
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 20, No. 3, June 2022, pp. 551~560

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i3.23297 551

Journal homepage: http://telkomnika.uad.ac.id

Enhancement process of AES: a lightweight cryptography

algorithm-AES for constrained devices

Hussein M. Mohammad, Alharith A. Abdullah

Network Departement, College of Information Technology, University of Babylon, Babil, Iraq

Article Info ABSTRACT

Article history:

Received Apr 22, 2021

Revised Apr 03, 2022

Accepted Apr 11, 2022

 The restricted devices have a small memory, simple processor, and limited

power. To secure them, we need lightweight cryptography algorithms, taking

into account the limited specifications. Lightweight cryptography (LWC)

algorithms provide confidentiality and maintain information integrity for

devices with limited resources. This paper improves and enhances advanced

encryption standard (AES) algorithm by reducing algorithm computation

power and improving cryptography performance from the point of resource

constraint devices. The proposed algorithm is fast and lightweight, which is

essential for securing all kinds of data. Besides, the use of mix column

overhead is dispensing with, and the ciphertext is processed by the

mathematical function (continued fraction) to compress the ciphertext and

make it more confusing and also to increasing the data transfer speed.

The proposed lightweight cryptography-AES (LWC-AES) algorithm highly

suitable for the timely execution of encryption and decryption (such as when

encrypt text has (45.1 KB) encryption execution time for AES was (294 ms),

while in LWC-AES was (280 ms), as well as suitable for the memory size of

the resource-constrained devices for all types of data, than the AES

algorithm. The proposed algorithm tested for security analysis using the

avalanche effect parameter, and this test showed acceptable and within

required security results.

Keywords:

AES Algorithm
Continued fraction

Lightweight AES algorithm

Security analysis

This is an open access article under the CC BY-SA license.

Corresponding Author:

Alharith A. Abdullah

Network Departement, College of Information Technology

University of Babylon, Babil, Iraq

Email: alharith@itnet.uobabylon.edu.iq

1. INTRODUCTION

The design of traditional cryptographic algorithms is suitable for conventional devices but not

compatible with restricted devices [1], and classical cryptography methods require a significant allocation of

resources. To resolve these problems, or rather challenges, the National Institute of Standards and Technology

(NIST) recommended favoring lightweight cryptography (LWC) algorithms which provide the same level of

security as traditional algorithms, and their performance is also acceptable on these resource-limited devices [2].

LWC is essential for securing resource-limited devices like smart cards, radio-frequency identification (RFID)

tags, sensor networks, and embedded systems [3], [4]. They are also used for hastily rising resource constraints

applications. The applications include wireless sensor networks, smartcards [5], internet of things (IoT) [6],

RFID tags [7], wireless body area networks, healthcare devices [8], [9], and other applications.

Lightweight cryptography’s main objective is to minimize the overall implementation cost in

software and hardware, where software has the implementation size, random acces memory (RAM)

consumption, and throughput (bytes per cycle). In contrast, the hardware has code size, memory consumption

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 3, June 2022: 551-560

552

(RAM), energy consumption, and gate equivalence (GE) [10]. Lightweight cryptography is intended for

hastily increasing applications that highly employ smart and limited-resource devices.

There are many LWC in security for constraint devices like (advanced encryption standard (AES),

rivest’s cipher 5 (RC5), PRESENT, Simon, Speck, high security and lightweight (HIGHT), lightweight

encryption algorithm (LEA), tiny encryption algorithm (TEA), and KATAN) [11]. However, it differs in

terms of memory and power consumption, and security, which is the most crucial factor. Due to the unique

specification of restricted devices, the obtaining of a high level of security is difficult and needs developing

the lightweight encryption algorithm always to be more compatible and to make a balance between the

security and the work nature of restricted devices [1] which is the biggest challenge for lightweight

encryption algorithms. In other words, the perfect algorithm should preserve the appropriate balance between

cost, performance, and security [12]. From this standpoint, and to achieve the aforementioned balance and

because traditional algorithms do not fulfill these conditions in the restricted devices environment and

because the traditional AES encryption algorithm, which will be addressed later, carries near-perfect

specifications to ensure confidentiality, we have improved its specifications and made it work in a manner

that achieves the required balance between cost, performance and security. Therefore, a lightweight

encryption algorithm has been proposed that carries strong specifications compared to the rest of the

lightweight encryption algorithms that were previously employed.

Advanced encryption standard [13] is considered one of the best encryption algorithms for several

reasons, among which is its classification among the symmetric encryption algorithms that use a single key

for both encryption and decryption of the data, and its key is extraordinarily secure and relatively fast, as well

as its guarantee integrity and confidentiality of data [14]. Therefore it is suitable for resource-constrained

devices such as IoT devices and embedded systems. It can effectively defend against many well-known

attacks [15]. One of the advantages of this algorithm is the variation of block size and key size. In other

words, the block size and key size can vary, making the algorithm more flexible and versatile. AES is

initially designed for unclassified US government information, but AES-256 can be used to obtain top-secret

government information [16]. Among the many advantages of the AES algorithm is implementing LWC-AES

encryption in the .net application as an aspect of a programming algorithm based on light encryption, which has

a significant role in providing the necessary security for many devices and resource-limited applications.

There are many much-related researchs on the modification of AES as it is the standard for

encryption, such as:

− Kawle et al. [17] proposed a method to overcome the computational overhead, the AES is modified

after analyzing it through eliminating the use of mixcolumne overheads on data and the use of the

permutation step instead. The modified version of this algorithm provides a faster encryption technique

for the protection of multimedia data. This lightweight encryption algorithm transmits data and it is

compatible with large plaintext.

− Sari et al. [18] has been proposed improved security and message capacity using AES and Huffman

coding to reduce the total of the message’s bit and increase the capacity on image steganography.

The results of this paper shown a secure message image and conceal into a cover image, where provided

a higher capacity in discrete wavelet transform (DWT) for steganography by reducing the total of

message’s bit from the original message’s bit.

− Kumar et al. [19] proposed an idea of encrypting voice signals over peer to peer communication with

the help of a modified and lightweight AES algorithm. This algorithm is similar to the traditional AES

algorithm in most of the aspects but does not imply the use of a mix column that is used in the

traditional AES algorithm. The results of the algorithm are analyzed on Artix-7 and Kintex-7 field

programmable gate arrays (FPGAs).

− Hazzaa et al. [20] proposes a lightweight and low energy encryption algorithm to secure voice traffic

over wireless networks. It is capable to reduce the execution time and power consumption of the

encryption process compared with the state of the art standard algorithm and at the same time maintains

the desired security (confidentiality) level. The proposed algorithm employs similar methods with those

used in the AES algorithm.

In this paper, an enhancement of lightweight AES algorithm is proposed to reduce delay and

computation power in the context of the traditional AES algorithm, making it more flexible and compatible

with the characteristics of IoT devices and military services with 𝐶# programming .NET Framework

implementation in Windows 10 and Microsoft Visual Studio. The used framework enhanced the computation

power constraints, and it is analyzed with the avalanche effect (AE) security parameter. This paper’s outline

falls into the following sections: section 1 introduced the fundamental concepts of lightweight cryptography

algorithms with the most related papers, section 2 presents the proposed lightweight AES algorithms

architecture with all details of design where it presents the used system and illustrates the working steps of

the system as the used architecture for designing and implementing lightweight AES algorithms with the

TELKOMNIKA Telecommun Comput El Control

Enhancement process of AES: a lightweight cryptography algorithm-AES for … (Hussein M. Mohammad)

553

main relevant topics, section 3 discusses the implementation of the proposed algorithm with the results and

comparisons where it shows the achievement of the suggested lightweight AES algorithm with the result, and

compares the proposed AES lightweight with others lightweighted algorithms, section 4 is devoted to explain

security analysis. Finally, section 5 sums up the findingds and conclusions of the research.

2. ADVANCED ENCRYPTION STANDARD

In 2000, NIST developed the data encryption standard (DES) to create a new algorithm known as

AES [21], the new algorithm was developed through mathematical computational properties and simple

execution for both in hardware and software implementations as well as using key size with different lengths

128 bits, 192 bits, and 256 bits [15]. The AES algorithm, as a block cipher algorithm, consists of several

rounds 𝑁, the number of the round in AES is ten rounds based on length of the encryption key, key length

128-bit, 12 rounds, key length 192-bit, and 14 round, key length 256-bit. AES usage with a key size of

128 bits (AES-128 bits) is the most common in the current period. In AES, a block of data (128 bit) is

divided into four blocks. They are handled as a bytes array and arranged in a 4×4 matrix called state.

This algorithm starts with add-round-key for encrypting and decrypting data in add round processes;

the plaintext is exclusive-ORed with a key [22]. All the AES algorithm rounds involve four operations

(sub-bytes, shift-rows, mix-columns, add round key) except the final round which involves only three

operations (sub-bytes, shift-rows, add round key). The decryption process uses the inverse functions,

substitute-bytes inverse, shift-rows inverse, and mix-columns inverse, as shown in Figure 1.

Figure 1. Block diagram for AES algorithm

3. CONTINUED FRACTION

In this paper the proposed enhancement procedure is based on the continued fraction. It is a way of

expressing a number as an integer plus a series of nested functions continued fraction data back from around

about 300 BC around about the time of Euclid. It has many applications, one of them is proposed in this

paper [23], [24]. The mathematical expression of a continued fraction as follows:

𝑎0 +
1

𝑎1+
1

𝑎2+
1

⋱+
1

𝑎𝑛

 (1)

Where 𝑛 is a non-negative integer, 𝑎0 is an integer, and 𝑎i a positive integer, for 𝑖 = 1, ⋯ , 𝑛. This

mathematical expression is called a generalized continued fraction. Typically, the numbers may be real or

complex, and the expansion may be finite or infinite [23].

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 3, June 2022: 551-560

554

4. METHOD

As mentioned earlier, this work proposes enhancing the AES algorithm to improve security, reduce

high calculation, provide better encryption speed, and reduce computational overhead in constrained devices.

The proposed algorithm characteristics are block size equals 128-bit, key size equals 128-bit, and dynamic

rounds. There is no difference between the proposed LWC-AES and original AES in the encryption and

decryption process, the number of rounds, data, and key size. The primary operations are remaining without a

change in encryption and decryption steps (substitution bytes, shift-rows, and add-round-key). The main

improvement in the proposed LWC-AES algorithm is mix column operation, where it is reduced in

comparison with the original AES that takes a long time in encryption and decryption; now, after reduction,

the text of 128-bit is directly taken from the output of shift rows operation. Then, a mathematical function

(continued fraction) is used to reduce the number of bit transfer among entities and increase the security of

the used method, hence, increasing the difficulty to break by different attacks such as side-channel attack and

differential attack because the size of the encrypted text is different from the standard case by the compressed

feature of continued fraction method. Its execution has been modified according to the final step of

encryption optimizer that is added after the final ciphertext (where the encryption block is reduced to 16 bit)

assuming that the encrypted text security is improved. The LWC-AES calculation can be separated into three

phases, excluding the mix column process. The flow chart of the process is explained in Figure 2.

Figure 2. The flowchart of LWC-AES algorithm process

5. THE PROPOSED COMPONENTS OF LWC-AES

The main component of the proposed method is the initial round (add-round-key), then (10) rounds

of three functions on the encryption side. In Figure 2, we notice there is no conditional function so that all

rounds work together, taking into account the reduction of the steps of the conditional sentences. Steps are

composed of: non-linear byte substitution (sub-byte). Besides, we removed the MixColumn to reduce

computation power process, shift row transformation (shift-row), and key addition (add-round-key). After ten

rounds are performed, the ciphertext is obtained, and it is entered into the mathematical function called

TELKOMNIKA Telecommun Comput El Control

Enhancement process of AES: a lightweight cryptography algorithm-AES for … (Hussein M. Mohammad)

555

(continued fraction) which reduces and compresses the encrypted text from 128 bits to 16 bits. Decryption is

the reverse encoding process, which is converting the encrypted text into an original plain text. The whole

algorithm steps of the proposed LWC-AES encryption are clarified in Algorithm 1.

5.1. The encryption LWC-AES

The proposed development of LWC-AES encryption algorithm to improve secyrity, reduced high

calculation, provide better encryption speed and reduced computational overhead in constrained devices.

Non-linear byte substitution is one of the steps (SubByte). In addition, to minimize calculation power,

we deleted the MixColumn, Shift Row Transformation (ShiftRow), and Key Addition (AddRound-Key).

After 10 rounds, the encrypted message is acquired and placed into the (continued fraction) mathematical

function, which lowers and compresses the encrypted text from 128 bits to 16 bits. The step of the proposed

LWC-AES encryption algorithm is showed in Algorithm 1.

Algorithm 1. Steps of the proposed LWC-AES encryption

1. Initializing values for encryption

byte[] plainText = new byte[MAX_BLOCK_LENGTH]

byte[] cipherText = new byte[MAX_BLOCK_LENGTH]

byte[] bzkey = new byte[MAX_KEY_LENGTH]

2. Getting password

− bzkey = Encoding.Unicode.GetBytes (cPassword);

3. Getting bytes from File

− fileStream fileStream = new FileStream (cOpenFile, FileMode.Open);

− fileStream.Seek (0, SeekOrigin.Begin);

4. Getting the file stream for save process

− fileStream saveStream = new FileStream (cSaveFile, FileMode.Append);

5. Setting length of the File

− long lFileLength = fileStream.Length;

6. Setting position of the File

− long lPostion = fileStream.Position;

7. Reading byte and encrypt

− while (lPostion < lFileLength)

8. Initializing the buffer

− initialize (plainText, MAX_BLOCK_LENGTH)

− long lHasRead = fileStream.Read (plainText, 0, MAX_BLOCK_LENGTH);

− if (0 > = lHasRead) → break;

9. Setting current cursor position

− lpostion = fileStream.Position;

10. Encryption with AES

− aes aes = new Aes (ekeySize, bzkey, eblockSize)

11. Initializing the buffer

− initialize (cipherText, MAX_BLOCK_LENGTH)

− aes.Cipher (plainText, cipherText)

− saveStream.Write (cipherText, 0, MAX_BLOCK_LENGTH)

− saveStream.Close()

− fileStream.Close()

− return true

5.2. The decription LWC-AES

Through the decryption side explained in Algorithm 2, we can see the algorithm steps of the

proposed LWC-AES decryption. The primary job of the decryption state of the proposed method is based on

the value generated from the continued fraction method which is equivalent to the ciphertext, and then within

decryption process the key is added to the ciphertext to generate plaintext again, which is less overhead from

the meaningful content generated in AES traditional state (without continued fraction method). After 10

rounds are performed, the ciphertext is obtained, and start this step as it is enter into the mathematical

function called continuo fraction, which reduces the compresses the encrypted text from 128 bits to 16 bits.

Decryption is the reverse encoding process, which is converting the encrypted text into an original plaintext.

The steps of using continued fraction in 𝐶# are shown in Algorithm 3.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 3, June 2022: 551-560

556

Algorithm 2. Steps of the proposed LWC-AES decryption

1. Getting password

− bzkey = Encoding.Unicode.GetBytes (cPassword);

2. Getting bytes from file

− fileStream fileStream = new FileStream (cOpenFile, FileMode.Open);

− fileStream.Seek (0, SeekOrigin.Begin);

3. Getting the file stream for save

− fileStream saveStream = new FileStream (cSaveFile, FileMode.Append);

4. Setting length of the file

− long lFileLength = fileStream.Length;

5. Setting position of the file

− long lPostion = fileStream.Position;

6. Reading byte and decrypt

− while (lPostion < lFileLength)

7. Initializing the buffer

− initialize(plainText, MAX_BLOCK_LENGTH);

− long lHasRead = fileStream.Read (plainText, 0, MAX_BLOCK_LENGTH);

− if (0 >= lHasRead)

− break;

8. Setting current cursor position

− lpostion = fileStream.Position;

9. Encrypt call method

− aes aes = new Aes (ekeySize, bzkey, eblockSize);

10. Initializing the buffer

− Initialize (cipherText, MAX_BLOCK_LENGTH);

11. Decryption process

− aes.InvCipher (plainText, cipherText);

− saveStream.Write (cipherText, 0, MAX_BLOCK_LENGTH);

Algorithm 3. Steps of continued fraction algorithm

1. Writing namespaces libraries

− using System;

− using System.Collections.Generic;

2. Building main class program

3. Creating the continued fraction function

− static double Calculating (Func<int, int[]> f, int n)

− double temp = 0.0;

− looping for (int ni = n; ni >= 1; ni--)

− int[] p = f(ni);

− temp = p[1] / (p[0] + temp);

− return f(0)[0] + temp;

4. Building main code list conversation with :

− List<Func<int, int[]>> List = new List<Func<int, int[]>>();

− List.Add(n => new int[] { n > 0, 2 : 1, 1 });

− List.Add(n => new int[] { n > 0 , n : 2, n > 1 ? (n - 1) : 1 });

− List.Add(n => new int[] { n > 0 , 6 : 3, (int) Math.Pow(2 * n - 1, 2) });

− foreach (var f in List) {Label1.text=(Calculating (f, 200)).Tostring();

6. RESULTS AND DISCUSSIONS

The proposed LWC-AES algorithm is implemented in the ASP.Net framework with 𝑐#

programming language, based on the original text (plaintext of selected keywords of the ministry of the

interior words). The results showed the encryption-decryption of the proposed LWC-AES and traditional

AES algorithm for many criteria such as (encrypt/decrypt execution time, encryption characters number,

code size, and RAM size in bytes, and throughput in Mbps). For example, the word ‘freshness’, which is

usually used in police stations was encrypted. Taking into account the same used encryption key, the results

obtained were as follows: the number of characters encryption in the traditional AES was 44 characters and

https://www.google.com/search?q=new+msdn.microsoft.com
https://www.google.com/search?q=new+msdn.microsoft.com
https://www.google.com/search?q=new+msdn.microsoft.com
https://www.google.com/search?q=new+msdn.microsoft.com

TELKOMNIKA Telecommun Comput El Control

Enhancement process of AES: a lightweight cryptography algorithm-AES for … (Hussein M. Mohammad)

557

the time to execute the encryption was 1374 ms and the time to execute the decryption was 951 ms, while in

our proposed algorithm LWC-AES, we noticed that the number of characters encryption was 24. The time for

executing the encryption was 712 ms, while the time to execute the decryption was 535 ms. Before comparing

the two algorithms, we mention in Table 1, which shows the details of the system specifications in which the

results were programmed and executed.

Table 1. The used system specifications
Operating system RAM CPU Framework Programming language

Windows 10 4 GB Core I 5 Microsoft Visual Studio.net C#

Table 2 shows the proposed LWC-AES in comparison to other algorithms. The block and key sizes are

in bits, while the code and RAM sizes are in bytes. We notice that our proposed algorithm has a less code size

than other algorithms and has a less RAM capacity. The used traditional AES has a code size with 23090 bytes

and RAM resource allocation with 720 bytes for text data type which requires more computation power and it is

considered a challenge to face within restricted devices, while the proposed lightweight works with less code

size and RAM allocation as a solve state of the problem faced, as the proposed development algorithm is based

on continued fraction algorithm, as well as some algorithms have RAM capacity with slightly better results than

our proposed algorithm, we conclude that our results are the best from observing these algorithms’ block size.

Table 2. Comparison between the proposed LWC-AES algorithm and other algorithms [1]
The algorithm Block size in bits Key size in bits Rounds Code size in bytes RAM in bytes

PRESENT 64 80 32 1738 274

Simon 64 96 42 1370 188
Speck 64 96 26 2552 124

Traditional AES (before lightweight) 128 128 10 23090 720

LEA 128 128 24 3700 432
RC5 64 128 20 20044 360

HIGHT 64 128 32 13476 288

Proposed (text) 128 128 10 587 326
Proposed (files) 128 128 10 1870 433

In Table 3 showed the proposed LW-AES compared with the traditional AES based on the same initial

values explained in table columns as plaintext string and we calculated number of cipher text characters,

encrypt/decrypt time, input size and proposed fixed values of random key = 128 bits which is generated from

random generator method and password (session key) equal 11 bits. Through the table, we note that the less the

size of the ciphertext, the less the encryption and decryption time, and this is one of the advantages of our

proposed algorithm in improving the execution time of encryption and decryption, which will lead to a

reduction in memory size and processor speed, and reduce power consumption as well as response speed in the

ideal time and finally reduce the ciphertext helps in the speed of data transmission over the network in the ideal

time and finally reduce the ciphertext helps in the speed of data transmission over the network. A comparison

between AES and LWC-AES with executions of encryption/ decryption time for different input text sizes and

then measuring the average time and throughput value, we noted that the LWC-AES has the minimum

execution time for encrypting/decrypting processes to different input text sizes, which means its suitability for

constraint devices that have the constraint resources such as RAM, power-consuming, and little battery life.

Throughput is measured in bits per second (bit/s or bps/Mbps), and in this paper it is used to measure input data

packets (different data file) per excution time for encryption and decryption time slot. As shown in (2) [25].

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡 (𝑀𝑏𝑝𝑠)

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐𝑜𝑛𝑑)
 (2)

In Table 4, we note that proposed algorithm was able to improve the execution time of encryption and

decryption, as well as it was noted that the throughput was better than the traditional algorithm, depending on

the time spent in the encryption and decryption processes. It means that the faster encryption time will

produce more throughputs.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 3, June 2022: 551-560

558

Table 3. System comparison between AES and LWC-AES
AES Proposed LWC-AES

Plaintext Briskness Fluctuation Positive
information

Briskness Fluctuation Positive information

Cipher 1uT1Q5ivipTxT

+a8VdIfWl
BpC2JIRDbf

oZF2NylqqSY=

OyX+Ug+G

V9Jm2u7rms
Ce65wKzPTw5

jtS38n2tVEGicc=

CIVox1R+Ql

YE4Fj1CbIB
ln1apJcFjieH

v8qCo/r4xP+

Q0cgVdb1SI
kRTXjGkZimq

6zvMR9wvR

w67SzmJGvfn
4A==

Ms3+m48W

OmDrbwAG
LVSCFA==

aV7vVYN5m

rEvwoKPilFg
ZUiX/EHR8z

wQKHrQSkVIqxw=

Number of

origin
characters

9 11 20 9 11 20

Number of

cipher
characters

44 44 64 24 24 44

Encrypt. time 1374 ms 859 ms 493 ms 712 ms 386 ms 289 ms
Decrypt. time 951 ms 762 ms 480 ms 535 ms 291 ms 284 ms
Input size in

Bytes
9 B 11 B 20 B 9 B 11 B 20 B

Table 4. Comparison for different input data size of AES with LWC-AES

7. SECURITY ANALYSIS

There are many security parameters used to evaluate the security strength concept, for instance, avalanche

effect which is one of the vital security analysis in the cryptography used to compute the goodness ratio of an

encryption technique, the differential cryptanalysis, brute force, linear cryptanalysis, the zero-correlation attack,

key schedule attacks, and others. In the following subsections we explained the two most important security

analysis metrics, which are avalanche effect that computed by changing one bit in the plaintext while keeping

the key constant and changing one bit in the encryption key while keeping the key constant and ciphertext

expansion that refers to the lengthening of a message after it has been encrypted. The security analysis is

significant in the paper because it allows the investor to determine the projected return and risk for a stock

and evaluate its attractiveness in a logical, reasonable manner.

7.1. Avalanche effect

Our proposed lightweight AES algorithm is based on the avalanche effect (AE) parameters [26],

which is one of the vital security analysis in the cryptography used to compute the goodness ratio of an

encryption technique. The main point in this metric is the change in plaintext or the key may cause a

significant change in ciphertext, even if it is one bit. For instance, if the change affects half of the bits, this

means 50% of the ciphertext, so this will be a good avalanche effect, and hence higher avalanche effect

signifies higher security. The mathematical equation of the avalanche effect is shown in (3):

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝑁𝑂. 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡

 𝑁𝑂.𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡
× 100% (3)

Here, for a particular plaintext block (keeping the key constant), the hamming distance (HD) is

changed randomly up to 5 bit during observation and form five different test cases and found satisfactory

results as shown in Table 5. After the avalanche effect analysis, the average change in ciphertext is found to

be 52.042%. In information theory, the Hamming distance between two strings of equal length is the number

of positions at which the corresponding symbols are different. In other words, it measures the minimum

number of substitutions required to change one string into the other or the minimum number of errors that

Input size in B/KB Executions encryption time in millisecond’s Executions Ddcryption time in millisecond’s
AES LWC-AES AES LWC-AES

481 B 314 ms 279 ms 289 ms 260 ms

1.41 KB 318 ms 285 ms 299 ms 271 ms
2.82 KB 276 ms 257 ms 297 ms 266 ms

5.64 KB 270 ms 250 ms 272 ms 267 ms

45.1 KB 294 ms 280 ms 295 ms 291 ms
Average time in sec. 294.4 ms / 0.2944 s 270.2 ms / 0.2702 s 290.4 ms / 0.2904 s 271 ms / 0.271 s

Throughput in Mbps Average data in

Bit = 627586.88

Average data in

Bit = 627586.88

Average data in

Bit = 627586.88

Average data in

Bit = 627586.88

 Throughput =

2.033 Mbps

Throughput =

2.215 Mbps

Throughput =

2.061 Mbps

Throughput =

2.2085 Mbps

TELKOMNIKA Telecommun Comput El Control

Enhancement process of AES: a lightweight cryptography algorithm-AES for … (Hussein M. Mohammad)

559

could have transformed one string into the other. In a more general context, the Hamming distance is one of

several string metrics for measuring the edit distance between two sequences.

Table 5. Avalanche effect for proposed LWC- AES
HD in bit

T
es

t
C

as
e

 1 2 3 4 5 Average
1 52.88 56.92 58.31 49.49 52.17 53.954

2 52.81 51.36 50.81 50.00 53.94 51.784

3 50.04 54.11 50.62 51.08 52.13 51.596
4 55.61 50.08 49.64 52.33 49.67 51.466

5 53.01 51.64 50.00 52.07 50.34 51.412

7.2. Cipher-text expantion
Refers to the length increase of a message when it is encrypted. Many modern cryptosystems cause

some degree of expansion during the encryption process [27]. It explained the size of cipher text has an effect

on storage and transmission cost. Table 6 show the cipher text length and size for both the used AES and the

proposed LW-AES. This mean the proposed algorithm has minimum storage and transmission cost.

Table 6. The security Cipher-text Expansion Analysis
Algorithm Average cipher size in bytes

AES 50.6 bytes

LW-AES 30.6 bytes

8. CONCLUSION

The improvement and development of lightweight cryptography algorithms are necessary to

improve the security of constrained devices and embedded systems, such as IoT devices, sensor networks.

In this paper, we enhancement processes and improve the AES algorithm to reduce algorithm computation

and improve cryptographic performance. Together with shows that the proposed LWC-AES algorithm is

directly proportional to high security and low memory and energy consumption and proves to be better as for

time execution or latency, with low execution time and less computation power as the memory central

processing unit (CPU) usage. Its code is fast and compact on various platforms, and its design is simple, not

complicated, based on the ASP.Net Visual studio 𝐶# programming language. The programming result showed

the proposed LWC-AES text data type of CPU usage idle, 348.7 ms, memory 24 bytes, RAM 326 bytes, code

size 587 bytes and bandwidth 2.665 Mbps. Furthermore, the results of LW-AES files data type CPU usage idle

363.6 ms, memory 24 bytes, RAM 433 bytes, code size 1870 bytes and bandwidth 0.387 Mbps. In addition to

the better results registered in security analysis with avalanche effect parameter.

REFERENCES
[1] A. M. Abed and A. Boyaci, "A lightweight cryptography algorithm for secure smart cities and IOT," Electrica, vol. 20, no. 2,

pp. 168-176, 2020, doi: 10.5152/electrica.2020.20002.
[2] A. S. Coronado, "Computer Security: Principles and Practice, Second Edition," Journal of Information Privacy and Security,

vol. 9, no. 2, pp. 62-65, 2013, doi: 10.1080/15536548.2013.10845680.

[3] P. Singh, B. Acharya, and R. K. Chaurasiya, "Lightweight cryptographic algorithms for resource-constrained IoT devices and

sensor networks," Security and Privacy Issues in IoT Devices and Sensor Networks, pp. 153-185, 2021, doi: 10.1016/B978-0-12-

821255-4.00008-0.
[4] H. H. Alyas and A. A. Abdullah, "Enhancement the ChaCha20 Encryption Algorithm Based on Chaotic Maps," in Conference

paper Next Generation of Internet of Things, 2021, vol. 201, pp. 91-107, doi: 10.1007/978-981-16-0666-3_10.

[5] Nayancy, S. Dutta, and S. Chakraborty, "A survey on implementation of lightweight block ciphers for resource constraints
devices," Journal of Discrete Mathematical Sciences and Cryptography, 2020, doi: 10.1080/09720502.2020.1766764.

[6] A. Ayoub, R. Najat, and A. Jaafar, "A lightweight secure CoAP for IoT-cloud paradigm using elliptic-curve cryptography,"

Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 3, pp. 1460-1470, Dec. 2020,
doi: 10.11591/ijeecs.v20.i3.pp1460-1470.

[7] M. Safkhani, S. Rostampour, Y. Bendavid, and N. Bagheri, "IoT in medical & pharmaceutical: Designing lightweight RFID

security protocols for ensuring supply chain integrity," Computer Networks, vol. 181, Nov. 2020,
doi: 10.1016/j.comnet.2020.107558.

[8] G. H. Zhang, C. C. Y. Poon, and Y. T. Zhang, "A review on body area networks security for healthcare," International Scholarly

Research Notices, vol. 2011, pp. 1-8, 2011, doi: 10.5402/2011/692592.
[9] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, "Lightweight Cryptography Algorithms for Resource-Constrained IoT

Devices: A Review, Comparison and Research Opportunities," in IEEE Access, vol. 9, pp. 28177-28193, 2021,

doi: 10.1109/ACCESS.2021.3052867.
[10] H. Martín, P. Peris-Lopez, J. E. Tapiador, and E. San Millán, "An Estimator for the ASIC Footprint Area of Lightweight

Cryptographic Algorithms," in IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1216-1225, May 2014,

doi: 10.1109/TII.2013.2288576.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 3, June 2022: 551-560

560

[11] T. X. Meng and W. Buchanan, "Lightweight cryptographic algorithms on resource-constrained devices," Preprints, Sep. 2020,

doi: 10.20944/preprints202009.0302.v1.
[12] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, "Lightweight cryptography for IoT: A state-of-the-art," arXiv, pp. 1-19,

2020. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2006/2006.13813.pdf

[13] National Institute of Standards and Technology, Advanced encryption standard (AES), Gaithersburg, MD, USA: Federal
Information Processing Standards, 2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

[14] W. Stallings, Cryptography and network security: Principles and practice. LDN, UK: Pearson, 2014. [Online]. Available:

https://www.pearson.com/us/higher-education/product/Stallings-Cryptography-and-Network-Security-Principles-and-Practice-
6th-Edition/9780133354690.html

[15] S. S. Dhanda, B. Singh, and P. Jindal, "Lightweight cryptography: A solution to secure IoT," Wireless Personal Communication,

vol. 112, pp. 1947–1980, Jun. 2020, doi: 10.1007/s11277-020-07134-3.
[16] Ritambhara, A. Gupta, and M. Jaiswal, "An enhanced AES algorithm using cascading method on 400 bits key size used in

enhancing the safety of next generation internet of things (IOT)," 2017 International Conference on Computing, Communication

and Automation (ICCCA), 2017, pp. 422-427, doi: 10.1109/CCAA.2017.8229877.
 [17] P. Kawle, A. Hiwase, G. Bagde, E. Tekam, and R. Kalbande, "Modified Advanced Encryption Standard," International Journal

Soft Computing Engineering, vol. 4, no. 1, pp. 21-23, 2014. [Online] Available: https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.495.3243&rep=rep1&type=pdf
[18] C. A. Sari, G. Ardiansyah, D. R. I. M. Setiadi, and E. H. Rachmawanto, "An improved security and message capacity using AES

and Huffman coding on image steganography," TELKOMNIKA (Telecommunication Computing Electronics and Control),

vol. 17, no. 5, pp. 2400-2409, doi: 10.12928/TELKOMNIKA.v17i5.9570.
[19] K. Kumar, K. R. Ramkumar, and A. Kaur, "A lightweight AES algorithm implementation for encrypting voice messages using

field programmable gate arrays," Journal of King Saud University-Computer and Information Science, pp. 1-15, 2020,

doi: 10.1016/j.jksuci.2020.08.005.
[20] F. Hazzaa, A. M. Shabut, N. H. M. Ali, and M. Cirstea, "Security scheme enhancement for voice over wireless networks," Journal

of Information Security and Applications, vol. 58, May 2021, doi: 10.1016/j.jisa.2021.102798.
[21] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback, "Report on the development of the Advanced

Encryption Standard (AES)," Journal of Research of the National Institute of Standards and Technology, vol. 106, no. 3,

pp. 511-577, 2001, doi: 10.6028/jres.106.023.
[22] H. Zodpe and A. Sapkal, "An efficient AES implementation using FPGA with enhanced security features," Journal of King Saud

University-Engineering Sciences, vol. 32, no. 2, pp. 115-122, 2020, doi: 10.1016/j.jksues.2018.07.002.

[23] A. M. Kane, "On the use of continued fractions for stream ciphers," IACR Cryptology ePrint Archive, 2009. [Online]. Available:
https://eprint.iacr.org/2013/319.pdf

[24] H. Chon, "A short proof of the simple continued fraction expansion of e," The American Mathematical Monthly, vol. 113, no. 1,

pp. 57-62, Jan. 2006. [Online]. Availabel: https://www-fourier.ujf-grenoble.fr/~marin/une_autre_crypto/articles_et_extraits_
livres/Cohn_H_A_Short_proof_of_the_simple_convergent_of_e.pdf

[25] K. N. Prasetyo, Y. Purwanto, and D. Darlis, "An implementation of data encryption for Internet of Things using blowfish

algorithm on FPGA," 2014 2nd International Conference on Information and Communication Technology (ICoICT), 2014,
pp. 75-79, doi: 10.1109/ICoICT.2014.6914043.

[26] A. Biswas, A. Majumdar, S. Nath, A. Dutta, and K. L. Baishnab, "LRBC: a lightweight block cipher design for resource-

constrained IoT devices," Journal of Ambient Intellilgence Humanized Computing, 2020, doi: 10.1007/s12652-020-01694-9.
[27] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, "Report on Lightweight Cryptography" National Institute of Standards

and Technology Internal Report 8114, Mar. 2017, doi: 10.6028/NIST.IR.8114.

BIOGRAPHIES OF AUTHORS

Hussein M. Mohammad received his B.S. degree in computer technics

engineering from the Al-Mustaqbal University College – Babylon/ Iraq in 2014, and a higher

diploma in information technology and security from the Higher Institute for Security and

Administrative Development – Baghdad/ Iraq. Currently an MSc. research student in the

Department of Information Networks/ College of Information Technology in Babylon

University / Iraq. He can be contacted at email: hussein.moksad@uobabylon.edu.iq.

Alharith A. Abdullah received his B.S. degree in Electrical Engineering from

Military Engineering College, Iraq, in 2000. MSc. degree in Computer Engineering from

University of Technology, Iraq, in 2005, and his PhD. in Computer Engineering from Eastern

Mediterranean University, Turkey, in 2015. His research interests include Security, Network

Security, Cryptography, Quantum Computation and Quantum Cryptography. He can be

contacted at email: alharith@itnet.uobabylon.edu.iq.

https://orcid.org/0000-0002-4170-1634
https://scholar.google.com/citations?view_op=list_works&hl=ar&authuser=5&user=DmXNJVwAAAAJ
https://publons.com/researcher/5000424/hussein-moksad-mohammad/
https://orcid.org/0000-0002-1485-2461
https://scholar.google.com/citations?user=Oba9OqQAAAAJ&hl=ar&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=56440897200
https://publons.com/researcher/1944959/alharith-a-abdullah/

