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 Latent Dirichlet allocation (LDA) is an important probabilistic generative 

model and has usually used in many domains such as text mining, retrieving 

information, or natural language processing domains. The posterior 

inference is the important problem in deciding the quality of the LDA 

model, but it is usually non-deterministic polynomial (NP)-hard and often 

intractable, especially in the worst case. For individual texts, some proposed 

methods such as variational Bayesian (VB), collapsed variational Bayesian 

(CVB), collapsed Gibb’s sampling (CGS), and online maximum a posteriori 

estimation (OPE) to avoid solving this problem directly, but they usually do 

not have any guarantee of convergence rate or quality of learned models 

excepting variants of OPE. Based on OPE and using the Bernoulli 

distribution combined, we design an algorithm namely general online 

maximum a posteriori estimation using two stochastic bounds (GOPE2) for 

solving the posterior inference problem in LDA model. It also is the NP-hard 

non-convex optimization problem. Via proof of theory and experimental 

results on the large datasets, we realize that GOPE2 is performed to develop 

the efficient method for learning topic models from big text collections 

especially massive/streaming texts, and more efficient than previous 

methods. 
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1. INTRODUCTION  

In data mining, one of the most general and powerful techniques is the topic modeling [1]-[3]. 

In recently, there are much published research in the field of topic modeling and applied in various fields 

such as medical and linguistic science. Latent Dirichlet allocation (LDA) [4] is the popular methods for topic 

modeling [5]-[7], LDA has found successful applications in text modeling [8], bioinformatic [9], [10], 

biology [11], history [12], [13], politics [14]-[16], and psychology [17], to name a few. Recently, there are 

much research related to corona virus disease 2019 (COVID-19) pandemic that also use LDA model in data 

analysis. These show the important role and advantage of the topic models in text mining [18]-[20]. We find 

out that the quality of the LDA model is highly dependent on the inference methods [4]. In recent years, many 

posterior inference methods have obtained more attention from scientists such as variational Bayesian (VB) [4], 

collapsed variational Bayesian (CVB) [21], collapsed Gibb’s sampling (CGS) [12], [22], and online maximum a 

posteriori estimation (OPE) [23]. Those methods enable us to easily work with big data [12], [24]. Except 

variants of OPE, most of the methods do not have a guarantee of convergence rate or model quality in theory. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 5, October 2022: 971-978 

972 

We realize that in topic models, the posterior inference problem is in fact non-convex optimization 

problem. It also belongs to class of non-deterministic polynomial (NP)-hard problem [25]. We also find out 

that OPE has the convergence rate is 𝑂 (1/𝑇) where 𝑇 is the number of iterations. OPE overcomes the best 

rate of existing stochastic algorithms for solving the non-convex problems [23], [26], [27]. To the best of my 

knowledge, solving the posterior inference problem usually leads to a non-convex optimization problem. 

The big question is how efficiently an optimization algorithm can try to escape saddle points? we carefully 

consider the optimization algorithms applied to the posterior inference problem. It is the basis for us to 

propose the general online maximum a posteriori estimation using two stochastic bounds (GOPE2) 

algorithm. In this paper, we propose the GOPE2 algorithm based on a stochastic optimization approach for 

solving the posterior inference problem. Using the Bernoulli distribution and two stochastic bounds of the 

true non-convex objective function, we have shown that GOPE2 achieves even better than previous 

algorithms. It also keeps the good properties of OPE and continues to do better than OPE. Stochastic bounds 

replacing true objective function reduces the possibility of getting stuck at a local stationary point or escaping 

saddle points. This is an effective approach to get rid of saddle points while existing methods are unsuitable 

especially in high-dimensional non-convex optimization. We use GOPE2 as the core algorithm for doing 

inference, we obtain online-GOPE2 which is an efficient method for learning LDA from large text 

collections, especially short-text documents. Based on our experiments on large datasets, we show that our 

method can reach state-of-the-art performance in both qualities of learned model and predictiveness. 
 
 

2. RELATED WORK 

LDA [4] is a generative model for discrete data and modeling text. In LDA, a corpus is composed 

from 𝐾 topics 𝛽 = (𝛽1, … , 𝛽𝐾), each of which is a sample from Dirichlet (𝜂) which is 𝑉-dimensional 

Dirichlet distribution. LDA model assumes that each document d is a mixture of topics and arises from the 

following generative process: 

a) Draw 𝜃𝑑 ∣ 𝛼 ~ Dirichlet (𝛼) 

b) For the 𝑛𝑡ℎ word of 𝑑: 

− Draw topic index 𝑧𝑑𝑛 ∣ 𝜃𝑑  ~ multinomial (θ𝑑)  

− Draw word 𝑤𝑑𝑛 ∣ 𝑧𝑑𝑛, 𝛽 ~ multinomial (β𝑧𝑑𝑛
)  

For each document, both 𝜃𝑑and 𝑧𝑑 are unobserved variables and are local, 𝜃𝑑 ∈ 𝛥𝐾 , 𝛽𝑘 ∈ 𝛥𝑉 , ∀𝑘. 

We find out that each topic mixture 𝜃𝑑 = (𝜃𝑑1, … , 𝜃𝑑𝐾) represents the contributions of topics to document 𝑑, 

while 𝛽𝑘𝑗 shows the contribution of term 𝑗 to topic 𝑘. LDA model described in Figure 1. 
 

 

 
 

Figure 1. The graphic model for latent Dirichlet allocation 
 

 

According to Teh et al. [28], given a corpus 𝒞 = {𝑑1, … , 𝑑𝑀}, the Bayesian inference (or learning) is 

to estimate the posterior distribution 𝑃( 𝑧, 𝜃, 𝛽 ∣ 𝒞, 𝛼, 𝜂) over the latent topic indices 𝑧 = {𝑧1, … , 𝑧𝑑}, topic 

mixtures 𝜃 = {𝜃1, … , 𝜃𝑀}, and topics 𝛽 = (𝛽1, … , 𝛽𝐾). Given a model {𝛽, 𝛼}, the problem of posterior 

inference for each document 𝑑 is to estimate the full joint distribution 𝑃( 𝑧𝑑 , 𝜃𝑑 , 𝑑 ∣ 𝛽, 𝛼). There are many 

research show that this distribution is intractable by direct estimation. Existing methods are usually 

sampling-based or optimization-based approaches, such as VB, CVB, and CGS. VB or CVB estimates the 

distribution by maximizing a lower bound of the likelihood 𝑃( 𝑑 ∣ 𝛽, 𝛼), CGS estimate 𝑃( 𝑧𝑑 ∣ 𝑑, 𝛽, 𝛼).  
 

We consider the maximum a posteriori (MAP) estimation of topic mixture for a given document 𝑑: 
 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∈𝛥𝐾
𝑃( 𝜃, 𝑑 ∣ 𝛽, 𝛼)  (1) 

 

Problem (1) is equivalent to the (2). 
 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∈𝛥𝐾
(∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘

𝐾
𝑘=1 𝛽𝑘𝑗 + (𝛼 − 1) ∑ 𝑙𝑜𝑔 𝜃𝑘

𝐾
𝑘=1 ) (2) 
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We find out that: 
 

𝑓(𝜃) = ∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘
𝐾
𝑘=1 𝛽𝑘𝑗 + (𝛼 − 1) ∑ 𝑙𝑜𝑔 𝜃𝑘

𝐾
𝑘=1   

 

Is non-concave when hyper-parameter𝛼 < 1, then (2) is the non-concave optimization problem. Denote:  
 

𝑔(𝜃) ≔ ∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘
𝐾
𝑘=1 𝛽𝑘𝑗  ,  ℎ(𝜃): = (1 − 𝛼) ∑ 𝑙𝑜𝑔 𝜃𝑘

𝐾
𝑘=1  (3) 

 

And see that 𝑔(𝜃) and ℎ(𝜃) are concave, then: 𝑓(𝜃) = 𝑔(𝜃) − ℎ(𝜃) as the different concave (DC) function. 

We find that the problem (2) can be formulated as a DC optimization as: 
 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∈𝛥𝐾
[𝑔(𝜃) − ℎ(𝜃)] (4) 

 

There has been active research in the non-convex optimization. Some popular techniques such as 

branch and bound, cutting planes algorithm or DC algorithm (DCA) [29] for solving a DC optimization, but 

they are not suitable when applying in posterior inference (2) in probabilistic topic models. Note that CGS, 

CVB and VB are inference methods for probabilistic topic models. CGS, CVB and VB are popularly used in 

topic modeling, but we have not seen any theoretical analysis about how fast they do inference for individual 

documents. In addition, other candidates include concave-convex procedure (CCCP) [30], online frank-wolfe 

(OFW) [31], stochastic majorization-minimization (SMM) [32]. However, they are not sure about the 

convergence speed of the method and the quality of the model. In practice, the posterior inference in topic 

models is usually non-convex. Applying online-FW for solving a convex problem in [31], a new algorithm 

for MAP inference in LDA namely OFW have proposed by using a stochastic sequence combining with 

uniform distribution and show that convergence rate of OFW is 𝑂 (
1

√𝑡
). Via doing many experiments with 

large datasets, OFW is a good approach for MAP problem and usually better than previous methods such as 

CGS, CVB and VB. Changing the learning rate and considering about theoretical aspect carefully, OPE 

algorithm has proposed. OPE approximates the true objective function 𝑓(𝜃) by a stochastic sequence 𝐹𝑡(𝜃) 

made up from the uniform distribution, thus (2) is easy for solving. OPE is better than previous methods, but 

we can explore a better new algorithm based on stochastic optimization for solving (2). Finding out the 

limitations of OPE, we improve OPE and obtain the GOPE2 algorithm applying for problem (2). Details of 

GOPE2 is presented in section 3. 
 
 

3. PROPOSED METHOD 

Finding out that OPE is a stochastic algorithm better than others for solving posterior inference. It also 

is quite simple and easily apply, so we improve OPE by randomization to obtain a better variant. We find out 

that the Bernoulli distribution is a discrete probability distribution of a random variable having two possible 

outcomes respectively with probabilities 𝑝 and 1 − 𝑝 and a special case of the Bernoulli one when probability 

𝑝 =
1

2
 is called the uniform distribution. We use Bernoulli distribution to construct the approximation 

functions to easily maximize and approximate well for objective function 𝑓(𝜃) we consider the problem. 
 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∈𝛥𝐾
∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘

𝐾
𝑘=1 𝛽𝑘𝑗 + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝜃𝑘

𝐾
𝑘=1  (5) 

 

We see that: 
 

𝑔1(𝜃) = ∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘
𝐾
𝑘=1 𝛽𝑘𝑗 < 0, 𝑔2(𝜃) = (𝛼 − 1) ∑ 𝑙𝑜𝑔𝜃𝑘

𝐾
𝑘=1 > 0 then 𝑔1(𝜃) < 𝑓(𝜃) < 𝑔2(𝜃). 

 

Pick 𝑓ℎ as a Bernoulli random sample from {𝑔1(𝜃),  𝑔2(𝜃)}, where: 
 

𝑃( 𝑓ℎ = 𝑔1) = 𝑝 ,  𝑃( 𝑓ℎ = 𝑔2) = 1 − 𝑝 and make the approximation 𝐹𝑡(𝜃) =
1

𝑡
∑ 𝑓ℎ

𝑡
ℎ=1 . 

 

The stochastic approximation 𝐹𝑡(𝜃) is easier to maximize and do differential than 𝑓(𝜃). We also see that 

𝑔1(𝜃) < 0,  𝑔2(𝜃) > 0. Hence, if we choose 𝑓1: = 𝑔1 then 𝐹1(𝜃) < 𝑓(𝜃), which leads 𝐹𝑡(𝜃) is a lower bound 

of 𝑓(𝜃). In contrast, if we choose 𝑓1: = 𝑔2 then 𝐹1(𝜃) > 𝑓(𝜃), and 𝐹𝑡(𝜃) is a upper bound of 𝑓(𝜃). Using 

two stochastic approximation from above and below of 𝑓(𝜃) is better than one, we hope that will make the 

new algorithm has a faster converge rate. We use {𝐿𝑡} is an approximate sequences of 𝑓(𝜃) and begins with 

𝑔1(𝜃), another called {𝑈𝑡} begins with 𝑔2(𝜃). We set 𝑓1
ℓ: = 𝑔1(𝜃). Pick 𝑓𝑡

ℓ as a Bernoulli random sample 

with probability 𝑝 from {𝑔1(𝜃),  𝑔2(𝜃)} where 𝑃( 𝑓𝑡
ℓ = 𝑔1(𝜃)) = 𝑝, 𝑃( 𝑓𝑡

ℓ = 𝑔2(𝜃)) = 1 − 𝑝. 

We have 𝐿𝑡: =
1

𝑡
∑ 𝑓ℎ

ℓ𝑡
ℎ=1 ,  ∀𝑡 = 1,2, … The sequence {𝐿𝑡} is a lower bound of the true objective 𝑓(𝜃).  



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 5, October 2022: 971-978 

974 

By using an iterative approach, from a random sequence {𝐿𝑡}, we obtain a numerical sequence 

{𝜃𝑡
ℓ} (𝑡 = 1,2, … ) as: 

 

𝑒𝑡
ℓ: = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝛥𝐾

⟨𝐿𝑡
′ (𝜃𝑡), 𝑥⟩, 𝜃𝑡+1

ℓ : = 𝜃𝑡 +
𝑒𝑡

ℓ−𝜃𝑡

𝑡
 (6) 

 

Similarly, we set 𝑓1
𝑢: = 𝑔2(𝜃). Pick 𝑓𝑡

𝑢 as a Bernoulli random sample with probability 𝑝 from 
{𝑔1(𝜃),  𝑔2(𝜃)}, where 𝑃( 𝑓𝑡

𝑢 = 𝑔1(𝜃)) = 𝑝 ,  𝑃( 𝑓𝑡
𝑢 = 𝑔2(𝜃)) = 1 − 𝑝,   ∀𝑡 = 2,3, …, we have: 

 

𝑈𝑡: =
1

𝑡
∑ 𝑓ℎ

𝑢𝑡
ℎ=1  , ∀𝑡 = 1,2, …  

 

The sequence {𝑈𝑡} is a upper bound of the true objective 𝑓(𝜃). From sequence {𝑈𝑡}, we also obtain the 

numerical sequence {𝜃𝑡
𝑢} (𝑡 = 1,2, … ) as: 

 

𝑒𝑡
𝑢: = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝛥𝐾

⟨𝑈𝑡
′(𝜃𝑡), 𝑥⟩, 𝜃𝑡+1

𝑢 : = 𝜃𝑡 +
𝑒𝑡

𝑢−𝜃𝑡

𝑡
 (7) 

 

We combine two approximating sequences {𝑈𝑡} and {𝐿𝑡}. Based on two sequence {𝜃𝑡
ℓ} and {𝜃𝑡

𝑢}, 

we construct an approximate solution sequence {𝜃𝑡} as: 
 

𝜃𝑡: = 𝜃𝑡
𝑢 with probability 

𝑒𝑓(𝜃𝑡
𝑢)

𝑒𝑓(𝜃𝑡
𝑢)

+e
𝑓(𝜃𝑡

ℓ)
and θ𝑡: = 𝜃𝑡

ℓ with probability 
𝑒

𝑓(𝜃𝑡
ℓ)

𝑒𝑓(𝜃𝑡
𝑢)

+e
𝑓(𝜃𝑡

ℓ)
 (8) 

 

Then, we obtain GOPE2 algorithm. The effectiveness of GOPE2 depends on choosing the 𝜃𝑡 differently at 

each iteration. Details of GOPE2 are presented in Algorithm 1. 
 

Algorithm 1. GOPE2 algorithm for the posterior inference  

Input: document 𝑑, Bernoulli parameter 𝑝 ∈ (0,1) and model {𝛽, 𝛼} 

Output: 𝜃 that maximizes 𝑓(𝜃) = ∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘
𝐾
𝑘=1 𝛽𝑘𝑗 + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝜃𝑘

𝐾
𝑘=1   

Initialize 𝜃1 arbitrarily in 𝛥𝐾 

𝑔1(𝜃): = ∑ 𝑑𝑗𝑗 𝑙𝑜𝑔 ∑ 𝜃𝑘
𝐾
𝑘=1 𝛽𝑘𝑗  ;  𝑔2(𝜃): = (𝛼 − 1) ∑ 𝑙𝑜𝑔𝜃𝑘

𝐾
𝑘=1   

𝑓1
𝑢: = 𝑔1(𝜃) ; 𝑓1

𝑙: = 𝑔2(𝜃)  

for 𝑡 = 2,3, … , 𝑇 

Pick 𝑓𝑡
𝑢 randomly from {𝑔1(𝜃),  𝑔2(𝜃)} according to the Bernoulli distribution where: 

𝑃( 𝑓𝑡
𝑢 = 𝑔1(𝜃)) = 𝑝 ,  𝑃( 𝑓𝑡

𝑢 = 𝑔2(𝜃)) = 1 − 𝑝  

𝑈𝑡: =
1

𝑡
∑ 𝑓ℎ

𝑢

𝑡

ℎ=1

 

𝑒𝑡
𝑢: = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈Δ𝐾

< 𝑈′(𝜃𝑡), 𝑥 >  

𝜃𝑡
𝑢: = 𝜃𝑡−1 +

𝑒𝑡
𝑢−𝜃𝑡−1

𝑡
  

Pick 𝑓𝑡
ℓ randomly from {𝑔1(𝜃),  𝑔2(𝜃)} according to the Bernoulli distribution where: 

𝑃( 𝑓𝑡
ℓ = 𝑔1(𝜃)) = 𝑝 ,  𝑃( 𝑓𝑡

ℓ = 𝑔2(𝜃)) = 1 − 𝑝  

𝐿𝑡: =
1

𝑡
∑ 𝑓ℎ

ℓ𝑡
ℎ=1   

𝑒𝑡
ℓ: = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝛥𝐾

< 𝐿𝑡
′ (𝜃𝑡), 𝑥 >  

𝜃𝑡
ℓ: = 𝜃𝑡−1 +

𝑒𝑡
ℓ−𝜃𝑡−1

𝑡
   

𝜃𝑡: = 𝜃𝑡
𝑢 with probability 𝑞 and 𝜃𝑡: = 𝜃𝑡

ℓ with probability 1 − 𝑞, where 𝑞 =
𝑒𝑓(𝜃𝑡

𝑢)

𝑒𝑓(𝜃𝑡
𝑢) + 𝑒

𝑓(𝜃𝑡
ℓ)

 

End for 
 

The interweaving two-bounds of the objective function combine with Bernoulli distribution makes 

GOPE2 behave very differently from OPE. GOPE2 creates three numerical sequences {𝜃𝑡
𝑢}, {𝜃𝑡

ℓ}, and {𝜃𝑡} 

where {𝜃𝑡} depends on {𝜃𝑡
𝑢} and {𝜃𝑡

ℓ} at each iteration. The sequence {𝜃𝑡} really changes on structure, but the 

good properties of OPE are remained. There are many nice properties of GOPE2 that other algorithms do not 

have. Based on the online-OPE [23] for learning LDA, replacing OPE by GOPE2, we design the 

online-GOPE2 algorithm to learn LDA from large corpora. This algorithm employs GOPE2 to do maximum 

a posteriori estimation for individual documents to infer global variables such as topics. 
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4. EXPERIMENTAL RESULTS 

In this section, we devote investigating GOPE2’s behavior and show how useful it is when GOPE2 

is used as a fast inference method to design a new algorithm for large-scale learning of topic models. 

We compare GOPE2 with other inference methods such as CGS, CVB, VB and OPE. Applying these 

inference methods to construct methods learning LDA such as online-CGS [12], online-CVB [21], online-VB [24] 

and online-OPE. We evaluate the GOPE2 algorithm indirectly via efficiency of online-GOPE2. 

− Datasets 

In our experiments we use two long-text large datasets: PubMed and New York Times 

datasets 1. We also use three short-text large datasets: Tweets from Twitter, NYT-titles from the New 

York Times where each document is the title of an article, Yahoo questions crawled from 

answers.yahoo.com. Details of these datasets are presented in Table 1. 

− Parameter settings 

We set 𝐾 = 100 as the number of topics, the hyper-parameter 𝛼 =
1

𝐾
 and 𝜂 =

1

𝐾
 as the topic Dirichlet 

parameter are commonly used in topic models. We also choose 𝑇 = 50 as the number of iterations. We set 

𝜅 = 0.9, 𝜏 = 1 which are adapted best for inference methods. Performance measures: log predictive 

probability (LPP) [12] measures the predictability and generalization of a model to new data. Normalized 

pointwise mutual information (NPMI) [33] evaluates the semantic quality of an individual topic. 

From extensive experiments, NPMI agrees well with human evaluation on the interpretability of topic 

models. In this paper, we used LPP and NPMI to evaluate the learning methods. Choosing the Bernoulli 

parameter 𝑝 ∈ {0.30,0.35, . . ,0.70} and mini-batch size |𝐶𝑡| = 25,000 on two long-text datasets, our 

experimental results are presented in Figure 2. 

In Figure 2, we find out that the effectiveness of online-GOPE2 depends on the value of selected 

probability 𝑝 and datasets. We also see that on the same measure, the results performed on the New York 

Times dataset are not too different as on the PubMed dataset and on the same dataset, the experimental 

results on the NPMI are different more than on LPP. We also see that our method usually is better than others 

when 𝑝 ≈ 0.7. Dividing the data into smaller mini-batches, |𝐶𝑡| = 5,000 and the parameter Bernoulli 

𝑝 ∈ {0.1,0.2, … ,0.9} more extensive. Results of online-GOPE2 on two long-text datasets are presented in 

Figure 3. 

In Figure 3, we find out that online-GOPE2 results depend much on the choose of parameter 

Bernoulli 𝑝 and mini-batch size |𝐶𝑡|. Through the experimental results, with the mini-batch size as 5,000, 

it gives results better than 25,000. We find out that when the mini-batch size decreases the value of measures 

increases, so the model learned better. Next, we compare online-GOPE2 with other learning such as 

online-CGS, online-CVB, and online-VB. These experimental results on long-text datasets: Pubmed and 

New York Times are showed in Figure 4, we see that online-GOPE2 is better than online-CGS, online-CVB, 

online-VB, and online-OPE on two datasets in LPP and NPMI measures. 
 
 

Table 1. Five datasets in our experiments 
Datasets Corpus size Average length per doc Vocabulary size 

PubMed 330,000 65.12 141,044 
New York Times 300,000 325.13 102,661 
Twitter tweets 1,457,687 10.14 89,474 
NYT-titles 1,664,127 5.15 55,488 
Yahoo questions 517,770 4.73 24,420 

 

 

  
  

Figure 2. Predictiveness (LPP) and semantic quality 

(NPMI) of the learned models by online-GOPE2 

with mini-batch size |𝐶𝑡| = 25,000 on long-text 

datasets 

Figure 3. LPP and NPMI of the models learned by 

online-GOPE2 with mini-batch size |𝐶𝑡| = 5,000 on 

long-text datasets 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 5, October 2022: 971-978 

976 

We also find out that LDA usually do not well on short texts. We provide additional evidence of 

GOPE2’s effectiveness by investigating the effectiveness of the learned model with short texts. We do 

experiments on three short-text datasets: Yahoo, Twitter and NYT-titles. Experimental results of 

online-GOPE2 on three short-text datasets are presented in Figure 5 and Figure 6. 
 

 

 
 

Figure 4. Performance of different learning methods on long-text datasets. Online-GOPE2 often surpasses all 

other methods 
 

 

In Figure 6 and Table 2, we see that GOPE2 usually gives better results with parameter Bernoulli 𝑝 

chosen small on short-text datasets. Through Figure 6 we also see the model is over-fitting when learning by 

VB and CVB methods. The evidence is that the LPP and NPMI measures of the model by online-VB and 

online-CVB are reduced on three short-text datasets. Whereas, this do not happen for the GOPE2 method and 

variants. We do experiments with different mini-batch size and datasets, we show that our improvements 

usually give better than previous methods. GOPE2 gives better results than other methods because of the 

following reasons. 

− Bernoulli distribution is more general than uniform. Bernoulli parameter 𝑝 plays a role of the 

regularization parameter, then it makes our model avoid the over-fitting. This explains the contribution 

of prior/likelihood to solving the inference problem. 

− Applying the squeeze theorem when constructing lower bound {𝐿𝑡} and upper bound {𝑈𝑡} of true 

objective function 𝑓(𝜃). 
 

 

Table 2. Experimental results of some learning methods on short-text datasets 
Datasets Measures Online-GOPE2 Online-OPE Online-VB Online-CVB Online-CGS 

NYT-titles LPP -8.4635 -8.6031 -9.6374 -9.5583 -8.4963 

Twitter LPP -6.4297 -6.6943 -7.6152 -7.1264 -6.8151 
Yahoo LPP -7.7222 -7.8505 -8.9342 -8.8417 -7.8501 

NYT-titles NPMI 4.1256 3.6037 0.6381 1.0348 4.6319 

Twitter NPMI 9.8042 9.3677 5.4541 6.0338 8.0621 
Yahoo NPMI 5.0205 4.4785 1.4634 1.9191 5.0181 

 

 

  
  

Figure 5. LPP and NPMI of the models learned by 

online-GOPE2 with Bernoulli parameter 𝑝 and 

|𝐶𝑡|  =  5,000 on short-text datasets 

Figure 6. Performance of learning methods on 

short-text datasets. online-GOPE2 often surpasses 

other methods 
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5. CONCLUSION 

The posterior inference for individual texts is very important in topic models. It directly determines 

the quality of the learned models. In this paper, we have proposed GOPE2, a stochastic optimization, helping 

the posterior inference problem can be solved well by using Bernoulli distribution and two stochastic 

approximations. In addition, the parameter Bernoulli 𝑝 is seen as the regularization parameter that helps the 

model to be more efficient and avoid overfitting. Using GOPE2, we have online-GOPE2, an efficient method 

for learning LDA from data streams or large corpora. The experimental results show that GOPE2 is usually 

better than compared methods such as CGS, CVB, and VB. Thus, online-GOPE2 is a good candidate to help 

us deal with big data. 
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