birds

survive from the discovery of host bird, the possibility that the host bird realizes Cuckoo egg could happen,

then host bird may throw away the cuckoo egg from the nest or leave that nest. Three rules should be

imposed in the implementation of the Cuckoo algorithm:

− Each cuckoo chooses random nest and puts one egg at a time.

− Best nest represents best solution that is used to predict the next generation of solutions.

− There are a fixed number of nests.

The Best solution represents a high-quality egg (similar to host bird eggs), so it has the opportunity to

develop and become a mature Cuckoo. Whereas worse solution represents eggs that could be distinguished

by host bird so it should be replaced.

The generation of new solution is done by levy flight which is a set of straight paths turned by 90

degrees each time as the (1):

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 1, February 2022: 81-88

84

Xi(t+1)=xi(t) + α ⊕ Levy(λ) (1)

Where i represent cuckoo nest

α = step size = 1

λ = levy exponent =1.5

⊕ = entry wise multiplication

Xi (t+1) represent a new solution, Xi (t) represent the current location (solution).

The evolution process of cuckoo search defines three different stages: i) The first one is Levy (λ)

flight that is used to find a new position denoted by Xi (t+1) based on the current location of cuckoo Xi (t) and

random step size generated from Levy flight (λ); and ii) The second strategy involves replacing the nest of

the discovered egg with another nest. The last strategy is Greedy (elitist) selection by applying the fitness

function to extract the best solution. The proposed algorithm can be presented in Figure 1.

Figure 1. Flowchart of proposed algorithm

This flowchart can be summarized in the following steps: i) Population: the total number of BATs

searching for a prey and total number of iterations; ii) Assign random value of frequency, velocity, position,

loudness, and pulse rate for each BAT; and iii) Check, if the numbers of iteration lower than the total number

of iterations then generate a new solution by updating the frequency, velocity, and position. Use (1), (2), (3).

𝑓𝑖 = 𝑓𝑚𝑖𝑛 +(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (2)

TELKOMNIKA Telecommun Comput El Control

 Optimized load balance scheduling algorithm… (Rawaa Mohammed Abdul-Hussein)

85

𝑉𝑖
𝑡 = 𝑉𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑋∗)𝑓𝑖 (3)

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 (4)

− Check if the random value is greater than the pulse rate then selects this solution among the best solution.

− Apply cuckoo algorithm to generate a new solution around this solution.

− Use the BAT best solution as the initial best Cuckoo solution and calculate its fitness.

− Use L´evy flight to generate new solution and calculate its fitness.

− Compare the new fitness value with current fitness value and choose the nest with less fitness as a new

solution.

− Replace the worse cuckoo solution by a new solution by flying randomly, choose this solution if its

fitness value is less than the current fitness.

− return to BAT algorithm and Check if the fitness of the new cuckoo solution is lower than the fitness of

BAT best solution and the loudness value is greater than a random value then:

− Decrease the loudness and increase the pulse rate according to the following equations

𝐴𝑖
(𝑡+1)

= 𝛼𝐴𝑖
(𝑡)

 (5)

𝑟𝑗
(𝑡)

= 𝑟𝑖
(0)[1 − 𝑒𝑥𝑝(−𝑦𝜖)] (6)

𝜖 is a random number from [−1, 1], 𝐴𝑖
(𝑡)

 is the average loudness of the population.

− Rank the BAT and accept the best new solution with higher frequency and pulse rate.

− Repeat the above steps until termination criteria satisfied.

As a result, the proposed algorithm can explore wide range of problem space while avoiding getting stuck in

local optimum.

3. RESULTS AND DISCUSSIONS

Cloud sim has been used to investigate large-scale cloud environment.it is developed by the Grid bus

project team of Melbourne University in Australia. The implementation of the proposed algorithm is done by

using Java programming language, IDE: Eclipse. The evaluation is measured by comparing a set of

parameters like execution time and average utilization over 5 and 10 VMs for varying number of cloudlets

(tasks). The proposed algorithm is compared with Round Robin Algorithm (RR), first come first served

(FCFS) and standard BAT algorithm. Round Robin assign task to each virtual machine in Sequential order,

so when the first task arrive, it will be sent to the first virtual machine then the second task is passed to the

second virtual machine and so on. FCFS algorithm allocates the load in a sequential order according to its

precedence of arrival. The evaluation is based on comparing Make Span, which is known as job completion

time. It is measured in nanoseconds. The experimental result can be categorized into five cases:

3.1. Execution time for VMs

As shown in Figure 2, there is small difference between the execution time when the range of task is

between 10 to 20. When the number of tasks exceeds 30 tasks, the differences in execution time increases

gradually. The improvement of the proposed BAT cuckoo search (BATCS) has reached to about 14 % over

FCFS algorithm, 6% over RR, and 4% over standard BAT algorithm.

For 10 VMs, the execution time is presented in Figure 3. It can be observed from Figure 2 that the

proposed BATCS algorithm has minimum execution time over all other algorithms. The proposed BATCS

achieves about 18 % less execution time than RR algorithm and 9% over both FCFS and standard BAT

algorithm.

3.2. CPU utilization for VMs

As presented in Figure 4, when applying five virtual machine to the simulation, the results prove

that BATCS algorithm improve the average resource utilization when compared to FCFS, RR, and standard

BAT algorithms by 8%, 8%, and 4%, respectively. The CPU utilization results obtained for 10 VMs are

shown in Figure 5. The average improvement of this comparison indicates that BATCS algorithm has higher

utilization than FCFS, RR with 13 % and around 6 % over standard BAT algorithms.

3.3. Degree of Imbalance

Figure 6. presents the degree of imbalance for MakeSpan time. It can be observed that after

balancing the load, the makespan time increases smoothly and gradually from about (2 to 7) nanosecond over

a range of (10 to 40) tasks. Whereas before balancing the load, the variation in time shows unstable increase,

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 1, February 2022: 81-88

86

beginning from just over 5 nanosecond at 10 task, to well under 30 nanosecond at 40 task. It can be

concluded that the improvement in the degree of imbalance before and after balancing the load reaches to 60

%. Similarly the average execution time for varying number of task over 5 and 10 VMs can be consolidated

in Figure 7.

Figure 2. Execution time of (5 VMs) VS Tasks Figure 3. Execution time of (10 VMs) VS Tasks

Figure 4. Avg Utitization of (5 VMs) VS Tasks Figure 5. Avg Utilization of (10 VMs) VS Tasks

Figure 6. Degree of inbalance before load balance

TELKOMNIKA Telecommun Comput El Control

 Optimized load balance scheduling algorithm… (Rawaa Mohammed Abdul-Hussein)

87

Figure 7. Exceution time of (5-10) VMs VS Tasks

4. CONCLUSION

In cloud environment the load should be balanced efficiently by appling smart algorithms. Today

scientists relay on metaheuristic algorithm to improve the performance by selecting the suitable algorithms

skillfully. This work uses BAT algorithm that have high capability of global convergence to solution in short

time, then after several iterations the new solutions may fall into the local optimum problem. Therefore, this

work suggests applying cuckoo algorithm as a second stage that can find best new solution far from the

current best solution. Results showed improvement in execution time by about 14 % over FCFS algorithm,

6% over RR, and 4% over standard BAT algorithm for 5 VMs and 18 % less execution time than RR

algorithm and 9% over both FCFS and standard BAT algorithm for 10 VMs. Moreover, the proposed

algorithm achieves higher resource utilization for 5 VMs when compared to FCFS, RR, standard BAT

algorithms by 8%, 8%, and 4%, respectively. Additionally, BATCS algorithm has higher utilization than FCFS,

RR with 13 % and around 6 % over standard BAT algorithms. Finally, the performance comparison showed

that the improvement in the degree of imbalance before and after balancing the load has reached to 60%.

On the other hand, the proposed algorithm could be used to mitigate DDoS attack that aims to cause

endless load on the servers and stop the service. Balancing the load is the best way to prohibit attackers from

DDoS attack by distributing the workload fairly. As a future work the data generated in case of normal state

(without attack) can be used to make a comparision by appling machine learning algorithms to distinguish

between legitimate and aggressive legitimate users.

ACKNOWLEDGEMENTS

The authors are wishing to acknowledge Al-Mustansiriyah University

(http://www.uomustansiriyah.edu.iq) Baghdad, Iraq.

REFERENCES
[1] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing,” IEEE

Access, vol. 7, pp. 42735–42744, 2019, doi :10.1109/ACCESS.2019.2907615.

[2] I. Ahmed, “Technology organization environment framework in cloud computing,” TELKOMNIKA (Telecommunication

Computing Electronics and Control), vol. 18, n0. 2, pp. 716–725, doi: http://dx.doi.org/10.12928/telkomnika.v18i2.13871.

[3] Y. Sahu and R. K. Pateriya, “Cloud Computing Overview with Load Balancing Techniques,” International Journal of Computer

Applications, vol. 65, no. 24, 2013, [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.9773&rep=rep1&type=pdf

[4] Alyouzbaki, Y. A. G. and Al-Rawi, M. F. “Novel load balancing approach based on ant colony optimization technique in cloud

computing,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 4, pp. 2320–2326, 2021,
doi: https://doi.org/10.11591/eei.v10i4.2947.

[5] D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load balancing techniques in cloud computing environment: A review,” Journal of

King Saud University- Computer Information Sciences, 2021, doi: https://doi.org/10.1016/j.jksuci.2021.02.007.
[6] T. Francis, “A Comparison of Cloud Execution Mechanisms Fog, Edge, and Clone Cloud Computing,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 8, no.6, pp. 4646-4653,2018, doi: http://doi.org/10.11591/ijece.v8i6.pp4646-
4653.

[7] N. Haryani and D. Jagli, “Dynamic Method for Load Balancing in Cloud Computing,” IOSR Journal of Computer Engineering

(IOSR-JCE), vol. 16, no. 4, pp. 23-28, 2014, [Online]. Available: https://www.iosrjournals.org/iosr-jce/papers/Vol16-
issue4/Version-4/D016442328.pdf

[8] A. Kaur and M. P. Luthra, “A Review on Load Balancing In Cloud Environment”, International Journal Of Computers &

Technology (IJCT), vol. 17, no. 1, pp. 7120–7125, 2018, doi: https://doi.org/10.24297/ijct.v17i1.7160.
[9] C. Jittawiriyanukoon, “Cloud computing based load balancing algorithm for erlang concurrent traffic,” Indonesian Journal of

Electrical Engineering and Computer Science (IJECS), vol. 17, no.6, pp. 1109–1116, 2019,

doi: http://doi.org/10.11591/ijeecs.v17.i2.pp1109-1116.
[10] R. Pushpa and M. Siddappa, "A comparative study on load-balancing algorithms/or cloud environments," 2017 3rd International

https://doi.org/10.1109/ACCESS.2019.2907615
http://dx.doi.org/10.12928/telkomnika.v18i2.13871
https://doi.org/10.11591/eei.v10i4.2947
http://doi.org/10.11591/ijece.v8i6.pp4646-4653
http://doi.org/10.11591/ijece.v8i6.pp4646-4653
https://doi.org/10.24297/ijct.v17i1.7160
http://doi.org/10.11591/ijeecs.v17.i2.pp1109-1116

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 1, February 2022: 81-88

88

Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 2017, pp. 316-321, doi:

10.1109/ICATCCT.2017.8389154.
[11] R.Kaur and G. Kaur, “Proactive scheduling in cloud computing,” Bulletin of Electrical Engineering and Informatics, vol. 6 no. 2,

pp. 174–180, 2017, doi: 10.11591/eei.v6i2.649.

[12] I. Odun-Ayo, T. -A. Williams, M. Odusami, and J. Yahaya, “A systematic mapping study of performance analysis and modelling
of cloud systems and applications,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 2, pp.

1839–1848, 2021, doi: 10.11591/ijece.v11i2.pp1839-1848.

[13] A.Ullah, N. M. Nawi, J. Uddin, S. Baseer, and A. H. Rashed, “Artificial bee colony algorithm used for load balancing in cloud
computing: Review,” International Journal of Artificial Intelligence ,vol. 8, no. 2, pp. 156–167, 2019, doi:

10.11591/ijai.v8.i2.pp156-167.

[14] N. Agrawal and S. Tapaswi, “A proactive defense method for the stealthy EDoS attacks in a cloud environment,” International
Journal of Network Management, vol. 30, no. 2, pp. 1–25, 2020, doi: 10.1002/nem.2094.

[15] N. Jeyanthi, N. Ch. S. N. Iyengar, P. C. M. Kumar, and Kannamal A, “An enhanced entropy approach to detect and prevent

DDOS in cloud environment,” International Journal of Communication Networks and Information Security, vol. 5, no. 2, pp.
110–119, 2013, doi: 10.54039/ijcnis.v5i2.367.

[16] A. M. Manasrah and H. B. Ali, "Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing", Wireless

Communications and Mobile Computing, 2018, doi: 10.1155/2018/1934784.
[17] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, "Ant Colony Optimization for mapping, scheduling and placing in

reconfigurable systems," 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013), 2013, pp. 47-54, doi:

10.1109/AHS.2013.6604225.
[18] A. Jain, “Advance Approach for Load Balancing in Cloud Computing Using (HMSO) Hybrid Multi Swarm Optimization,”

International Research Journal of Engineering and Technology (IRJET), vol. 5, no. 10, pp. 46-49, 2018.

[19] L. Hong and G. Yufei, "GACA-VMP: Virtual Machine Placement Scheduling in Cloud Computing Based on Genetic Ant Colony
Algorithm Approach," 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on

Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), 2015, pp. 1008-1015, doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.189.

[20] A. Dave, B. Patel, G. Bhatt, and Y. Vora, "Load balancing in cloud computing using particle swarm optimization on Xen Server,"

2017 Nirma University International Conference on Engineering (NUiCONE), 2017, pp. 1-6, doi:
10.1109/NUICONE.2017.8325618.

[21] A. I. Awad, N. A. El-Hefnawy, and H. M. A. Kader , “Enhanced Particle Swarm Optimization for Task Scheduling in Cloud

Computing Environments,” Procedia Computer Science, vol. 65, pp. 920–929, 2015, doi: 10.1016/j.procs.2015.09.064.
[22] R. K. Jena, “Multi Objective Task Scheduling in Cloud Environment Using Nested PSO Framework,” Procedia Computer

Science, vol. 57, pp. 1219–1227, 2015, doi: 10.1016/j.procs.2015.07.419.

[23] X. Lu and Z. Gu, "A load-adapative cloud resource scheduling model based on ant colony algorithm," 2011 IEEE International
Conference on Cloud Computing and Intelligence Systems, 2011, pp. 296-300, doi: 10.1109/CCIS.2011.6045078.

[24] L. D. Dhinesh and P. Venkata, “Honey bee behavior inspired load balancing of tasks in cloud computing environments,” Applied

Soft Computing Journal, vol. 13, no. 5, pp. 2292–2303, 2013, doi: 10.1016/j.asoc.2013.01.025.
[25] L. Xu, K. Wang, Z. Ouyang, and X. Qi, "An improved binary PSO-based task scheduling algorithm in green cloud computing,"

9th International Conference on Communications and Networking in China, 2014, pp. 126-131, doi:

10.1109/CHINACOM.2014.7054272.
[26] S. Xue, M. Li, X. Xu, and J. Chen, “An ACO-LB algorithm for task scheduling in the cloud environment,” J. Softw., vol. 9, no. 2,

pp. 466–473, 2014, doi: 10.4304/jsw.9.2.466-473.

[27] S. Nakrani and C. Tovey, “On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers,” Adaptive behavior, vol.
12, pp. 223-240, 2004, doi:10.1177/105971230401200308.

[28] T. S. Alnusairi, A. A. Shahin, and Y. Daadaa, “Binary PSOGSA for Load Balancing Task Scheduling in Cloud Environment,”

International Journal of Advanced Computer Science and Applications, vol. 9, no. 5, pp. 255- 264, 2018, doi:
10.14569/IJACSA.2018.090535.

BIOGRAPHIES OF AUTHORS

Rawaa Mohammed Abdul-Hussein received the Bachelor degree of “computer

and software engineering” from university of Mustansiriyah. From 2006-2008, she received a

Master degree of “information technology” from University of Technology. Her Research

interests are cloud computing, software engineering, intelligent algorithm, logic design, and

web application security. She can be contacted at email:

mscrawaahm@uomustansiriyah.edu.iq.

Ahmed Hashim Mohammed received computer Science degree from Al-

Rafidain University, Baghdad, Iraq, in 2003 and M.Sc. degree in computer science from

Informatics Institute for Postgraduate Studies, Baghdad, Iraq, in 2006, and Ph. D degree in

computer science from University of Technology, Baghdad, Iraq in 2015. He is Currently

Assist Prof. lecturer at Al- Mustansiriyah University. His research interests include Artificial

intelligent, Cloud Computing, cyber security, internet of things and cryptanalysis. He can be

contacted at email: dr.ahmedh@uomustansiriyah.edu.iq.

https://doi.org/10.11591/eei.v6i2.649
http://doi.org/10.11591/ijece.v11i2.pp1839-1848
https://www.sciencedirect.com/science/article/pii/S187705091502894X#!
https://doi.org/10.1016/j.procs.2015.07.419
https://doi.org/10.1016/j.asoc.2013.01.025
https://orcid.org/0000-0001-6420-0296
https://scholar.google.com/citations?user=dsZR5-4AAAAJ&hl=en
http://orcid.org/0000-0001-7850-7854
https://scholar.google.com/citations?hl=en&user=proLMVIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215517555
https://publons.com/researcher/Y-8957-2018/

