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 System reliability is an important issue in designing modern multiprocessor 

systems. This paper proposes a fault-tolerant, scalable, multiprocessor 

system architecture that adopts a pipeline scheme. To verify the performance 

of the proposed system, the SimEvent/Stateflow tool of the MATLAB 

program was used to simulate the system. The proposed system uses twelve 

processors (P), connected in a linear array, to build a ten-stage system with 

two backup processors (BP). However, the system can be expanded by 

adding more processors to increase pipeline stages and performance, and 

more backup processors to increase system reliability. The system can 

automatically reorganize itself in the event of a failure of one or two 

processors and execution continues without interruption. Each processor 

communicates with its neighboring processors through input/output (I/O) 

ports which are used as bypass links between the processors. In the event of 

a processor failure, the function of the faulty processor is assigned to the 

next processor that is free from faults. The fast Fourier transform (FFT) 

algorithm is implemented on the simulated circuit to evaluate the 

performance of the proposed system. The results showed that the system can 

continue to execute even if one or two processors fail without a noticeable 

decrease in performance. 
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1. INTRODUCTION 

Multiprocessor systems are used to provide a high degree of parallelism in a variety of applications. 

The efficiency of these systems is affected by unforeseen events such as aging that can cause permanent 

malfunctions in some parts. Therefore, very stringent reliability requirements made the provision of fault 

tolerance an important aspect of the design of these systems [1]-[3].  

Two types of defects occur in multiprocessor systems: permanent defects and transient defects. 

Permanent breakdowns can result from material damage or limited operational life. An effective mechanism 

must be used to isolate the faulty part and reconfigure it. the treatment system to maintain the level of 

performance. Permanent and transient fault detection can be done by making a connection attempt and 

declaring the fault as permanent if there is no response after a specified number of attempts. For transient 

faults that may result due to overheating, overloading, or otherwise, these can be addressed programmatically 

but may cause some delay [4].  

There are many approaches to hardware fault-tolerant designs in multiprocessor systems [5] and they 

differ in the basic concepts of fault-tolerant design and various problems that the designer must take care of. 

Another side, one of the goals of multiprocessor system designs is scalability [6]. It is preferable to adapt the 

size of the parallel processor system to the size of the tasks to be addressed.  

https://creativecommons.org/licenses/by-sa/4.0/
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Fault tolerance means avoiding system failure in existence malfunctions in some of its parts. It can also 

be considered that a system tolerates faults if the presence of faults does not affect the output of that system. 

A fault-tolerant system should have a mechanism to detect faults and recover from them. Figure 1 shows the 

steps to be taken to obtain a fault-tolerant system [7]. 
 

 

 
 

Figure 1. The steps used to Fault-tolerance 
 
 

As shown in Figure 1, in a fault-tolerant, system recovery can be either by error handling or fault 

handling, or both. Error handling means eliminating errors from the system without removing the source of 

the error. While fault handling is the process of removing the source of the fault. Error handling is used with 

transient faults, as it is not necessary to determine the source of error. 

Processor failure can occur on a uniprocessor or multiprocessor system uniprocessor system, 

no measures can be taken to recover the system from the fault. But in the case of multiple processes, the 

execution of time-critical tasks can be guaranteed by achieving hardware redundancy, that is, using backup units 

that can perform the tasks of a faulty processor. The process of performing reliability tests on computer 

architecture and true multiprocessor systems is complicated by timing and energy restrictions. Therefore, many 

studies use simulation as a tool to perform reliability studies on these systems [8]-[10].  

Most modern multiprocessor systems are often so complex that the validation of the design concept 

systems is only possible through modeling techniques such as simulations. Many analytical solution methods 

require complex models to conform to certain standards, their solutions may require a highly capable 

computer system. While the simulation does not contain such complications. This is the main reason for 

using simulation as a popular solution method despite the development of new analytical methods. 

One of the most popular discrete event simulation programs used in research, is the 

SimEvents/Stateflow program provided by the MATLAB platform [11]. This emulator is capable of configuring 

multiple processor systems with a variety of implementation policies. In this paper, a discrete event simulation 

based on MATLAB’s SimEvents/Stateflow was used to provide a robust and scalable, fault-tolerant, 

multiprocessor model for evaluation purposes. The system can reconfigure. itself dynamically when a failure 

occurs in one or more of its processors. The proposed system is an expandable multiprocessor system that 

relies on a pipeline architecture based on input/output (I/O) ports for interprocessor communications. This 

architecture (processors connected in a pipeline) is well suited to the streaming signal processing and data flow 

nature of multimedia applications [12], [13]. The main design goal is to simple and effective inter-processor 

communication model with the possibility of unlimited expansion along with fault tolerance. The proposed 

system does not require a separate algorithm to detect faulty processors. It can detect the fault implicitly 

during message transfer protocol, that reduces the extra time caused by the fault detection algorithms. 
 

 

2. LITERATURE REVIEW 

Explaining simulation-based approaches for designing and verifying multiprocessor systems have 

been proposed in [8], [14]-[20]. In the field of a fault-tolerant multiprocessor systems, Yuan et al. [21] 

proposes an evolutionary algorithm (EA)-based design space exploration (DSE) method for the design of 

fault-tolerant multiprocessor systems. The main goals of this paper include task mapping and design space of 

task hardening. However, the limitations of this work are considering only replicating a task or re-executing a 

task. 

Aliee and Zarandi [22] present a dynamically scheduled pipeline architecture for chip 

multiprocessors (CMPs). Their technique exploits existing simultaneous multithreading, superscalar chip 
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multiprocessors’ redundancy to provide low-overhead, and broad coverage of faults. However, these benefits 

come at the cost of performance degradation for processors. The goal of the work is to enhance the reliability 

of the system without adding extra redundancy for fault tolerance, to detect both transient and permanent 

faults, and to recover existing faults. Baek and Lee [23] propose a fault-tolerant scheme that can be 

incorporated with real-time scheduling algorithms on multiprocessor systems to improve the reliability of the 

target system without a tradeoff against schedulability. They applied this fault-tolerant scheme to existing 

fixed-priority scheduling and earliest deadline zero-laxity scheduling, and they claimed that it enhances 

reliability without schedulability loss. 

A fault recovery mechanism named fault-tolerant fair scheduler (FT-FS), has been proposed by 

Nair et al. [24] for real-time multiprocessor systems scheduled using the proportional fair scheduling technique. 

The proposed scheduler tries to minimize rejections of critical tasks, during transient overloads within recovery 

intervals using two features namely, weight donation and post rejection backtracking. The objective is to 

maximize the possibility of keeping the system fail-operational even in the occurrence of faults. 

Al-Allaf and Nayif [25] proposed architecture of a multiprocessing system that uses TMS320C40 

digital signal processors. The architecture uses hypercube topology and redundancy to address faults in the 

system. Field programmable gate array (FPGA) circuits were used to diagnose faults, reconfigure. and extend 

the system. Xilinx foundation F2.1i simulator was used to simulate communications between processors and 

the fault detection mechanism. 

A real-time multiprocessor system model has been proposed in [26] that tolerates faults using 

redundancy and can handle the extra workload at no additional cost. The paper presents the design of a 

general simulator called FaRReTSim, to perform intensive real-time model simulation studies under fault and 

fault-free conditions. On another side, advances in technology have allowed multiple processing cores to be 

executed on the same chip. Many researchers have taken to fault tolerance (FT) techniques to increase 

reliability and reduce the likelihood of these systems failing [27]-[30]. 
 

 

3. THE PROPOSED ARCHITECTURE AND INTERPROCESSOR COMMUNICATION SCHEME 

The proposed system topology consists of tightly coupled processing nodes (P) arranged in a 

pipeline architecture. A node can communicate with its next neighbors through 8-bit I/O ports. These 

connections are organized so that each processor can communicate directly with three processors of the next 

or preceding it, as shown in Figure 2. This arrangement can keep the pipeline operational even in the 

occurrence of failure of a maximum of two successive processors or multiple non-contiguous processors 

depending on the number of backup processors available. The architecture can be expanded by adding more 

core processors and thus extending the reliability of the system in handling faults by adding more backup 

processors. All processing nodes have the same internal structure except for the last two processors, as they 

differ from the rest in the number of I/O ports. 
 

 

 
 

Figure 2. The architecture of the proposed multiprocessor system 
 
 

Each link shown in Figure 2 consists of three signals: 

− 8-bit channel (𝑐ℎ𝑛). 

− 1-bit channel request (𝑅𝑄_𝑐ℎ𝑛). 

− 1-bit channel acknowledge (𝐴𝐾_𝑐ℎ𝑛). 

Where 𝑛 is the channel number. 

Every processor contains 3 input channels for communication with the 3 preceding processors and 3 

output channels for communication with the 3 subsequent processors. Figure 3 shows the scheduling scheme 

for implementing the 1024-point decimation in time-fast Fourier transform (DIT-FFT) algorithm as a 

benchmark problem to evaluate system performance. In this figure, there is a series of ten stages that are 

executed on ten processors (fault-free system) each processor executing one stage. 
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Figure 3. Scheduling 1024-point FFT algorithm in the proposed system 

 

 

The communications between adjacent processors are done using the request-response protocol. 

When a processor wants to communicate with the neighboring processor, it sends a connection request and 

must wait for approval by receiving a response. To obtain high system performance, tasks must be scheduled 

between processors so that the task execution time is close or equal to reduce request-response time (i.e., 

reduce inter-processor communication overhead). 

The primary concern for designing this system is to use a method to bypass permanent processor 

failures. The number of faults that can be resolved without affecting the implementation of the required task 

depends on the number of available backup processors. In this system, two backup processors were used, so 

the system can continue executing the task even when two processors malfunction. Once the malfunction is 

discovered, an appropriate mechanism is initiated to bypass the faulty processor and start the communication 

with the next processor to perform the task of the faulty processor. 

 

 

4. MATLAB SIMULATION MODEL  

Figure 4 shows the simulation model for the proposed system, implemented using 

Stateflow/SimEvents in the MATLAB program. The unit delay block shown in Figure 4 is used with every 

𝐴𝐾_𝐶𝐻𝑛 signal to hold and delay its input by the sample period we specified (one sample period delay). This 

block is corresponding to the z-1 discrete-time operator. It provides a mechanism for resampling the signal at a 

different rate. Our model contains multi-rate transitions, then we must add these blocks between the slow-to-fast 

transitions. 

 

4.1.  Model assumptions 

The proposed model contains 10 processors and two backup processors, each processor contains 

three input ports and three output ports. The malfunction is in the entire processor, i.e., as a processing unit 

and I/O ports, in order not to cause noticeable degradation in system performance, the number of failed 

processors should not exceed one or two. However, the number of failed processors can increase as the 

number of backup processors increases. Failure may occur on two adjacent or not adjacent processors. When 

any processor fails, tasks are shifted forward, meaning that the task of the idle processor is transferred to the 

next operated processor, and so on for the rest of the processors. Every processor (𝑃𝑛) has three I/O ports, 

one is the primary I/O port for communication with the directly adjacent processors (𝑃𝑛 + 1). While the 

other two are used as bypass links to communicate with the more distant processors (𝑃𝑛 + 2, and 𝑃𝑛 + 3), 

each I/O port is 8-bit wide. The I/O ports in every processor and the control signal associated with them are: 

a) Ports named (𝑐ℎ1, 𝑐ℎ2, and 𝑐ℎ3) are used as input ports to receive data from the preceding processor, 

𝑃𝑛 − 1, 𝑃𝑛 − 2, and 𝑃𝑛 − 3, respectively. 

b) The channel ReQuest signals 𝑅𝑄_𝑐ℎ1, 𝑅𝑄_𝑐ℎ2, and 𝑅𝑄_𝑐ℎ3 are associated with the input ports and are 

used to receive the request to send data from the preceding processors. While the acknowledgment signals 

𝐴𝐾_𝑐ℎ1, 𝐴𝐾_𝑐ℎ2, and 𝐴𝐾_𝑐ℎ3 are associated also with the input ports and are used to send the 

acknowledgment signals to the preceding processor. 

c) Ports named (𝑐ℎ4, 𝑐ℎ5, and 𝑐ℎ6) are used as output ports to send data to the next processors, 𝑃𝑛 + 1, 

𝑃𝑛 + 2, and 𝑃𝑛 + 3, respectively. 

d) The ReQuest signals 𝑅𝑄_𝑐ℎ4, 𝑅𝑄_𝑐ℎ5, and 𝑅𝑄_𝑐ℎ6 are associated with the output ports and are used to 

send the request signal to send data to the next processors. While the acknowledgment signals 𝐴𝐾_𝑐ℎ4, 

𝐴𝐾_𝑐ℎ5, and 𝐴𝐾_𝑐ℎ6 are associated also with the output ports and are used to receive the 

acknowledgment signals from the next processors. 
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4.2.  Modeling the processor elements 

The Processing elements represent the processors of a multiprocessor system. As mentioned earlier, 

twelve processing elements were used, including backup processing elements. The simulation models for the 

system elements can be divided into five part: 

a) Processor elements (P3-P9). 

b) Processor elements (P1-P2). 

c) Processor elements (P10-BP1). 

d) Processor element (BP2). 

e) Data distributer (DS). 
 

 

 
 

Figure 4. Simulation model for the proposed system 
 

 

4.2.1. Processor elements (P3-P9) 

Processors P3 to P9 have the same simulation model as in Figure 5 using Stateflow/SimEvents 

program. The model consists of 21 states divided into the following groups: states in group-a are used to 

receive data transmission request signals (𝑅𝑄_𝑐ℎ𝑛 signals) from the preceding processors. In the beginning, 

the processor (let’s say processor number 3) checks the data transmission request signal (𝑅𝑄_𝑐ℎ1) sent by the 

previous processor (i.e., processor number -2) connected to it via channel -1. If there is no response (i.e., 

𝑅𝑄 − 𝑐ℎ1 = 0) then wait for a time (1 ms is chosen, it is linked to the variable 𝑤1 so that the simulation 

result is ready at that step) and then the request signal (𝑅𝑄_𝑐ℎ1) is rechecked. 
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This signal is re-checked many times (depending on the value of the variable 𝑤1) before it is 

considered that the processor connected to channel-1 is faulty. At this point, it goes to the farthest processor 

(i.e., processor -1) to check the data transmission request signal 𝑅𝑄_𝑐ℎ2. The same previous procedure is 

repeated in the process of examining the data transmission request signal, but with a different number of waiting 

times (𝑤1 is equal to 20 for the processor P3 shown in Figure 6). If there is no response, the processor P3 

transfers to the remote processor, in this case, will be the DS data distributor with the different value of the 

variable 𝑤1 which will be set in this case to 24. The value of 𝑤1 in the delay loop is an important issue in 

this simulation. It was determined according to the requirements and mechanism of the simulation program, 

as well as based on the program settings, so that the simulation result in that step is ready, and it changes 

from one processor to another. Also, these values can change if the emulator settings are changed. As its 

value changes (incremental time accumulation) as the simulation stages progress. It also depends on the step 

size of the simulation software that represents the base sample time of the model, and it ensures that the 

simulator solver will take a step every sample time the model specifies.  

 

 

 
 

Figure 5. Stateflow diagram of the processors P3-P9 

 

 

The states in group-b and c are used to initiate the values of acknowledging 𝐴𝐾_𝑐ℎ𝑛 signal and data 

channel 𝑐ℎ𝑛 depending on the active processor (i.e., active 𝑅𝑄_𝑐ℎ𝑛) from which the data will be received. 

States in group-d are used to call the MATLAB function 𝐷𝐼𝑇_𝐹𝐹𝑇 to execute one stage of the algorithm 

(depending on the location of the processor) using the data receiver from the preceding processor. In group-e, 

the states are used to send the request signal 𝑅𝑄_𝑐ℎ𝑛 (and receive the acknowledge signal 𝐴𝐾_𝑐ℎ𝑛) to (from) 

the next processor. As in group-a states, this group uses the loops and delay times to determine the next 

processor which is P4 or P5 if P4 failed, or P6 if P4 and P5 failed. The last group of states (group-f) is used to 

send the processed data to the channel of the next active processor. Also, this group sends a “previous_stage” 

signal which specifies the number of the last executed stage. This number is used by the next active processor 

to determine the next stage of the algorithm to be performed. In addition to the aforementioned state groups, 

Figure 5 contains some other states, which are state 𝑥1 which is used as an initial state, and the 𝑥5 and 𝑥15 

states where the system switches to when a failure occurs with more than two consecutive processors, previous 

or later of the current processor. Finally, there is a MATLAB function that is called by states of group f. 
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4.2.2. Processor elements (P1-P2) 

The Stateflow diagram of the processors P1 and P2 is the same as the Stateflow diagram of the 

processors P3-P9 except that in P1 it has one Receiving reQuest (𝑅𝑄_𝑐ℎ1) and one data receiving channel 

(𝑐ℎ1) coming from the data distributor. While P2 has two data receiving requests (𝑅𝑄_𝑐ℎ1 and 𝑅𝑄_𝑐ℎ2) and 

two data transmission channels (𝑐ℎ1 and 𝑐ℎ2) that are connected to the P1 processor and the data distributor. 

Therefore, the states groups a, b, c, and d deal with one channel (𝑐ℎ1) concerning P1 and with two channels 

(𝑐ℎ1 and 𝑐ℎ2) concerning P2. As in P3-P9 processors, the group-e in P1 and P2, deals with three output 

channels (𝑐ℎ4, 𝑐ℎ5, and 𝑐ℎ6). 
 

4.2.3. Processor elements (P10-BP1) 

These processors have the same Stateflow diagram as processors 3-9, except for the last group (e). 

Whereas, processor 10 contains two output channels which are (𝑐ℎ4 and 𝑐ℎ5) connecting it with the 

processor BP1 and BP2. While processor BP1 contains one output channel (which is 𝑐ℎ4) connecting it with 

the processor BP2. 
 

4.2.4. Processor element (BP2) 

BP2 has the same Stateflow diagram as P3-P9 except that does not have output communication 

ports. Since it is the last processor element. It contains only one output data channel to output the final result.  
 

4.2.5. Data distributor 

The data distributor is responsible for distributing the data in blocks, each block consisting of 1024 

points. It does not have an input communication channel, only has three communication data channels for 

communication with the next processors (P1, P2, and P3) as shown in Figure 6. The MATLAB function 

𝑑𝑎𝑡𝑎_𝑔𝑒𝑛 in this model is responsible to generate a block of 1024 points consciously (using the sine function) 

to perform 1024-point DIT-FFT algorithm. In radix-2 the DIT-FFT algorithm, the input is in bit-reversed order 

(hence decimation-in-time) and the output is in order. The bit-reversal process is performed by the data 

distributor unit. 

The 𝑠𝑦𝑠𝑡𝑒𝑚_𝑓𝑎𝑖𝑙 signals coming from all processors are entered to OR operation in data distributor 

and the output of OR operation is output from DS unit as signal 𝐹 (system failure). If any of the 𝑠𝑦𝑠𝑡𝑒𝑚_𝑓𝑎𝑖𝑙 
signals is set to one (meaning more than two adjacent processors are failed) then the output 𝐹 becomes 1. 

This output is connected to the block named “stop” which is used to stop the simulation when the input is 

non-zero. 
 

 

 
 

Figure 6. Stateflow diagram of the data distributor 
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5. PERFORMANCE EVALUATION AND RESULTS  

The integrity of the proposed model has been examined by executing a radix-2 decimation in time (DIT) 

1024-point FFT algorithm. To schedule the algorithm on the proposed multiprocessor system, we assumed the 

existence of a circuit called the data distributor (see Figure 3). The task of this circuit is to distribute the data 

points in the form of blocks, each block consisting of 1024 to be executed through ten stages, each processor 

executes one stage. Several scenarios will be studied to verify the ability of the system to handle 

malfunctions at the processor level. The following scenarios are implemented: 

a) No processor malfunctioning (system performance in the extreme case). 

b) In the event of a malfunction in one or two processors (contiguous or non-contiguous), the system can 

under these circumstances address the faults, reconfigure the system and then continue to work with 

almost the same efficiency. 

c) When a malfunction occurs in more than two processors (provided that the number of failed processors 

does not exceed two contiguous), the system can continue to work, but this will affect the efficiency of 

the system’s performance. Here, the remaining stages of the algorithm will be carried over to the last 

processor (BP2) for implementation. BP2 can know the number of remaining stages by checking the 

“𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠𝑡𝑎𝑔𝑒” signal value. 

d) When a malfunction occurs in more than two neighboring processors, the current system fails and stops 

working. Generally, it depends on the number of backup processors used. Figure 7 shows the 

configuration of the system under different scenarios. Where Figure 7(a) represents a fault-free case, 

Figure 7(b) one fault case, Figure 7(c) two adjacent faults case, and Figure 7(d) two non-adjacent faults case. 

 

 

 
 

  

(a) (b) 
  

  

 

 
  

(c) (d) 

  

Figure 7. Shows system configuration under different scenarios: (a) fault free, (b) one fault, (c) two adjacent 

faults, and (d) two non-adjacent faults 

 

 

When P1 completes the first stage, the results are sent to the next processor to complete the second 

stage of the algorithm and at the same time, a new block of points is received from the data distributor to start 

implementing the first stage of the new block, and so on. We implement the proposed framework using 

MATLAB on a 2.30 GHz 32-bit Windows 10 machine with 4 GB RAM. Matlab is not a real-time platform, 

so estimating the execution time of the proposed model under different scenarios using commands like Tic / Toc 

can give us a different value every time for various reasons, such as processor activity. However, the difference 

in the execution time of the model between the absence of a fault and the failure of one or more processors 

will be only in the reconfiguration overhead time. This time will have a slight impact (negligible) on the 

performance of the system for the following reasons: 

− The overhead time will be small compared to the execution time of the algorithm. 

− The fault detection procedure is only executed while the fault is occurring. 

− Due to the distributing processing nature, the proposed architecture can handle multiple faults which 

occur at the same time which hides the overload caused by the fault detection protocol and the system 

reconfiguration.  

Also, the overhead time caused by the reconfiguration is independent of the system size. Figure 8 shows 

the magnitude and phase response due to the implementation 1024-point FFT algorithm of the sine function in the 

simulated system obtained from the system in the absence of a failure, or a failure of one or two processors. 

Another situation to consider is that the efficiency of a multiprocessor system using a pipeline architecture is 

greatly influenced by the task scheduling process and the waiting time between the processors. Whenever the task 

processing times in system processors are equal to or close to that, the better the system efficiency. Conversely, the 

greater the difference between task processing times in different processors, the lower the system’s performance. 
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The scheme presented in this paper achieved fault tolerance by effectively exploiting the redundant resources in 

the system, namely backup processors. The proposed system is characterized by the absence of centralized 

control to discover malfunctions and deal with the rescheduling of tasks, as this process is done in a 

decentralized manner without the need for additional resources. 
 

 

 
 

Figure 8. Magnitude and phase response of implementing 1024-point DIT-FFT algorithm of the sine function 
 

 

6. CONCLUSION  

Simulation of discrete events is an important way to determine the performance and reliability of 

many systems, including multiprocessor systems. This paper presents a fault-tolerant multiprocessor 

architecture suitable for applications requiring a high degree of reliability. The proposed system architecture 

meets the following requirements. 

The ability to deal with processor failures by allocating additional processors as backup processors to 

be integrated into the system when the failure occurs. The proposed system utilizes the pipeline structure with 

the task forward-moving mechanism when the fault occurs to cross the defective processor. The proposed 

architecture is scalable, as the number of basic and backup processors can be increased. The proposed 

architecture relies on the use of I/O ports as an easy and cost-effective means of communication between 

processors. The proposed model was validated by implementing the FFT algorithm as a benchmark tool for 

the validity and effectiveness of the design and the mechanism for overcoming failure in one or more 

processors with minimal overhead.  
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