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 This paper deals with a novel method to achieve the effective performance 

of the extended Kalman filter (EKF) for the speedy estimate of an induction 

motor. The real coding genetic algorithm (GA) is used to optimize the 

components of the covariance matrix in the EKF, thus ensuring the stability 

and accuracy of the filter in the speed estimation. The advantage of the 

proposed method is less dependent on the parameters of the induction motor. 

The content includes the vector control model for induction motor, the speed 

estimation by modeling the reference frame-model reference adaptive 

system (RF-MRAS), the current based-model reference adaptive system 

(CB-MRAS), and the speed estimation with the EKF optimized by genetic 

algorithm. Simulative studies on the field-oriented controller (FOC) with 

different operating conditions are performed in Matlab Simulink when the 

rotor resistance changes in the current speed estimation methods. The 

simulation results demonstrate the efficiency of the proposed GA-EKF filter 

compared with other speed estimation methods of induction motors. 
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1. INTRODUCTION 

The control of the induction motor (IM) that has no speed sensor (sensorless) has the advantages 

such as low cost, high reliability, and saving space, reduces hardware, works well in chemical, dusty, 

decreases maintenance requirements. Due to the above advantages, there are now a number of methods for 

estimating the speed of induction motors without speed sensors studied such as the methods using the 

machine model is an estimative type of the open-loop [1], model reference adaptive system (MRAS) [2]-[7], 

the Luenberger observer [8]-[11], the sliding mode observer [12], the Kalman filter [13]-[18] (the first 

estimative types), and the methods which use machine models that are the estimator types using algorithms 

intelligent such as neural-networks [19]-[22], fuzzy-logic based on a control without the speedy sensor [23]-[25], 

(the second estimative types). Each method has its characteristics, advantages, and disadvantages, which will 

be presented below. 

The MRAS is based on comparing the two outputs of the two models: the first model (the reference 

model) contains no the rotor speed, the second model (the adaptive model) uses the speed to estimate the flux 

of the induction motor. The outputs of the two models are compared together to get the error value. The error 

is the input of an appropriate adaptation mechanism to generate the estimated rate fed back to the adaptive 

model. The benefit of this method is simplicity, fast processing ability but low accuracy.  

https://creativecommons.org/licenses/by-sa/4.0/
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For the reasons mentioned above, this paper presents the method of the speed estimation by 

extended Kalman filter instead. It belongs to both groups mentioned above, because it uses the Kalman filter 

optimized by the genetic algorithm (GA), which has more advantages such as good noise filtering and higher 

accuracy. Since the equation of state of the induction motor is nonlinear, we will perform the discretization, 

and thus in each small cycle that is considered linear to apply the Kalman algorithm. This is a recursive 

problem combined with adaptation to estimate the parameters in the equation of the state of an induction 

motor. A notable problem in the Kalman filter is determining the components in the covariance matrix 𝑄, 𝑅. 

Traditionally, we would define these matrices by trial and error method, but this method is time-consuming, 

and its accuracy is not high. Therefore, this paper presents how to determine these matrices by GA, which 

belongs to the second group, that of intelligent algorithms. 

Except for the introduction and conclusion, this article includes four main sections. Section 1 is the 

modeling DFOC of the IM control without speed sensor, sections 2 is the speedy estimate method reference 

frame - model reference adaptive system (RF-MRAS), sections 3 is the speedy estimate method current 

based - model reference adaptive system (CB-MRAS), sections 4 includes details to implement the speedy 

estimate of the EKF: design of proposed EKF algorithm, determination of components of matrix 𝑄, 𝑅 by trial and 

error method, and GA algorithm. Finally, the simulation results of three methods in two cases: the resistance of 

rotor is constant and change during operation process. 

The simulation results showed that the speed response of the Kalman filter optimized by GA is 

better than the RF-MRAS, CB-MRAS methods under different working conditions, when the rotor resistance 

varies with temperature. This also means that the GA-Kalman filter estimation method is less dependent on the 

system parameters than other methods. The studies covered in this introduction are presented in the next section. 
 

 

2. THE MODELING DFOC OF INDUCTION MOTOR 

From the equation system of an induction motor, the sensorless speed direct field-oriented control 

(SS-DFOC) for induction motor drive is constructed as following Figure 1 [26]-[29]. In this model, the proposed 

genetic algorithm - extended Kalman filter (GA-EKF) speedy estimate block with input parameters of voltage and 

current collected from the system through voltage and current sensors. The outputs are the estimated speed and 

flux current. 
 

 

 
 

Figure 1. The structure of the SS-DFOC method 
 

 

The vector control (FOC) includes controller of the stator currents characterized by a vector. This 

control is based on the design that converts a three-phase time and speed system into a two co-ordinate (𝑥 and 𝑦 

co-ordinate) time invariable system. This design lead to a configuration similar to a DC machine control. Vector 

controlled machines need two constants as input references: the torque cureent component represented by rotor 

speed 𝜔0 and the flux current component represented by 𝐼𝑚 [26], [27].  
 

 

3. ESTIMATE SPEED OF INDUCTION MOTOR USING MODEL RF-MRAS 

3.1.  The mathematical equations of the RF-MRAS model 

The mathematical equations of the RF-MRAS model are as following [3]-[5]. 
 

𝜓𝑅𝛼 =
𝐿𝑟

𝐿𝑚
(∫(𝑢𝑠𝛼 − �̂�𝑠𝑖𝑠𝛼)𝑑𝑡 −𝜎𝐿𝑠𝑖𝑠𝛼) ; 𝜓𝑅𝛽 =

𝐿𝑟

𝐿𝑚
(∫(𝑢𝑠𝛽 − �̂�𝑠𝑖𝑠𝛽)𝑑𝑡 − 𝜎𝐿𝑠𝑖𝑠𝛽)  (1) 

 

�̂�𝑅𝛼 = ∫(
𝐿𝑚

𝑇𝑟
𝑖𝑠𝛼 −

1

𝑇𝑟
�̂�𝑅𝛼 − 𝜔0�̂�𝑅𝛽) 𝑑𝑡; �̂�𝑅𝛽 = ∫(

𝐿𝑚

𝑇𝑟
𝑖𝑠𝛽 −

1

𝑇𝑟
�̂�𝑅𝛽 + 𝜔0�̂�𝑅𝛼) 𝑑𝑡 (2) 
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This model only cares about the motor speed, so the value of the stator resistor is known in the simulation. 

The error signal is represented below by the expression (with 𝐾𝑃 > 0,𝐾𝐼 > 0). 
 

𝜉 = �̂�𝑅𝛼𝜓𝑅𝛽 − �̂�𝑅𝛽𝜓𝑅𝛼; �̂�0 = 𝐾𝑃𝜉 + 𝐾𝐼 ∫ 𝜉𝑑𝑡
𝑡

0
 (3) 

 

Where the state variables 𝑖𝑆𝛼 , 𝑖𝑆𝛽 , 𝑢𝑆𝛼 , 𝑢𝑆𝛽𝜓𝑅𝛼 , 𝜓𝑅𝛽 , 𝜔0 are stator currents, stator voltages, rotor fluxes, and 

the rotor speed of IM in [𝛼 − 𝛽] system, the parameters with a hat on the top are the estimated values. 
 

3.2.  The RF-MRAS model 

The RF-MRAS for the speed estimation has diagram such as Figure 2 [6]. The model consists of two 

blocks: the adaptive block, and the reference block. Two these blocks are compared with each other, the difference 

in values of two these blocks is fed back to the adaptive block to correct the desired signal for accuracy. 

The current and voltage signals are specified in the model. 
 
 

 
 

Figure 2. The diagram of speed estimation using the RF-MRAS model 
 

 

4. ESTIMATE SPEED OF INDUCTION MOTOR USING MODEL CB-MRAS 

4.1.  The mathematical equations of the CB-MRAS model 

The Mathematical equations of the CB-MRAS Model is described (4) [6], [7]. 
 

𝑖̂𝑠𝛼 =
1

𝑇𝑖
∫(𝐾1𝑢𝑠𝛼 + 𝐾2�̂�𝑅𝛼 + 𝐾3�̂�𝑅�̂�𝑅𝛽 − 𝑖̂𝑠𝛼)𝑑𝑡; 𝑖̂𝑠𝛽 =

1

𝑇𝑖
∫(𝐾1𝑢𝑠𝛽 + 𝐾2�̂�𝑅𝛽 − 𝐾3�̂�𝑅�̂�𝑅𝛼 − 𝑖̂𝑠𝛽)𝑑𝑡 (4) 

 

The rotor speed is calculated from the following expression with 𝐾𝑃 > 0,𝐾𝐼 > 0. 
 

𝜉 = (𝑖𝑠𝛼 − 𝑖�̂�𝛼)�̂�𝑅𝛽 − (𝑖𝑠𝛽 − 𝑖̂𝑠𝛽)�̂�𝑅𝛼 , �̂�𝑟 = 𝐾𝑃𝜉 + 𝐾𝐼 ∫ 𝜉𝑑𝑡
𝑡

0
 (5) 

 

Where 𝐾1 =
𝐿𝑟

𝐶1𝐿𝑚
; 𝐾2 =

𝐿𝑚

𝐶1(𝐿𝑟�̂�𝑠𝑇𝑟+𝐿𝑚
2 )

; 𝐾3 =
1

𝐶1
; 𝑇𝑖 =

𝐿𝑠𝐿𝑟−𝐿𝑚
2

𝐶1𝐿𝑚
; 𝐶1 =

𝐿𝑟�̂�𝑠

𝐿𝑚
+

𝐿𝑚

𝑇𝑟
 (6) 

 

4.2.  The CB-MRAS model 

From the above expressions, the CB-MRAS model is built below [6]. Figure 3 is the CB-MRAS model 

which is similar to the RF-MRAS model, but the block functions differ from the above model. The model has 

three input blocks: current model, voltage model, and current estimation block. The output has two blocks: 

the rotor speed adaptive block, and the stator resistance adaptive block. Error signals: rotor speed and stator 

resistance are fed back to correct the rotor speed and stator resistance values. 
 

 

 
 

Figure 3. The diagram of speed estimation using CB-MRAS model 
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5. ESTIMATE THE SPEED OF IM USING EXTENDED KALMAN FILTER OPTIMIZED BY 

GA ALGORITHM 

In this section, the first presents the discrete form model of the equations of state. The second is 

the algorithm to the EKF, how to determine the expressions in the algorithm, the 𝑄 matrix in the system 

block, 𝑅 in the measurement block, and limitations in determining the matrix 𝑄, 𝑅 by trial and error. Finally, 

the GA algorithm (a smart algorithm) is used to optimally determine the components in the 𝑄, 𝑅 matrix for 

estimating the speed of the IM in the most accurate method. 
 

5.1.  Using EKF to estimate the speed of IM 

From the nonlinear equations with five state variables: 𝑖𝑆𝛼 , 𝑖𝑆𝛽 , 𝜓𝑅𝛼 , 𝜓𝑅𝛽 , 𝜔0 [26], [27], to be able to use 

the EKF recursively, They need to be transformed from the continuous state equations of the motor into a discrete 

form, and for each small cycle, these equations are considered linear. Then they are added into the system noise 

𝑊 and the measured noise 𝑉, so the EKF algorithm shown below [14]-[16] can be applied. 
 

𝑥𝑛+1 = 𝐴𝑛 ⋅ 𝑥𝑛 + 𝐵𝑛 ⋅ 𝑢𝑛 + 𝑊𝑛  

𝑦𝑛+1 = 𝐶𝑛 ⋅ 𝑥𝑛+1 + 𝑉𝑛  (7) 
 

Here, the coefficient matrix is calculated according to the expression: 
 

𝐴𝑛 = 𝑒𝐴𝑇 ≈ 𝐼 + 𝐴𝑇; 𝐵𝑛 = ∫ 𝑒𝐴𝑇𝐵𝑑𝑡 ≈ 𝐵𝑇
𝑇

0
; 𝐶𝑛 = 𝐶 

𝑥𝑛+1 = [𝑖𝑆𝛼
(𝑛+1)

𝑖𝑆𝛽
(𝑛+1)

𝜆𝑅𝛼
(𝑛+1)

𝜆𝑅𝛽
(𝑛+1)

𝜔0
(𝑛+1)

]
𝑇

; 𝑦𝑛+1 = [𝑖𝑆𝛼
(𝑛+1)

𝑖𝑆𝛽
(𝑛+1)

]
𝑇

; 𝑢𝑛 = [𝑣𝑆𝛼
(𝑛)

𝑣𝑆𝛽
(𝑛)

]
𝑇

 

𝐴𝑛 =

[
 
 
 
 
 
 
 
 1 −

𝐾𝑟

𝐾𝑙
𝑇 0

𝐿ℎ𝑅𝑅

𝐿𝑅
2 𝐾𝑙

𝑇
𝑃𝐿ℎ𝜔0

𝑛

2𝐿𝑅𝐾𝑙
𝑇 0

0 1 −
𝐾𝑟

𝐾𝑙
𝑇

𝑃𝐿ℎ𝜔0
𝑛

2𝐿𝑅𝐾𝑙
𝑇

𝐿ℎ𝑅𝑅

𝐿𝑅
2 𝐾𝑙

𝑇 0

𝐿ℎ

𝑇𝑟
𝑇 0 1 −

1

𝑇𝑟
𝑇 −

𝑃𝜔0
𝑛

2
𝑇 0

0
𝐿ℎ

𝑇𝑟
𝑇

𝑃𝜔0
𝑛

2
𝑇 1 −

1

𝑇𝑟
𝑇 0

−
𝑃𝐿ℎ

3𝐽𝐿𝑅
𝜆𝑅𝛽

𝑛 𝑃𝐿ℎ

3𝐽𝐿𝑅
𝜆𝑅𝛼

𝑛 0 0 1]
 
 
 
 
 
 
 
 

; 𝐵𝑛 =

[
 
 
 
 

𝑇

𝐾𝑙
0

0
𝑇

𝐾𝑙

0 0
0 0]

 
 
 
 

; 𝐶𝑛 =

[
 
 
 
 
1 0
0 1
0 0
0 0
0 0]

 
 
 
 
𝑇

 (8) 

 

The covariance matrices 𝑄 and 𝑅 of noises have the following form: 
 

𝑄𝑛 = 𝐶𝑜𝑣(𝑤) = 𝐸[𝑤𝑤𝑡] = {
𝑄𝑛 𝑤𝑖𝑡ℎ 𝑛 = 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

; 𝑅𝑛 = 𝐶𝑜𝑣(𝑣) = 𝐸[𝑣𝑣𝑡] = {
𝑅𝑛 𝑤𝑖𝑡ℎ 𝑛 = 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

The matrices 𝑄, 𝑅 show that they have the form of diagonal matrices. The EKF algorithm is used for the 

speedy estimation model of the induction motors. 
 

𝑥𝑛+1 = 𝐴�̂�𝑛 + 𝐵𝑢𝑛 = 𝑓(𝑥𝑖
𝑛, 𝑢𝑛) (9) 

 

The linearization of nonlinear equation [26], [27] inplemented around the estimated value �̂�𝑖 is as following 
 

𝐹𝑛 =
𝜕𝑓𝑛(𝑥𝑖

𝑛,𝑢𝑛)

𝜕𝑥𝑖
=

𝜕(𝐴𝑥𝑛−1+𝐵𝑢𝑛−1)

𝜕𝑥𝑖
 (10) 

 

𝑃𝑛+1 = 𝐹𝑛�̂�𝑛𝐹𝑛
𝑇 + 𝑄 (11) 

 

ℎ(𝑥𝑖
𝑛) = 𝐶𝑛(𝑥𝑖

𝑛)𝑥𝑖
𝑛 (12) 

 

𝐻𝑛 =
𝜕ℎ(𝑥𝑖

𝑛)

𝜕𝑥𝑖
=

𝜕(𝐶𝑛(𝑥𝑖
𝑛)𝑥𝑖

𝑛)

𝜕𝑥𝑖
 (13) 

 

𝐾𝑛+1 = 𝑃𝑛+1𝐻
𝑇(𝐻𝑃𝑛+1𝐻

𝑇 + 𝑅)−1 (14) 
 

�̂�𝑛+1 = 𝑥𝑛+1 + 𝐾𝑛+1(𝑦𝑛+1 − 𝐶𝑛𝑥𝑛+1) (15) 
 

𝑃𝑛+1̂ = 𝑃𝑛+1 − 𝐾𝑛+1𝐶𝑃𝑛+1 (16) 
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Where the P is covariance matrix. The K is the Kalman filter gain. The 𝑥 are state variables 

(parameters) of IM. The noise matrix 𝑄, 𝑅, and the parameters with a hat are the estimated values. 

The beginning value of the covariance error matrix has the form below. 
 

𝑄 =

[
 
 
 
 
𝜆1 0 0 0 0
0 𝜆2 0 0 0
0 0 𝜆3 0 0
0 0 0 𝜆4 0
0 0 0 0 𝜆5]

 
 
 
 

; 𝑅 = [
𝜇1 0
0 𝜇2

]; 𝑃 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 

 

To implement the EKF for estimating the rotor speed, current, and flux, the parameters 𝜆𝑖, 𝜇𝑖 are 

appropriately chosen in the 𝑄, 𝑅 matrix. Traditionally, this is done by trial and error, which takes a long time but 

doesn’t produce very good results. For this reason, we will find the optimal solution for determining the parameters 

of the fit of 𝑄 and 𝑅 by genetic algorithm. The algorithm will be presented in the following section. 
 

5.2.  Using genetic algorithm to estimate parameters of 𝑸, 𝑹 of EKF 

To find the optimal parameters 𝜆𝑖, 𝜇𝑖, we use a soft computational algorithm that is the GA [23], [30]. 

When the appropriate parameters are available, the motor speed estimation will be more accurate. The algorithm 

flowchart for finding parameters 𝜆𝑖, 𝜇𝑖 of the matrix 𝑄, 𝑅 is below.  

Figure 4 is the GA algorithm applied to this paper. In the first step of the algorithm, we randomly 

initialize the population (parameters 𝑄, 𝑅) and encode the computation in the form of real numbers. This set 

of parameters will be transferred to the Matlab model to perform the simulation. Its results will be evaluated 

by the cost function, then perform genetic operations such as selection, crossover, and mutation. Thus, we will 

have a new set of values (usually better than the previous one) and continue to feed the model for testing. 

This process continues until the required number of generations reached. The result of the last run time is the best. 
 

 

 
 

Figure 4. A flowchart of the genetic algorithm for the GA-EKF model 
 
 

6. SIMULATION RESULTS AND ANALYSIS 

The basic simulative parameters used for induction motors are as: 𝑃 = 1.5 kW, 𝑈𝐷𝐶 = 270 V, 𝑃𝑃 = 2, 

𝑅𝑆 = 2.1 Ω, 𝑅𝑟 = 2.51 Ω, 𝐿𝑚 = 0.129 H, 𝐿𝑆 = 0.137 H, 𝐿𝑟 = 0.137 H, 𝐽 = 0.043 kg.m2. The three different 

speed levels simulated in this section are 100 rpm, 40 rpm, and −40 rpm. The simulation results in many 

cases are presented in the following sections. 
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6.1.  Estimate speed of IM based on the model, RF-MRAS 

In the Figure 5 (the first figure of the simulation), the responses of the reference speed and the actual 

speed are shown. The solid line is the reference speed. The dashed line is the response of the actual speed. 

The actual speed follows the desired speed, but there is an overshoot. Figure 6 the comparison of Figure 6(a) 

the RF-MRAS estimated speed, the actual speed, and the reference speed and the relationship of Figure 6(b) 

the error between the estimated speed and the actual speed, we see that the speed error between the RF-MRAS 

estimated speed and the actual speed is large. Its peak value is 13 rpm, so this method is used in drives less 

than at present. 
 

 

 
 

Figure 5. Reference and actual rotor speed of the IM drive 
 

 

  
  

(a) (b) 
 

Figure 6. The comparison of (a) the RF-MRAS estimated speed and (b) the error between RF-MRAS 

estimated speed and actual speed 
 

 

6.2.  Estimate speed of IM based on CB-MRAS model 

This section is the simulated results of the CB-RAS model. Figure 7 the evaluation of Figure 7(a) 

the CB-RAS estimated speed, the reference speed, and the actual speed and the analysis of Figure 7(b) 

the speedy error between the CB-RAS estimated model and the actual model, the deviation of the estimated 

speed of the CB-MRAS model is quite good. Its peak value is 2.7 rpm. 
 

 

  
  

(a) (b) 

  

Figure 7. The evaluation of (a) the CB-MRAS estimated speed and (b) the error between the CB-MRAS 

estimated speed and the actual speed 
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6.3.  Estimate speed of IM based on EKF with defining matrices 𝑸, 𝑹 by trial and error  

First, the values 𝜆𝑖, µ𝑖 in the matrix 𝑄, 𝑅 which is chosen by trial and error are: 𝜆1 = 9.23E-14; 

𝜆2 = 8.33E-14; 𝜆3 = 4.88E-14; 𝜆4 = 6.85E-08; 𝜆5 = 1.46E-08; µ1 = 9.13E-05; µ2 = 4.99E-06. With these 

values, the speedy response is shown in the Figure 8. The speed according to EKF algorithm is the dashed line. 

These values cause a divergence with a spiked error. This method takes a lot of time, but the results obtained are 

not optimal. We continue to probe by trial and error. The selected values are: 𝜆1 = 8.74E-14; 𝜆2 = 4.26E-14; 

𝜆3 = 1.69E-14; 𝜆4 = 6.80E-14; 𝜆5 = 3.26E-08; µ1 = 1.79E-05; µ2 = 2.49E-05. With the new values for EKF 

method by trial and error, the speed response is displayed in the Figure 9. Its error is a small value that we can 

see in this figure with the dashed line. 

 

 

  

  

Figure 8. The reference, actual rotor, and EKF 

estimated speed 

Figure 9. Reference, actual rotor, and new EKF 

estimated speed 

 

 

6.4.  Estimate speed of IM based on EKF with defining matrices 𝑸, 𝑹 by GA algorithm  

The two matrices 𝑄 and 𝑅 are diagonal matrices of seven values that need to be determined. If the values 

(𝜆1,  𝜆2,  𝜆3, 𝜆4,  𝜆5, µ1, µ2) are chosen by trial and error, it takes a long time, but the results described above are 

not very good. Because of this reason, the components in the matrix are found by the genetic algorithm to save 

time and get the best speedy estimation response. The Table 1 includes parameters of GA algorithm that we will 

use to find optimal values for two matrices 𝑄 and 𝑅. The range of values for variables is [1e-18-0.1]. The cost 

function is calculated according to the error MSE is 𝐸 =
1

𝑛
∑ (𝑆𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 −𝑛

1 𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑝𝑒𝑒𝑑)2. 

After performing the GA algorithm according to the diagram of Figure 4, we below collect results in 

the Table 2. Ten rows of the table correspond to 10 implementations of the GA algorithm. Columns 

𝜆1, 𝜆2, 𝜆3,  𝜆4, 𝜆5 are of the 𝑄 matrix and columns µ1, µ2 are of the 𝑅 matrix. The MSE column is the speed 

error corresponding to 10 runs of the algorithm. 

The best values after ten runs substituted into the matrix 𝑄, 𝑅 have the results shown below. Figure 10 

the analysis of Figure 10(a) the actual rotor speed, the GA_EKF speed, and the reference speed and the comparison 

of Figure 10(b) speed error between the GA_EKF model and the actual model. This speed error is the smallest 

compared to the two methods investigated above, the RF-MRAS and the CB-MRAS. Its peak value is less 

than 2 rpm, so this method can be used for IM drives. 

Table 3 is the results of the speedy error comparison. They consist of the RF-MRAS, the CB-MRAS, 

and the GA-EKF methods by the least squares method. The RF-MRAS Method has an error of 4.5502 rpm, 

the CB-MRAS method has an error of 0.1896 rpm, and the GA-EKF Method has an error of 0.0839. 

 

 

Table 1. The parameters of GA algorithm 
Parameters Values 

Population size 60 

The crossover probability 0.5 
The mutative probability 0.02 

Number of generations 10 

 

 

Simulation results of three methods, including graphs and errors evaluated according to MSE-standard, 

are presented above. In the proposed new method, the extended Kalman filter in which the parameters are 

optimized by the GA algorithm shows its advantages. These can conclude that the GA-EKF method is the best, 

although the CB-MRAS method was considered the best for a long time before. 
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Table 2. Convergence results after ten repetitions 
Index 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 µ1 µ2 MSE 

1 4.82E-03 2.90E-10 2.90E-10 2.52E-09 5.84E-17 9.83E-03 5.84E-05 7.1586 

2 7.30E-15 1.08E-18 5.83E-08 5.84E-17 7.30E-15 0.042825 9.83E-14 5.0869 

3 2.98E-21 2.90E-10 4.28E-02 8.65E-01 4.87E-09 1.01E-04 9.65E-04 3.2586 
4 4.61E-02 7.82E-01 9.89E-01 5.31E-01 7.50E-01 1.12E-05 9.83E-04 2.1869 

5 4.84E-08 7.82E-07 9.89E-09 5.31E-07 7.50E-11 1.12E-04 2.92E-05 1.0821 

6 4.84E-08 7.82E-07 9.89E-09 5.31E-07 7.50E-11 1.12E-04 2.92E-05 1.0821 
7 6.97E-11 2.90E-10 9.89E-05 8.65E-01 9.90E-01 1.01E-07 2.28E-06 0.5735 

8 2.26E-10 3.44E-12 2.26E-06 1.21E-12 9.83E-14 6.17E-06 6.17E-07 0.1286 

9 7.30E-15 3.85E-07 7.30E-15 7.61E-18 4.82E-10 3.85E-07 2.26E-06 0.0870 
10 2.65E-12 3.44E-16 2.65E-12 8.18E-18 2.26E-12 1.21E-07 1.21E-07 0.0839 

 

 

 
 

(a) 
 

 

 
 

(b) 
 

Figure 10. The analysis of (a) the EKF estimated speed and (b) the error between real speed and the EKF 

estimated speed 

 

 

Table 3. The error of the three methods 

The methods 𝐸 =
1

𝑛
∑(𝑆𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 −

𝑛

1

𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑝𝑒𝑒𝑑)2 The evaluated results 

RF-MRAS 4.5502 Good 
CB-MRAS 0.1896 Very good 

GA-EKF 0.0839 The best 

 

 

6.5.  The responses of the estimated speed in the cases of variable rotor resistance 

6.5.1. The resistance (𝑅𝑟) changes from 2.51 Ω to 2.0 Ω 

During operation, the resistance of the rotor (𝑅𝑟) can be changed by temperature, this also means that 

the rotor time constant (𝑇𝑟) changes, it is a significant parameter in induction motors which affect the process of 

motor speed estimation. Therefore, its influence is considered in the three-speedy estimation methods mentioned 

above. In this section, the variable rotor resistance value and its influence on the speed estimation methods are 

investigated. The results of the three models are displayed in Figure 11. The variation of Figure 11(a) the rotor 
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resistance value from 2.51 Ω to 2.0 Ω and the comparison of Figure 11(b) the estimated speed of the RF-MRAS 

model, Figure 11(c) the estimated speed of the CB-MRAS model, and Figure 11(d) the estimated speed of 

the GA-EKF model, this is one of the cases in which the rotor resistance can change during operation. 

The simulated characteristics and results of all three methods which are mentioned above are 

summarized in Table 4. The first column of this table is the methods. The second column is the speed error. 

Finally, the third column is the evaluation result for each method. 

The results are obtained from the graphs and the calculation of the error according to the MSE 

standard, when the rotor resistance reduced by 20%. In third column, we see that the error of the GA-EKF 

method is the smallest (11.1203 rpm) and the speedy error of the RF-MRAS method is the largest. These 

show that the CB-MRAS method is better than RF-MRAS, but the EKF method is the best. 
 

 

Table 4. The error of the three methods (the Rr changes from 2.51Ω to 2.0Ω) 

The methods 𝐸 =
1

𝑛
∑(𝑆𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 −

𝑛

1

𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑝𝑒𝑒𝑑)2 The evaluated results 

RF-MRAS 22.0262 Quite good 

CB-MRAS 12.4048 Good 

GA-EKF 11.1203 Good 

 

 

6.5.2. The resistance (𝑅𝑟) changes from 2.51 Ω to 3.0 Ω 

Other changes in the rotor resistance are studied continually in this section. Now we will examine 

the case of increased resistance. From the simulation results, we obtain the graphs as well as the calculation 

of the speedy errors that will be presented in the following section. This section is similar to the one above. 

The results of all models are shown below. Figure 12 the change, Figure 12(a) of the rotor resistance value 

from 2.51 Ω to 3.0 Ω and the relationship of Figure 12(b) the estimated speed of the RF-MRAS model, 

Figure 12(c) the estimated speed of the CB-MRAS model, and Figure 12(d) the estimated speed of the GA-EKF 

model, this part compares the estimated speedy responses of all models in the change of the rotor resistance.  
 

 

  
  

(a) (b) 
  

  

  
  

(c) (d) 
  

Figure 11. The variation of (a) the change value of the rotor resistance, (b) the RF-MRAS model, 

(c) the CB-MRAS model, and (d) the GA-EKF model 
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All simulation results are listed in Table 5. Similar to Table 4, this Table 5 also summarizes the 

estimated results of all three methods: the RF-MRAS, the CB-MRAS, and the GA-EKF in the case of 

increased rotor resistance. The first column of this Table 5 the methods. The second column is the speed 

error. Finally, the third column is the evaluation results of each method. 

In this case, the rotor resistance increased to 20%. We evaluate the speed error according to the 

MSE standard. The RF-MRAS method has the largest error (13.5012 rpm), while the other two methods are 

quite good and approximately equal. These obtained results show that the GA-EKF method is equivalent to 

the CB-MRAS, and both these methods are better than the RF-MRAS method. 
 
 

Table 5. The error of the three methods (the 𝑅𝑟 changes from 2.51 Ω to 3.0 Ω) 

The methods 𝐸 =
1

𝑛
∑(𝑆𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 −

𝑛

1

𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑠𝑝𝑒𝑒𝑑)2 
The evaluated 

results 

RF-MRAS 13.5012 Quite good 

CB-MRAS 7.1828 Good 

GA-EKF 7.2734 Good 

 

 

  
  

(a) (b) 
  

  

  
  

(c) (d) 
  

Figure 12. The change (a) Rotor resistance, (b) The RF-MRAS, (c) The CB-MRAS, and (d) The EKF 

estimated speed 
 

 

7. CONCLUSION 

This paper presents three methods of speed estimation of IM: the RF-MRAS, the CB-MRAS, and the 

GA-EKF. Particularly, it focuses on the speedy estimation method using the GA-EKF algorithm with the system 

noise matrix 𝑄 and the measured noise matrix 𝑅 optimized by the GA algorithm. Simulation results in cases of 

variable rotor resistance (constant, decrease, or increase). In the case of constant rotor resistance, the CB-MRAS 

method is much better than RF-MRAS, but the GA-EKF method is also much better than the CB-MRAS. In the 

case of reduced rotor resistance, the CB-MRAS speed estimation method is also much better than RF-MRAS, 

but the GA-EKF method is better than CB-MRAS. With the increased rotor resistance, the CB_MRAS method 

is much better than the RF-MRAS, and the GA-EKF method approximates the CB-MRAS. Thus, in most cases: 

variable or unchanged rotor resistance, the GA-EKF speed estimation method optimized by the GA algorithm 
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which is presented in this paper can claim to be the best, although the CB-MRAS speedy estimation method was 

considered the best in a long time before. 

It can see that the proposed GA-EKF model is less dependent on the induction motor parameters 

than the RF-MRAS and the CB-MRAS model, but the GA-EKF model is the most complex of the mentioned 

models. Therefore, a DSP processor must be used when implementing the GA-EKF algorithm. Today with the 

strong development of semiconductor technology, this method is easily implemented in industrial devices. 
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