
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 21, No. 1, February 2023, pp. 168~177

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v21i1.24093 168

Journal homepage: http://telkomnika.uad.ac.id

Design and verification of daisy chain serial peripheral interface

using system Verilog and universal verification methodology

Rajesh Thumma, Pilli Prashanth
Department of Electronics and Communication Engineering, Anurag University, Hyderabad, India

Article Info ABSTRACT

Article history:

Received Aug 30, 2021

Revised Nov 12, 2022

Accepted Nov 22, 2022

 Serial peripheral interface (SPI) transfers the data between electronic devices

like micro controllers and other peripherals. SPI consists of two control

lines: select signal and clock signal, and two data lines: input and output.

In single master-single slave, the communication is in between master and

slave only which will make the design complex and costly, area will

increase. In regular SPI mode, the number of chip-select lines is increased if

the number of slaves increases. Due to this, the input data received by the

master from the slaves are corrupted at master input slave output (MISO).

The proposed daisy chain method is used to overcome this problem.

The daisy chain method requires only one chip select line at master

compared to the regular SPI mode. When the chip-select line is active low,

all the slaves are active, and the clock is initiated to all the slaves to transfer

the data from the master to the first slave through the master output slave

input (MOSI). In this paper, the daisy-chain SPI is designed and developed

using Verilog. The proposed design is verified using system Verilog (SV)

and universal verification methodology (UVM) in QuestaSim.

Keywords:

Daisy-chain

I2C

SV

UVM

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rajesh Thumma

Department of Electronics and Communication Engineering, Anurag University

Venkatapur, Narapally, Hyderabad, India

Email: rajesh.thumma88@gmail.com

1. INTRODUCTION

System on chip (SoC) architecture requires different components to develop an application. For the

communication and operation between these components, Interfaces are utilized. The communication speed

of the SoC depends on the types of interfaces. The speed rate of the serial peripheral interface (SPI) interface

is 1.1 Mbps. The interfaces are classified into two types, based on the data transmission. They are a serial

interface and a parallel interface.

According to the SoC component’s protocols, serial or parallel communication interfaces are

used [1]-[17]. The motorola semiconductors are the first developers of SPI. The SPI and inter-integrated

circuit (I2C) protocols are used [2] to transfer the data in sequential communication. These two protocols are

appropriate for interchanges between coordinated circuits and with onboard peripherals. The inter-integrated

circuit (I2C) transport utilizes two signals, a sequential clock signal (SCL) and a sequential information

signal SDA, to move information among numerous devices. When contrasted with I2C, SPI utilizes four signals

to move among various devices [3]-[25]. For intra chip communication, SPI is usually used. Both the master and

slave perform the dual role of transmitter and receiver in the SPI. The SPI master slave is designed from the initial

specifications to final system verification by using Verilog hardware description language (HDL) and achieved 71

to 75 megabytes second by implementing in Virtex-5 field programmable gate array (FPGA) [4]-[24]. Various SPI

design techniques are proposed and compared [5] their implementation with respect to chip selects lines.

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control

Design and verification of daisy chain serial peripheral interface using … (Rajesh Thumma)

169

However, the number of chip-select lines are increased in the SPI conventional method, while in the daisy

chain technique, the number of chip-select lines is reduced in implementation and easy to design [5]-[21].

The master-slave communication protocol is designed by assigning the priority to each slave by communicating

with the master based on the highest priority slave [6]-[23]. However, the design will consume less power and

utilization sources compared with the other complex design. The high-speed SPI [7] bus is designed in

vertex5 to control and handle two slaves at a time and compared with the existing architectures. However,

accessing multiple devices using a master-slave will be overcome by applying the standard Serial peripheral

interface [8] and single/master communication protocol. The SPI has been designed with five 32-bit registers

using a compatible wishbone interface [9], [10] for serial synchronous communication. In this, 100% of

functional code coverage achieved with up to 64-bits of full-duplex communication is verified.

The interfacing and monitoring of battery-operated electric vehicles [11], [12] is designed using

complementary metal-oxide-semiconductor (CMOS) to transfer the data rate upto 1 Mbps. System Verilog is

the most promising language to reduce the system-on-a-chip (SOC) verification and reusable components of

the complex SOC design. using system Verilog [21], various components are designed, implemented with

object-oriented programming [13], [14] and applied a random technique to find functional coverage.

However, universal verification methodology [15], [17], [18] will reduce the complexity, time, and rewriting

code by accessing the inbuilt classes. Using universal verification methodology (UVM), the SPI master-slave

is designed and verified the 100% functional coverage and code coverage [19], [20].

The SPI is the most used in various interfacing circuits like analog to digital converters (ADCs),

static random access memory (SRAM), sensors, digital to analog converters (DACs), shift registers and

others. SPI is a master, slave-based synchronous, full-duplex interface [5]-[17]. The data is synchronized from

the master or slave at the falling or rising edge of the clock [22]. Both slave and master can send information

(data) simultaneously. This article proposes a daisy chain technique to design an SPI Master-slave interface

using Verilog and verified with system Verilog and UVM. The simulation verification is performed in a model

sim and QuestaSim. The simulation results are obtained in Xilinx Vivado, and both the verification methods

covered 100% of functional coverage, code coverage. In section 2 covers basic information of the SPI theory,

dasiy chain method and operation. Section 3 covers designing a daisy chain SPI using Verilog and is verified

in system Verilog and UVM. Section 4 covers the simulation results of the proposed design Xilinx and

QuestaSim.

2. SERIAL PERIPHERAL INTERFACE

SPI the data transfer between the master and slave devices are depends on the control signals and

data signals of the serial peripheral interface. There are two types of control signals, namely slave select (SS)

or chip select (CS), a clock signal (SCLK). The master output slave input (MOSI), master input slave output

(MISO) are two data signals. When the chip select line is active low its selects, the respected slave and the

data will read or write based on the clock polarity (CPOL) and clock phase (CPHA). The clock signal reads

the data addresses the clock pulses and writes when the chip select signal is high. The data is transferred from

master to slave and slave to the master through MOSI and MISO signals. There are four modes to transfer the

data with clock polarity and clock phase. Table 1 represents the SPI Modes with clock polarity.

Daisy chain SPI based on the number of slaves, the serial peripheral interface is classified into a single

master-single slave, single master-multiple slaves. In single master-single slave, the communication is in

between master and slave only. By using single master-single slave, the area will increase by increasing

the master-slaves, and the design will be complex, making the increase in cost and the area. So, the single

master-single slave is not preferable, and single master-multiple slaves are used in most of cases. The single

master-multiple slaves are further classified into regular SPI method and daisy chain method.

Table 1. SPI modes with CPOL and CPHA
SPI

mode

CPOL CPHA Clock polarity in idle

state

Clock phase used to sample and/or shift the data

0 0 0 Logic low On the rising edge, data was sampled, and on the falling edge, it was shifted

out
1 0 1 Logic low On the lowering edge, data was collected, and on the rising edge, it was

shifted out

2 1 1 Logic high On the lowering edge, data was collected, and on the rising edge, it was
shifted out

3 1 0 Logic high On the rising edge, data was sampled, and on the falling edge, it was shifted

out

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 168-177

170

In regular SPI mode, the number of chip-select lines is increased if the number of slaves increases.

Figure 1 shows the regular SPI mode of operation. Due to this, the input data received by the master from the

slaves are corrupted at MISO. Because of this daisy chain method is most preferable to overcome this problem.

The daisy chain method requires only one chip select line at master compared to the regular SPI mode. When

the chip-select line is active low, all the slaves are active, and the clock is initiated to all the slaves to transfer

the data from the master to the first slave through the MOSI.

The first slave’s output is shared with a second slave, the second slave with the third, and the last

slave output is shared with the master; this forms a daisy chain configuration. The primary serial peripheral

interface with a single master multiple slave configuration shows in Figure 1. The proposed daisy chain SPI

configuration shows in Figure 2.

Figure 1. SPI single master-multiple slave configuration [26] Figure 2. A daisy chain SPI: single

master-multiple slave configuration [26]

3. VERIFICATION

The daisy chain SPI is designed with Verilog and verified using the system Verilog and universal

verification methodology. The flow chart of the verification methodology is shown in Figure 3. The Verilog

code is compiled and finds the zero errors which create the elaborated design. After simulation of the design,

the following are observed by taking the register-transfer level (RTL) analysis: RTL schematic, physical

design, elaborated design, and power report. To implement in FPGA, the constraint files are written for

generating a bitstream and dumped in the FPGA board.

Figure 3. Flow chart of the verification methodology [1]

3.1. System Verilog

The daisy chain verification environment is implemented with the system Verilog components. The input

and outputs are instantiated in class_packet. The class_packet is included in the generator and initiated naming as

packet 1. A mailbox is used between the generator and the driver to transfer the generator’s data to the driver. The

generator is included in the driver, and a virtual interface is provided to access the inputs from the interface in a

test. A mailbox driver can transfer the data between the driver to the scoreboard and the receiver to the scoreboard.

TELKOMNIKA Telecommun Comput El Control

Design and verification of daisy chain serial peripheral interface using … (Rajesh Thumma)

171

The data received from the driver and receiver will compare on the scoreboard and send to display.

The class_driver is added in the receiver; design under test (DUT) output values are added to packet 2 using a

virtual interface. The packet 1 data from the driver to the scoreboard and the packet 2 data from the receiver

to the scoreboard are compared and included in the coverage. Different random values are added to the inputs

using coverage groups, and coverage is added to the environment.

The functions of generator, driver, receiver, scoreboard and coverage are instantiated in the environment.

The environment is included in the test to perform the test for the environment. A daisy-chain SPI DUT is

developed with a single master and two slaves. A detailed code operation is written for master, slave 1, slave 2

and included in the DUT. Input and outputs are instantiated in the interface to access virtually. The test, DUT

and Interfaces are included in the top block. The top block generates the clock, reset, start signals. The system

Verilog verification environment is shown in Figure 4.

3.2. Universal verification methodology

A rich set of standard rules and guidelines systematically doing the things is called methodology.

It provides the necessary infrastructure to build a robust, reliable and complex verification environment.

It contains a base class library set, which we can use to build our test benches. A methodology should support

coverage driven verification (CDV), transaction based verification (TBV), assertion based verification

(ABV), constrained random testing (CRT). There are various verification methodologies, advanced

verification methodology (AVM) developed by mentor graphics using system C and system Verilog.

Reference verification methodology (RVM) is developed by synopsys using open vera. Open verification

methodology (OVM) developed by mentor graphics using system Verilog. Verification methodology manual

(VMM) by synopsys using system Verilog.

A technical subcommittee of accellera voted to establish the UVM and decided to build this new

standard using the open verification methodology as its foundation. UVM is derived mainly from the OVM.

Advantages of UVM are Common test bench structure and run flow. Reusability through test bench, Time

required to build test bench is very less. It avoids poor coding practices, and Debugging is simple. The

complete UVM verification environment is shown in Figure 5.

To understand the UVM, it is required to understand the verification environment of system Verilog.

The architectures of system Verilog and UVM are similar, but generators are replaced with sequencers and

agents are introduced in UVM. At this moment, a design under test (DUT) is used. To test the functionality

of the DUT, an environment is required to connect the DUT. For this, a sequencer block is used to generate

sequences of bits to transmit into the DUT. Generally, sequencers are responsible for generating data

sequences, and they pass the data to another block called a driver. Why because the sequencer is unaware of

the communication bus. So, the sequencer transmits the data to the driver. Now, the driver starts

communicating with the DUT and by feeding the received data from the sequencer. A monitor block is used

to communicate between the driver and the DUT to evaluate the DUT’s responses. Monitors try to predict the

expected result by sampling the inputs and the outputs of the DUT. They send the prediction and result of the

DUT to the block called the scoreboard. The predicted data are compared and evaluated in the scoreboard.

Figure 4. System Verilog verification architecture [9]

Figure 5. Verification environment of universal

verification methodology [3]

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 168-177

172

A typical system is formed with all these blocks to perform the verification. The UVM test benches

use the same structure [13]. Figure 5 represents the verification environment of the UVM. A test block is

used generally to control all the blocks of the UVM. The Top block controls all the blocks and sub-blocks of

the test bench. This implies that just by changing a couple of code lines, it is possible to add, eliminate and

abrogate blocks in the test bench and construct various conditions without reworking the entire test. To delineate

the benefit of this verification, need to add a monitor and a driver to the Verification, the environment changes

to the I2C from the serial communication SPI and vice versa.

The serial peripheral interface is widely used due to its advantages. In single master–single slave

SPI communication, there is no difficulty at master input slave output (MISO) to transfer the data compared

to the single master-multiple slave SPI. To solve the above-mentioned problem, different design techniques

are proposed by the different authors. They are interrupt enabled priority-based SPI, parameterization method

using time-sharing multiples technique, high-speed SPI and wishbone compliant SPI. Table 2 represents the

comparison of design techniques and their design or verification languages.

Table 2. Comparison of various SPI design techniques
SPI design techniques Single master-

single slave SPI

Single master-

multiple slaves SPI

Verilog SV SV

coverage

UVM UVM

coverage

Proposed design - Yes Yes Yes Yes Yes Yes

Wishbone compliant SPI [10] Yes - Yes - - - -
High speed SPI [7] - Yes Yes - - - -

Interrupt enabled priority based SPI [6] - Yes Yes - - - -
Parameterization method, time

sharing multiplex (TSM) [8]

- Yes Yes - - - -

SPI master interface using System
Verilog [13]

Yes - - Yes Yes - -

SPI master slave core [9] Yes - Yes Yes Yes - -

SPI master slave core using UVM [3] Yes - Yes - - Yes Yes

Table 2 compares various SPI design techniques designed using the Verilog, system Verilog (SV), and

UVM. All the SPI design techniques are designed with the Verilog, but few of them are designed with advanced

verification methodologies like SV and UVM. SPI master interface using system Verilog [13], SPI master-slave

core [9] are verified using SV and SPI master-slave core using UVM [3] is verified in UVM achieves the 100%

code coverage. The proposed daisy-chain SPI is designed using Verilog HDL, and a verification environment

is implemented using SV and UVM to achieve 100% code coverage.

4. SIMULATION AND RESULTS

The daisy chain Serial Peripheral interface is designed and verified using various VLSI tools like

Xilinx Vivado 2015.2, ModelSim, Xilinx integrated synthesis environment (ISE), QuestaSim. Single

master-two slaves are configured in the daisy-chain. The following three inputs are applied in this design;

they are 𝑑𝑖𝑛 = 10110110, 𝑑𝑖𝑛1 = 11001101, 𝑑𝑖𝑛2 = 10010011 are given to the 𝑚𝑎𝑠𝑡𝑒𝑟, 𝑠𝑙𝑎𝑣𝑒1, 𝑠𝑙𝑎𝑣𝑒2,

respectively. The clock, reset, start and chip select lines control the proposed project’s entire design. The output

ports are instantiated as 𝑑𝑜𝑢𝑡, 𝑑𝑜𝑢𝑡1 and 𝑑𝑜𝑢𝑡2 ports and these ports are used to transfer the data between

the master and slaves shift registers. A Verilog code is written and compiled in Xilinx Vivado 2015.2, and

a detailed RTL code, test_bench, are designed with Verilog HDL. By successfully running the behavioural

simulation with 0 errors and 0 warnings, the following simulation results are shown in Figure 6.

The data outputs 𝑑𝑖𝑛 = 𝑑𝑜𝑢𝑡1, 𝑑𝑖𝑛1 = 𝑑𝑜𝑢𝑡2, and 𝑑𝑖𝑛2 = 𝑑𝑜𝑢𝑡 define that the data flow is

transferred in a daisy-chain fashion. The complete schematic diagram of daisy-chain SPI is obtained by

applying an elaborated design is shown in Figure 7, and Figure 8 shows the elaborated circuit design cells.

After adding the constraints to the xdc file, the design is synthesized. The synthesized device, synthesized

schematic of top-level and circuit level are shown in Figure 9, Figure 10 and Figure 11. After generating the

bitstream, it is dumped into the FPGA board to verify the functionality.

The design is verified in the verification environment using the system Verilog by using QuestaSim

10.0b tool. The inputs from the driver 𝑑_𝑖𝑛: 1, 𝑑_𝑖𝑛_1: 10, 𝑑_𝑖𝑛_2: 11, and outputs from the receiver

𝑑𝑜𝑢𝑡: 11, 𝑑𝑜𝑢𝑡1: 1, 𝑑𝑜𝑢𝑡2: 10 are compared at scoreboard. After comparison of the data received from the

driver and receiver in scoreboard has matched. The daisy chain SPI simulation results of the system Verilog

is shown in Figure 12.

TELKOMNIKA Telecommun Comput El Control

Design and verification of daisy chain serial peripheral interface using … (Rajesh Thumma)

173

Figure 6. Simulation results of daisy-chain SPI

Figure 7. Elaborated schematic diagram

Figure 8. Elaborated circuit design

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 168-177

174

Figure 9. Synthesized device diagram Figure 10. Synthesized design showing top level schematic

Figure 11: synthesized design schematic showing internal cells

Figure 12: Output results of System Verilog using QuestaSim 10.0b

TELKOMNIKA Telecommun Comput El Control

Design and verification of daisy chain serial peripheral interface using … (Rajesh Thumma)

175

Coverage groups are developed for inputs 𝑑_𝑖𝑛, 𝑑_𝑖𝑛_1, 𝑑_𝑖𝑛_2 with random values, and a 100%

functional coverage report is achieved. Figure 13 represents the coverage report of system Verilog using

QuestaSim 10.0b. The design is verified in universal verification methodology by developing a verification

environment.

In this, the inputs from monitor 1, outputs from monitor two are compared at the scoreboard. Here

the inputs are consider as 𝑑_𝑖𝑛 = 182, 𝑑_𝑖𝑛_1 = 138, 𝑑_𝑖𝑛_2 = 7, the outputs from the monitor 2 are

𝑑𝑜𝑢𝑡 = 7, 𝑑𝑜𝑢𝑡1 = 182, 𝑑𝑜𝑢𝑡2 = 138 are matched at the scoreboard according to the daisy-chain method.

Figure 14 represents the simulation and summary report of the UVM using QuestaSim 10.0b.

The covearge A, coverage B, coverage C are developed for the inputs with random values and

achieved a 100% functional coverage and code coverage. Figure 15 represents the coverage report of the

UVM. The functional and code coveage reports are execucted using QuestaSim.

Figure 13: System Verilog coverage reports using QuestaSim 10.0b

Figure 14: Universal verification methodology output results using QuestaSim 10.0b

Figure 15: Coverage reports of UVM using QuestaSim 10.0b

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 168-177

176

5. CONCLUSION

In this paper, the daisy-chain SPI is designed using Verilog. The developed design is verified using SV

and UVM. The open-source design suite tool, ModelSim personal edition, was used to write the Verilog code,

which gives the simulation results. The verification environment of the SV and UVM is developed using the

QuestaSim tool. ModelSim and QuestaSim are Mentor Graphics products, which are used to implement the

necessary functional registers. Universal verification methodology verifies the design in the most effective way.

The daisy chain SPI functionality, operation, depiction of registers, pin and signals are discussed. Functional

verification contains the verification platform’s description using system Verilog for the design under the

daisy-chain SPI test. The created verification environment validates the functionality and operation of

configurable daisy-chain SPI. The verification environment developed for daisy-chain SPI protocol was

reusable and using which design can be verified successfully. by using this verification environment, we can

achieve 100% functional and assertion coverage. The designed daisy chain SPI from Verilog is implemented

in FPGA.

REFERENCES
[1] D. Roopesh and K. Siddesha, “RTL design and verification of SPI master-slave using UVM,” Computer Science, vol. 4, no. 8.

[Online]. Available: https://www.semanticscholar.org/paper/RTL-DESIGN-AND-VERIFICATION-OF-SPI-MASTER-SLAVE-

UVM-Roopesh-Siddesha/9db0eb90f17859812d50a677949ae2eff1730a09
[2] A. K. Shah, “High Speed SPI Slave Implementation in FPGA using Verilog HDL,” International Journal of Advanced Research

in Computer Engineering & Technology (IJARCET), vol. 4, no. 12, pp. 4365–4369, 2015. [Online] Available:
https://pdf4pro.com/amp/view/high-speed-spi-slave-implementation-in-fpga-using-1c923d.html

[3] K. V. A. Kumar and M. S. Krishna, “Design and Functional Verification of A SPI Master Slave Core using UVM,” International

Journal of Scientific Engineering and Technology Research (IJSETR), vol. 4, no. 51, pp. 11023–11030, 2015. [Online]. Available:
http://ijsetr.com/uploads/423651IJSETR8063-1902.pdf

[4] A. K. Oudjida, M. L. Berrandjia, A. Liacha, R. Tiar, K. Tahraoui and Y. N. Alhoumays, “Design and test of general-purpose SPI

Master/Slave IPs on OPB bus,” 2010 7th International Multi- Conference on Systems, Signals and Devices, 2010, pp. 1-6,
doi: 10.1109/SSD.2010.5585592.

[5] V. K. Verma, “Comparative Study of SPI Design Systems,” International Journal of Electrical, Electronics and Data Communication

(IJEEDC), vol. 7, no. 10, pp. 4-5, 2019. [Online]. Available: http://www.iraj.in/journal/journal_file/journal_pdf/1-605-15767465564-5.pdf
[6] Deepika and J. K. Murthy, “Interrupt Enabled Priority Based Master Slave Communication using SPI Protocol,” International

Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 9, no. 9, pp. 564–567, 2020,

doi: 10.35940/ijitee.i7649.079920.
[7] Anand N, G. Joseph, S. S. Oommen, and R. Dhanabal, “Design and implementation of a high speed Serial Peripheral Interface,” 2014

International Conference on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-3, doi: 10.1109/ICAEE.2014.6838431.

[8] T. Liu and Y. Wang, “IP design of universal multiple devices SPI interface,” 2011 IEEE International Conference on Anti-
Counterfeiting, Security and Identification, 2011, pp. 169-172, doi: 10.1109/ASID.2011.5967443.

[9] K. Aditya, M. Sivakumar, F. Noorbasha, and T. P. Blessington, “Design and Functional Verification of A SPI Master Slave Core

Using System Verilog,” International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 2, pp. 2231–2307, 2012.
[Online]. Available: https://silo.tips/download/design-and-functional-verification-of-a-spi-master-slave-core-using-system-veril

[10] Purushottam S. and Naveenkumar M., “Design and Verification of wishbone Compliant Serial Peripheral Interface,” International

Journal of Engineering Research & Technology (IJERT), NCESC - 2018 Conference Proceedings, 2018, vol. 6, no. 13, pp. 1-4.
[Online]. Available: https://www.ijert.org/research/design-and-verification-of-wishbone-compliant-serial-peripheral-interface-

IJERTCONV6IS13178.pdf

[11] X. Wang, H. Zhang, L. Zhang, J. Zhang and Y. Hao, “A daisy-chain SPI interface in a battery voltage monitoring IC for electric
vehicles,” 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2014, pp. 1-3,

doi: 10.1109/ICSICT.2014.7021462.

[12] Q. Zhang, Y. Yang, and C. Chai, “A high EMS daisy-chain SPI interface for battery monitor system,” Journal of Semiconductors,
vol. 38, no. 3, 2017, doi: 10.1088/1674-4926/38/3/035002.

[13] Z. Zhou, Z. Xie, X. Wang, and T. Wang, “Development of verification envioronment for SPI master interface using

SystemVerilog,” 2012 IEEE 11th International Conference on Signal Processing, 2012, pp. 2188-2192,
doi: 10.1109/ICoSP.2012.6492015.

[14] M. -K. You and G. -Y. Song, “SystemVerilog-based verification environment using SystemC custom hierarchical channel,” 2009

IEEE 8th International Conference on ASIC, 2009, pp. 1310-1313, doi: 10.1109/ASICON.2009.5351242.
[15] Rajesh C., Shivananda, Shanthi V. A., “Design and development of verification environment to verify spi master core using

UVM,” International Journal of Scientific Engineering and Technology (IJSET) pp. 601–603, 2015. [Online]. Available:

https://www.ijset.in/wp-content/uploads/2015/06/10.2348.ijset06150601.pdf
[16] M. Sekhar, “Design and Verification of Serial Peripheral Interface using OVM,” Ijecct.Org, vol. 2, no. 6, pp. 267–269, 2012.

[17] P. Kumar M. B. and Sreekantesha H. N., “Design and Verification of Serial Peripheral Interface Master Core Using Universal

Verification Methodology”, International Journal of Computer Sciences and Engineering, vol. 7, no. 14, pp. 7-11, 2019. [Online].
Available: https://www.ijcseonline.org/pdf_spl_paper_view.php?paper_id=1079&2-IACIT%20-%20152.pdf

[18] L. S. Kamireddy and L. Saiteja K., “UVM Based Reusable Verification IP for Wishbone Compliant SPI Master core,” arXiv,

2018. [Online]. Available: https://arxiv.org/pdf/1809.10845.pdf
[19] Shyamala S. C., Kalpana S., Manasa B., and Bindu L., “SIP Controller For Master Core Verification Using UVM”, International Journal

of Scientific Development and Research (IJSDR), vol. 1, no. 9, 2016. [Online]. Available: https://www.ijsdr.org/papers/IJSDR1609045.pdf

[20] A. Kulkarni and S. M. Sakthivel, “UVM methodology based functional Verification of SPI Protocol,” National Science,
Engineering and Technology Conference (NCSET) 2020, 2020, vol. 1716, doi: 10.1088/1742-6596/1716/1/012035.

[21] S. Choudhury, G. K. Singh, and R. M. Mehra, “Design and Verification Serial Peripheral Interface (SPI) Protocol for Low Power

Applications,” International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), vol. 3, no. 10,

2014, doi: 10.15680/IJIRSET.2014.0310048

TELKOMNIKA Telecommun Comput El Control

Design and verification of daisy chain serial peripheral interface using … (Rajesh Thumma)

177

[22] S. -L. Chen et al., “A Novel Low-Power Synchronous Preamble Data Line Chip Design for Oscillator Control Interface,”
Electronics, vol. 9, no. 9, doi: 10.3390/electronics9091509.

[23] Shushma N. and R. C. Biradar, “Design and Verification of SPI Protocol,” International Journal of Engineering Science and

Computing, vol. 9, no. 5, 2019. [Online] Available: https://ijesc.org/upload/13bdb8087a12b222cdfea635722ae159.
Design%20and%20Verification%20of%20SPI%20Protocol%20(1).pdf

[24] P. Polsani, V. Priyanka B., and Y. P. Sai, “Design & Verification of Serial Peripheral Interface (SPI) Protocol,” International
Journal of Recent Technology and Engineering (IJRTE), vol. 8 no. 6, pp. 793-796, 2020, doi: 10.35940/ijrte.F7356.038620.

[25] M. Sandya and K. Rajasekhar, “Design and Verification of Serial Peripheral Interface,” International Journal of Engineering

Trends and Technology (IJETT), vol. 3, no. 4, 2012. [Online]. Available: http://ijettjournal.org/volume-3/issue-4/IJETT-
V3I4P212.pdf

[26] P. Dhaker, “Introduction to SPI Interface,” Analog Dialogue, vol. 52, 2018. [Online]. Available:

https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf

BIOGRAPHIES OF AUTHORS

Rajesh Thumma received his degrees B. Tech in Electronics and Communication

engineering from SKEC, in 2007, M. Tech from the BITS khammam under JNTU Hyderabad,

Telangana, India and PhD in School of Electronics Engineering from the KIIT University,

Bhubaneswar, India in 2018. He has research and teaching experience of more than 13 years.

He is visited University of west Bohemia, Pilsen, Czech Republic and Lublin University of

Technology, Lublin, Poland as a part research work. He is currently working as an Associate

Professor in the Department of Electronics and Communication engineering at Anurag

University, Hyderabad, India since July 2010. His research interest includes low power VLSI,

resonant Power converters and Machine leanring. He can be contacted at email:

rajesh.thumma88@gmail.com.

Pilli Prashanth is a Post graduate (M. Tech) Student in department of Electronics

and Communication with a specialization of VLSI System Design from Anurag university,

Hyderabad, India (2021). He received his B. Tech degree in Electrical and Electronics

Engineering from Indur institute of Engineering and Technology in 2017. His research

interests include low power design VLSI, Functional verification of digital circuits, VLSI

testing, Field Programmable Gate Arrays (FPGA). He can be contacted at email:

prashanthnarsimlu@gmail.com.

https://orcid.org/0000-0003-4181-4572
https://scholar.google.co.in/citations?hl=en&user=dpsw3PAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57191841913
https://www.webofscience.com/wos/author/record/1326376
https://orcid.org/0000-0001-5195-1314
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=Pilli+Prashanth+&btnG=
https://www.webofscience.com/wos/author/record/32298890

