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 In mitigating the peak demand, the energy authority in Malaysia has 

introduced the enhanced time of use (EToU). However, the number of 

participants joining the programs is less than expected. Due to that reason, 

this study investigated the investment benefit in terms of electricity cost 

reduction when consumers subscribe to the EToU tariff scheme. 

The significant consumers from industrial tariff types have been focused on 

where the load profiles were collected from the incoming providers’ power 

stations. Meanwhile, ant colony optimization (ACO) and particle swarm 

optimization (PSO) are applied to optimize the load profiles reflecting EToU 

tariff prices. The proposed method had shown a reduction in electricity cost, 

and the most significant performance has been recorded congruently. For a 

maximum 30% load adjustment using ACO optimization, the electricity 

costs have been decreased by 10% (D type of tariff), 16% (E1 type of tariff), 

9% (E2 kind of tariff), and 1.13% (E3 type of tariff) when compared to the 

existing conventional tariff. The cost-benefit of the EToU tariff switching 

has been identified where the simple payback period (SPP) is below one year 

for all the industrial types of consumers. 
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1. INTRODUCTION 

The increasing electricity demand contributes to energy generation to increase CO2 gas emissions. 

In recent data founding, it was reported that 84% of CO2 emissions are contributed by industrial/manufacturing 

activities [1], [2]. Since the coronavirus disease 2019 (COVID-19) pandemic promotes lockdown among 

energy consumers, CO2 emissions are reduced in line with the energy demand decreased from the industry 

sectors. However, the long-term and economic benefits in terms of demand-side management (DSM) should 

be considered so that future planning would consider the economic and financial aspects of many related 

consumers programs towards load management [3]. Thus, DSM programs should be introduced to reduce the 

impact of peak demand and the power system generation tension; the demand response program and energy 

efficiency for the post pandemic COVID-19 [4]. In 2022, there has been an upsurge in electricity peak 

demand in Malaysia since the colossal development and industrial process are restarted to operate where 

electricity tariff switching is available. Since 1995, the government has purposely implemented the time of 

use (ToU) tariff scheme to commercial and industrial consumers by promoting the load shifting where the 

energy price for off-peak hours is cheaper for about 20% compared to the flat tariff price. However, the ToU 

https://creativecommons.org/licenses/by-sa/4.0/
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scheme has a maximum demand charge that is still high compared to the conventional flat tariff. Concerning 

the issue, Tenaga Nasional Berhad (TNB) has introduced a more advanced tariff, namely the enhanced 

time of used (EToU) tariff scheme, in 2016. The EToU tariff scheme offers a more flexible tariff time zone 

with three energy prices for peak, off-peak, and mid-peak and two prices for maximum demand in peak 

and mid-peak allocation. Nevertheless, it was reported that only 1% of the consumers joined the scheme. 

Meanwhile, the others refused to participate due to being less confident to apply the load management 

strategies [5]. It is also related to the provider’s less promotion where the consumers have little knowledge of 

how to take load management action.  

Since there, the researchers have investigated the issues and tried to help the consumers by proposing 

the techniques required to enjoy cost benefits from the EToU tariff scheme. As presented in [6], [7], industrial 

and commercial consumers’ load profile was investigated to reflect the EToU tariff scheme compared to the ToU 

tariff. As for standard load shifting implementation, the consumers need to adjust the load for about ~30 to 

70% to enjoy energy consumption cost reduction compared to flat and ToU tariff schemes. Since the 

application of the evolutionary algorithm is excellent in solving many complex problems, especially in power 

system study, Azman et al. [7] have promoted the evolutionary algorithm (EA) to find the optimum load 

profile for specific commercial consumers by adopting EToU tariff prices. The energy consumption cost was 

reduced at all six-segmentation zones of the peak, mid-peak, and off-peak when the load adjustment was put 

for about 50%. The optimum load management weightage differed depending on the consumers’ load profile 

and the business activities dealing with the cost reduction under the EToU tariff scheme, as explained in [8]. 

The authors have adopted particle swarm optimization (PSO) to manage the simultaneous DSM strategies 

formulation (peak clipping, valley filling, and load shifting) to deal with six-segments of EToU tariff price.  

In conjution to the DSM technique application to deal with ToU tariff design around the world, 

Rehman et al. [9] and Makroum et al. [10] has applied the load shifting from high-peak hours to low-peak 

hours concurrently with the adoption of optimization algorithms, namely bacterial foraging optimization 

(BFO) and genetic algorithm (GA). As the application of the optimization algorithm is superior results, 

analysis of the effect of ToU tariff and maximum demand on the power exchange of the power grid can be 

done strategically [11], [12]. Ultimately, in [13], the optimization algorithm and optimal DSM strategy 

formulation to reflect the EToU tariff scheme have been used to optimize the load profile to reduce the 

electricity price and maximum demand in peninsular Malaysia. Meanwhile, Shaari et al. [14] use EToU tariff 

and ToU tariff prices for a chiller plant operation to optimize the cost of the process. As the significant 

energy user in most commercial buildings, the chiller plant operation electricity cost optimization would 

benefit private consumers and government agencies.  

In the EToU tariff scheme study, the optimization algorithm’s application was less focused on past 

studies, mainly for implementing the optimal DSM strategy to the specific consumers. Meanwhile, the cost-benefit 

of the investment to switch the conventional tariff to EToU tariff has also less been presented in the area of study. 

Therefore, this study proposed an investigation of the cost-benefit under the EToU tariff scheme, which 

applies the ant colony optimization (ACO) and PSO algorithms while reflecting load management strategy 

under the demand response program in Malaysia. ACO algorithm is famously known to be a probabilistic 

algorithm used to find an approximately optimal solution through an ant colony-inspired process [15]. 

Artificial ants or simulation agents search for the most straightforward solution by moving through parameter 

space. The agents record their location and solutions that will later be spread to other agents to find the best 

solutions among all of the information gathered [16]. ACO is selected in this study because it performs a 

model-based search and is similar to estimating distribution algorithm [17]. In conjunction with that, the PSO 

introduced by Kennedy and Eberhart [18] will be the baseline performance algorithm to compare with ACO 

algorithm performance. Those comparisons purposely test the load profile from all categories under the 

industrial tariff offered by TNB in peninsular Malaysia. Since the simultaneously DSM strategies have been 

applied by previous studies for commercial buildings, investigating appropriateness to industrial consumers is 

essential to prove that the EToU tariff scheme could be used by massive segmentation of industrial consumers. 

Hence, the paper’s arrangement is considered as: section 2 presents the formulation and tariff structure 

methodology while covering the implementation of the PSO and ACO algorithms. Next, the simulation case 

study, results, and discussion are presented in section 3. Meanwhile, section 4 concludes the findings and 

recommendations for future research. 
 

 

2. RESEARCH METHOD  

2.1.  Load management formulation 

EToU tariff is in the pricing unit. The simulation aims to optimize the use of electricity and 

rearrange the load arrangement of the manufacturing’s factory. The formulation was written in (1). 
 

∆𝐸𝑇𝑜𝑈𝑒𝐶𝑜𝑠𝑡 + 𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐶𝑜𝑠𝑡 (1) 
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∆𝐸𝑇𝑜𝑈𝑒𝐶𝑜𝑠𝑡 is the electricity cost of wanted load cost after applying load management strategies in regards 

with the six-time segmentation of EToU and are written in (2). Meanwhile, 𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐶𝑜𝑠𝑡  is the variable to 

𝐸𝑇𝑜𝑈𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 𝑆𝑎𝑣𝑖𝑛𝑔. 
 

∆𝐸𝑇𝑜𝑈𝑒𝐶𝑜𝑠𝑡 = (∑ ∆𝑃𝑜𝑝 × 𝑇𝑃𝑜𝑝) + (∑ ∆𝑃𝑚𝑝1 × 𝑇𝑃𝑚𝑝) +𝑁=3
𝑡

𝑁=10
𝑡 (∑ ∆𝑃𝑝1 × 𝑇𝑃𝑝) +𝑁=1

𝑡   

(∑ ∆𝑃𝑚𝑝2 × 𝑇𝑃𝑚𝑝) +𝑁=2
𝑡 (∑ ∆𝑃𝑝2 × 𝑇𝑃𝑝) +𝑁=3

𝑡 (∑ ∆𝑃𝑚𝑝3 × 𝑇𝑃𝑚𝑝)𝑁=5
𝑡  (2) 

 

Where, ∆𝑃𝑜𝑝 is the changes of off-peak desired load curve with the time change of 𝑁 = 10. ∆𝑃𝑚𝑝1, ∆𝑃𝑚𝑝2,

∆𝑃𝑚𝑝3 Accordingly, the changes of the mid-peak desired load curve with the time change, 𝑁 = 3, 2 and 5. 

∆𝑃𝑝1 and ∆𝑃𝑝2 are the differences of peak desired load curve with time change 𝑁 = 1 and 𝑁 = 3 and 𝑇𝑃𝑜𝑝 is 

the EToU tariff rate for off-peak time zone, 𝑇𝑃𝑚𝑝 is the EToU tariff rate for mid-peak time zone, 𝑇𝑃𝑝 is the 

EToU tariff rate for peak time zone. Meanwhile, 𝑡 represents the time step for each segmentation of EToU 

block for peak, off-peak and mid-peak. The general equation for overall solutions of LSM strategies used in 

this study which is valley filling (𝑉𝐹), peak clipping (𝑃𝐶) and load shifting (𝐿𝑆) as written in (3). 
 

∆𝑃𝑂𝑃,𝑀𝑃1,𝑃1,𝑀𝑃2,𝑃2,𝑀𝑃3 
𝐺𝑒𝑛𝑒𝑟𝑎𝑙  =  ∑ (∆𝑃𝑡𝑠,𝑖

𝑉𝐹
𝑡𝑠,𝑖 × 𝑊𝑉𝐹) + (∆𝑃𝑡𝑠,𝑖

𝑃𝐶 × 𝑊𝑃𝐶) + (∆𝑃𝑡𝑠,𝑖
𝐿𝑆 × 𝑊𝐿𝑆) (3) 

 

Where, ∆𝑃𝑡𝑠,𝑖
𝑉𝐹 , ∆𝑃𝑡𝑠,𝑖

𝑃𝐶  and ∆𝑃𝑡𝑠,𝑖
𝐿𝑆  are the changing quantity of wanted load of 𝑉𝐹, 𝑃𝐶 and 𝐿𝑆 strategies at 

random load (𝑖) in time segmentation (𝑡𝑠) respectively. Random load setting selection (𝑖) for its upper and 

lower bound is set as in (4) to reflect controlled apportionment accordingly. 
 

0.005 ≤ 𝑖 ≤ 0.30 (4) 
 

𝑊𝑉𝐹, 𝑊𝑃𝐶 and 𝑊𝐿𝑆 are the weightage of load apportioning of DSM strategies to be used in every single load 

profile generated. There are several constraints of DSM strategies that must be set up in this project which are: 

1) 𝑉𝐹 constraints 

∆𝑃𝑡𝑠,𝑖
𝑉𝐹  is chosen during time segmentation with low quantity of base load price. The (𝑡𝑠) alteration of 

𝑉𝐹 selection: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑 𝑝𝑟𝑖𝑐𝑒 > ∆𝑃𝑡𝑠,𝑖
𝑉𝐹 > 𝑀𝑖𝑛 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑝𝑟𝑖𝑐𝑒 (5) 

 

2) 𝑃𝐶 constraints 

∆𝑃𝑡𝑠,𝑖
𝑃𝐶  is chosen during two biggest price of time segmentation loads as well as where the location of the 

maximum demand where (𝑡𝑠) alteration: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑 𝑝𝑟𝑖𝑐𝑒 > ∆𝑃𝑡𝑠,𝑖
𝑃𝐶 > 𝑀𝑎𝑥 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑝𝑟𝑖𝑐𝑒  (6) 

 

3) 𝐿𝑆 constraint 

After 𝑉𝐹 and 𝑃𝐶 selection have completed, 𝐿𝑆 is the last one, so that the rest of the segmentations will 

be performed by 𝐿𝑆. The proposed 𝐿𝑆 procedure process is presented in (7), (8), and (9) accordingly. 
 

∆𝑃𝑡𝑠,𝑖
𝐿𝑆 ≅ ∆𝑍𝑡𝑠,𝑖

𝑠ℎ𝑖𝑓𝑡
 (7) 

 

∆𝑍𝑡𝑠,𝑖
𝑠ℎ𝑖𝑓𝑡 𝑑𝑜𝑤𝑛

= (∆𝑍𝑢𝑝
𝑠ℎ𝑖𝑓𝑡

− ((∆𝑍𝑢𝑝
𝑠ℎ𝑖𝑓𝑡

− ∆𝑍𝑑𝑜𝑤𝑛
𝑠ℎ𝑖𝑓𝑡

) × 𝜔)) (8) 

 

∆𝑍𝑡𝑠,𝑖
𝑠ℎ𝑖𝑓𝑡 𝑢𝑝

= (∆𝑍𝑢𝑝
𝑠ℎ𝑖𝑓𝑡

− ((∆𝑍𝑢𝑝
𝑠ℎ𝑖𝑓𝑡

+ ∆𝑍𝑑𝑜𝑤𝑛
𝑠ℎ𝑖𝑓𝑡

) × 𝜔)) (9) 

 

Where, ∆𝑍𝑑𝑜𝑤𝑛
𝑠ℎ𝑖𝑓𝑡

 is the load decrease changes at particular time segmentation (𝑡𝑠) for the load, 𝑖. ∆𝑍𝑢𝑝
𝑠ℎ𝑖𝑓𝑡

 is the 

load increase changes at particular time segmentation (𝑡𝑠) for the load, 𝑖. The 𝜔 is the weightage of load randomly 

decreasing and increasing at lower and upper bound load setting sets in (4). 

4) Optimal maximum demand (𝑀𝐷) selection constraint 

The 𝑀𝐷 selection respective to charge of 𝑀𝐷 is summarize in (10) and (11) meanwhile, the optimum 

𝑀𝐷 charge obtained through selection of the combination both mid-peak and peak is shown in (12). 
 

𝑀𝐷𝑀𝑃
𝑐𝑜𝑠𝑡 = 𝑀𝑎𝑥[𝐿𝑇2; 𝐿𝑇4; 𝐿𝑇6] × 𝑀𝐷𝑀𝑃

𝑇𝑃  (10) 
 

𝑀𝐷𝑃
𝑐𝑜𝑠𝑡 = 𝑀𝑎𝑥[𝐿𝑇3; 𝐿𝑇5] × 𝑀𝐷𝑃

𝑇𝑃 (11) 
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𝑀𝐷𝑃
𝑐𝑜𝑠𝑡 ≥ 𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚

𝐶𝑜𝑠𝑡 = 𝑀𝐷𝑀𝑃
𝑐𝑜𝑠𝑡  (12) 

 

Where, 𝑀𝐷𝑀𝑃
𝑐𝑜𝑠𝑡  is the ideal power load determination at mid-peak area and 𝑀𝐷𝑃

𝑐𝑜𝑠𝑡  is the ideal power load 

determination at peak area. The 𝐿𝑇𝑁 is the determined power load for number 𝑛 at specific time segmentation (𝑡𝑠). 

Meanwhile, 𝑀𝐷𝑀𝑃
𝑇𝑃  and 𝑀𝐷𝑃

𝑇𝑃 are the charge of MD during mid-peak and peak. 

5) Total energy constraint 

Total energy before and after the optimization through the process of DSM strategies should not exceed 

± 5%. In (13) is the constraints of six-time segmentation for total energy consumption (kWh) before and 

after optimization. 
 

∑ 𝐸𝑇 ≅ ∑ 𝐸′
𝑇 (13) 

 

6) Load factor index (𝐿𝐹𝐼) written in (14) is used as verification for load profile improvement that is based 

on previous optimum formulation and constraints. 
 

𝐿𝐹𝐼 =
∑ 𝐸𝑇𝑆𝑛

𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚
𝑘𝑊 × 𝑑𝑎𝑦× 𝑡

  (14) 

 

Where, 𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚
𝑘𝑊  is the 𝑀𝐷 optimum selection in kW at peak or mid-peak zones, ∑ 𝐸𝑇𝑆𝑛 is the total 

electricity consumption in kW for total n time segmentations, 𝑡 is the electricity usage time. In this study, the 

ACO and PSO has been applied to find the total cost-benefit for the appropriate load profiles of several types 

of consumers from a variety of tariff under ToU scheme. The application of both algorithms is describing in 

the following sections. 
 

2.2.  Ant colony optimization 

Ant colony optimization algorithm is an optimization technique used to solve problems through 

graphs. This optimization method is developed based on the behavior of a colony of ants. The paradigm used 

in this optimization is based on the communication of biological ants through pheromone-based 

communication [19], [20]. The ants travel in search of food and leave trails of pheromones and attract other 

ants to follow the trails, which is why ants always travel in a line. The more pheromones laid out on the path, 

more ants will follow the path, and that path will be the best solution to the problem faced. In the ACO 

algorithm, two processes are involved: generating the ants process and updating the pheromones process. A new 

set of ants will be generated in each iteration respective to the desired nodes in the first process. The probability 

of ant to select a node is expressed in (15). 
 

p(αij|Sp)=
rij
α×η

ij

β

∑ rij
α×η

ij

β
 
 (15) 

 

Where, 𝑝(𝛼𝑖𝑗|𝑆𝑝) is the probability that the limit 𝛼𝑖𝑗 will be selected in with the partial solution 𝑆𝑝, 𝛼𝑖𝑗 is the node 

𝑖 to node 𝑗 limit. The 𝑟𝑖𝑗  is the 𝛼𝑖𝑗 pheromone values. The 𝜂𝑖𝑗 is a heuristic value, or the inverse of the cost 

of going through limit 𝛼𝑖𝑗. Meanwhile, 𝛼 is the importance factor of pheromone and 𝛽 is the importance factor 

of heuristic. 

After the trails have been updated after the ants have completed their solution, updating pheromone 

process will start. In this process, the level of shifted pheromone is determined. The escalating value of pheromone 

in trails leave by ants will restrain the connecting nodes it has used. There are also cases of decreasing 

pheromone level due to evaporation process. In (16) and (17) presents the process of updating pheromone 

evaporation and reinforcement accordingly. 
 

rij=(1-ρ)×rij (16) 
 

Where, 𝑟𝑖𝑗  is the value pheromone at the limit ranging from i to j. 𝜌 is the pheromone evaporation factor 
 

rij=rij+ ∑ ∆rij (17) 
 

Where ∑ ∆𝑟𝑖𝑗  is the pheromone that will be added by an ant to the trail, that rely on the length of the trail that 

used by the ants. There four steps for ACO algorithm that has been applied to this study are: 

− Step 1: ants are initialized by setting 𝛼 = 1, 𝛽 = 0 and 𝜌 = 0.3 referred to [21], [22]and [23]. The ants 

expressing a possible initial load profile set to identify each electricity energy cost change or the 

algorithm are called nodes in 24-hour time. In the next step, the fitness values obtained is used. 
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− Step 2: the constraints is formulated, and the cost is identified. The pheromone values that have been updated 

will be engaged in the EToU formulation in form of MD cost and the DSM strategy as in (2) until (12) 

accordingly. The best cost value in the first process in ACO is chosen from the latest update of total 

electricity cost in six-time segmentation. The second process of finding the updated ants’ pheromones will 

start after the first process of ACO is done. 

− Step 3: the best cost value obtained during updating the pheromones are used to determine the best total 

energy cost covering all segmentations, while the ideal load profile represented by the best ants is 

developed. Once again, (16) and (17) are applied in this step.  

− Step 4: after the requirements for the best cost have been achieved, to satisfy the constraints, the achieved 

value of cost is concluded to be convergence value. If the condition is not yet fulfilled, the process will 

begin all over again to find the new possible setting of ants list. In this step, the contribution of electricity 

energy cost and MD cost to the assistance of LFI is generated.  
 

2.3.  Particle swarm optimization 

PSO is a method that optimizes a problem by repeatedly trying to improve already existing 

candidate solutions. This optimization algorithm is inflicted by animal movement such as a colony of bats 

and school of fish [24], [25]. PSO algorithm solves the problem by letting a swarm of particles moves freely 

inside the search space to search for the best position. Each particle updated its best positions found in the 

space attracting other particles, thus generating a swarm of particles. The equation used to find the updated 

particle’s velocity and position is (18) and (19), respectively. 
 

Vj
k+1=(ω×Vj

k)+ (C1r1(Pbestj
k -Xj

k)) + (C2r2(Gbestj
k -Xj

k)) (18) 

 

Xj
k+1=Xj

k+Vj
k+1 (19) 

 

Where, 𝑉𝑗
𝑘 is the particle 𝑗 velocity in 𝑘 iteration, 𝑋𝑗

𝑘 is the particle 𝑗 position in 𝑘 iteration, and 𝜔 is the 

inertia weightage. Meanwhile, 𝑃𝑏𝑒𝑠𝑡𝑗
𝑘  is the fitness function best value that has been obtained by particle 𝑗 in 

𝑘 iteration, and 𝐺𝑏𝑒𝑠𝑡𝑗
𝑘  is the best value between the fitness values, The 𝐶1 and 𝐶2 are the constants that presenting 

weightage factor of random acceleration terms, 𝑉𝑗
𝑘+1 is the updated velocity, and 𝑋𝑗

𝑘+1 is the updated position. 

The steps used by PSO algorithm in this study to determine the optimal electricity cost is: 

− Step 1: population is initialized using daily load profile based 24-hour to represent consumers’ power 

consumption shape. A random generator in the program produces the variables throughout the system to 

evaluate the electricity usage cost for the load profile in the next step. PSO parameters like number of 

particles 𝑁, weighting factor, 𝐶1 and 𝐶2, and maximum number of iterations are initialized. The constant 

parameters such as the social and cognitive coefficients were set at 1.0, and the initial weight coefficient 

was set at 0.2. The maximum inertia, minimum inertia, and the number of iterations were set at 0.9, 0.1, 

and 1000. Optimization is conserves and all constraints in (2) until (14) are applied to achieve the ideal 

electricity usage cost. 

− Step 2: calculation of fitness. An initial population of particles that have random positions and velocities 

are generated randomly. The load profile will be analyzed, the total EToU electricity energy cost and 

MD cost is calculated with (2) by using correlation from the (3), (4) and (12) at once for each particle 

that satisfy the constraints in step 1. Meanwhile, the input of calculation and constraints are used to 

calculate LFI referred to (14). 

− Step 3: determination of 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 . During the exploring phase, the two finest values are listed. 

The values recorded are correlated with the best solution that has been widen so far by each particle that 

maintain the path of its position in the space. Pbest and Gbest presenting the generation of finest EToU 

energy consumption expenses which also has contributed to generate optimum MD cost. 

− Step 4: updating velocity and position. The particles’ velocity and position are updated by applying (18) and 

(19) accordingly. The new particle’s velocity represents a load profile curve change. For the time being, 

the new particle’s position used to evaluate the total load profile in all segmentations. If the convergences will 

occur with this new position set and if the convergence is not fulfilled, the process will repeat all over again. 
 
 

3. RESULTS AND DISCUSSION  

3.1.  Case study 

The arrangement of the case study that has been set for this project is as: 

− Case 1: baseline of the flat/ToU tariff rates. 

− Case 2: EToU tariff rate energy consumption without DSM strategies and without optimization algorithms. 

− Case 3: EToU tariff rate energy consumption without DSM strategies and using optimization algorithms. 
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− Case 4: EToU tariff rate energy consumption using 10% of the DSM strategies and optimization algorithms. 

− Case 5: EToU tariff rate energy consumption using 20% of the DSM strategies and optimization algorithms. 

− Case 6: EToU tariff rate energy consumption using 30% of the DSM strategies and optimization algorithms. 

Industrial D (consumers with low voltage 415 V with flat tariff) and E1 (consumers with medium voltage 

11/33 kV with flat tariff) load profiles as the baseline; meanwhile, Industrial E2 (consumers with medium 

voltage 11/33 kV with ToU tariff) and E3 (consumers with high voltage 132 kV with ToU tariff) load 

profiles as the baseline. In addition, the load weightage of DSM strategies has been set to 10%, 20%, and 

30% as the load management weightage.  
 

3.2.  Analysis of load profile using ACO algorithm 

The output simulation of energy power consumption for all six cases using ACO is shown in Figure 1 

accordingly. Figure 1(a) shows that after implementing DSM strategies and the ACO algorithm, the power 

consumption of all four load profiles for 24-hours operation decreased. The power consumption can be seen 

falling the most at case 6 for both medium voltage consumers E1 and E2 as shown in Figure 1(b) and Figure 1(c), 

respectively. This is because most of the usage during peak hours and mid-peak hours from 8:00 am until 

21:00 pm has been reduced, which means it has been shifted to off peak hours from 10:00 pm until 7:00 am. 
 

 

  
  

(a) (b) 
  

  

  
  

(c) (d) 
 

Figure 1. ACO performance outputs: (a) industrial D type tariff consumer power consumption profiles; 

(b) industrial E1 type tariff consumer power consumption profiles; (c) industrial E2 type tariff consumer 

power consumption profiles; and (d) industrial E3 type tariff consumer power consumption profiles 
 
 

The results shown that ACO algorithm with the help of load management strategies has able to reduce 

the energy consumptions during peak hours. It reflects the load management strategies applied: load clipping, 

valley filling, and load shifting. From the Figure 1(d), it can be observed that the load shifting, and peak 

clipping strategies have successfully decreased the electricity power consumption during the peak time. 

However, meanwhile in off-peak and mid-peak, the power consumption increases due to load shifting and 

valley filling impact. It has shown that DSM strategies applied are efficient and industrial customers 

especially E3 tariff type can indeed manage their load using this weightage adjustment method. 
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3.3.  Analysis of load profile using PSO algorithm 

The output simulation of energy power consumption for all six cases using the PSO algorithm is 

shown in Figure 2. In Figure 2(a), after implementing DSM strategies and PSO algorithm, the power 

consumption for 24-hours operation was also decreasing same as ACO power consumption outputs. Industrial 

D tariff power consumptions not only decreasing during peak hours but for overall 24-hours. PSO algorithms 

are more effective in reducing the energy consumptions for medium voltage of consumers E1 and E2 

industrials tariff in the peak zones as illustrated by Figure 2(b) and Figure 2(c) accordingly. Meanwhile, 

Figure 2(d) shows the differences between the baseline of case 1 to the 30% weight arrangement of case 6 are 

significant for high voltage consumers (E3).  
 

 

  
  

(a) (b) 
  
  

  
  

(c) (d) 
 

Figure 2. PSO performance outputs: (a) industrial D type tariff consumer power consumption profiles; 

(b) industrial E1 type tariff consumer power consumption profiles; (c) industrial E2 type tariff consumer 

power consumption profiles; and (d) industrial E3 type tariff consumer power consumption profiles 
 

 

3.4.  Comparison of optimum performance 

Table 1 presents the optimization output performance for industrial D data. From the table, after 

the ACO optimization and 30% load adjustment, the energy consumption decreasing by 12%, the total cost 

decreasing by 19% and the maximum demand was shifted to mid-peak. Meanwhile, for PSO algorithm, 

the energy consumption have been reducing by 26%, the total cost decreasing by 40% and the MD also has 

been shifted to mid-peak. From the analysis, PSO has shown better performance in reducing energy 

consumption. Table 2 presents the optimization output performance for industrial E1 data. From the table, 

after the ACO optimization and 30% load adjustment, the energy consumption decreasing by 2%, the total cost 

decreasing by 16% and the maximum demand was shifted to mid-peak. Meanwhile, for the PSO algorithm, 

the energy consumption has been decreasing by 15%, the total cost decreasing by 47%, and the MD has also 

been shifted to mid-peak. It can be concluded that for the industrial E1 load profile, PSO algorithm has better 

performance in reducing the energy consumption and the overall energy cost. 

Table 3 presents the optimization output performance for industrial E2 data. From the table, after the 

optimizations of both algorithms with 30% load adjustment, there is an increment in energy consumption. 
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Still, the increment does not exceed the total energy constraint as mentioned earlier, which is ± 5%. Although 

there are increments in the total energy consumption, the total electricity cost for ACO and PSO algorithms 

decreases by 9% and 15%, respectively. Thus, the PSO algorithm reduces the total electricity cost than the 

ACO algorithm for the E2 load profile. Table 4 presents the optimization output performance for industrial E3 

data. From the table, after the optimizations of both algorithms with 30% load adjustment, there is an increment 

in energy consumption. Still, the increment does not exceed the total energy constraint as mentioned earlier, 

which is ± 5%. Therefore, although there are increments in the total energy consumption, the total electricity 

cost for ACO and PSO algorithms decreases by 1.13% and 3%, respectively.  
 
 

Table 1. Industrial D type of electricity tariff output performance for ACO and PSO algorithms 
Industrial D tariff ToU Normal EToU EToU after ACO optimization EToU after PSO optimization 

Energy consumptions (kWh) 12,336 12,336 10,880 9,295 
MD (kW) 1,072 1,072 872 835 

MD location Peak Peak Mid-peak Mid-peak 

Energy consumption cost (RM) 4,157 4,592 3,921.41 3,259.07 
MD cost 0 45,131 32,438.40 31,062 

Total electricity cost (RM) 4,157 40,539 36,359.81 34,321.07 

Normalized total electricity cost (RM) 4,157 40,539 32,723.83 24,024.75 

 
 

Table 2. Industrial E1 type of electricity tariff output performance for ACO and PSO algorithms 
Industrial E1 tariff ToU Normal EToU EToU after ACO optimization EToU after PSO optimization 

Energy consumptions (kWh) 10,231 10,231 9,983 8,680 
MD (kW) 740 740 727 631 

MD location Peak Peak Mid-peak Mid-peak 

Energy consumption cost (RM) 3,447.78 3,895.66 3,827.10 3,080.89 
MD cost 21,904 26,270 21,519.20 18,678 

Total electricity cost (RM) 25,352 30,165.70 25,346.30 21,759 

Normalized total electricity cost (RM) 25,352 30,165.70 25,346.30 15,884.07 

 

 

Table 3. Industrial E2 type of electricity tariff output performance for ACO and PSO algorithms 
Industrial E2 tariff ToU Normal EToU EToU after ACO optimization EToU after PSO optimization 

Energy consumptions (kWh) 30,181 30,181 31,178 30,448 
MD (kW) 1,412 1,412 1,387 1,302 

MD location Peak Peak Mid-peak Mid-peak 

Energy consumption cost (RM) 8,842.63 9,629.78 9,993.60 9,195.73 
MD cost 52,244 56,480 49,932 46,872 

Total electricity cost (RM) 61,086.63 66,109.78 59,925.60 56,067.73 

 
 

Table 4. Industrial E3 type of electricity tariff output performance for ACO and PSO algorithms 
Industrial E3 tariff ToU Normal EToU EToU after ACO optimization EToU after PSO optimization 

Energy consumptions (kWh) 45,773 45,773 46,478 46,294 

MD (kW) 1,914 1,914 1,886 1,879 
MD location Peak Mid-peak Mid-peak Mid-peak 

Energy consumption cost (RM) 12,833 14,457 15,863.17 12,906.55 
MD cost 67,947 66,990 72,463.60 65,765 

Total electricity cost (RM) 80,780 81,447 80,529.84 78,671.55 

 

 

3.5.  Cost-benefit 

The process to change from the previous tariff to the EToU tariff involved some investments. Table 5 

shows the items that need to be paid by customers who wish to switch to EToU tariff, including the recharge job 

order (RJO) by TNB, sub-meters installation, energy monitoring system controller, and the display unit. 

The price in the tables is referred from TNB and energy monitoring traders in Peninsular Malaysia excluding 

goods and 6% service tax. The total investments after summing all of the item costs are MYR 56,600. 

To know whether the investments made by the customers to change from previous tariff to EToU tariff is 

worth it, two calculations can be done: simple payback period and internal rate of return.  

Table 6 presents the simple payback period calculated for E1, E2, and E3 load profiles. Industrial D 

load profile is not considered because the analysis done before shows that industrial D should use the flat 

tariff to enjoy more savings. From the table, industrial E3 has the most prolonged payback period due to 

the enormous cost of electricity bills. Nevertheless, the payback period for all industrial load profiles is less 

than one year, which means customers will get back their investment in less than one year. 
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Table 5. Investment cost for the tariff transformation 
Item Price (MYR) Unit Total Price (MYR) 

Recharge job order by TNB 12,000.00 1 12,000.00 
Installation sub-meters 2,500.00 3 7,500.00 

Controller for the energy monitoring system 8,500.00 3 25,500.00 

Display unit (including installation) 5,800.00 2 11,600.00 
Total Investment (MYR)   56,600.00 

 

 

Table 6. Cost analysis for 3 types of tariff under industrial consumers 

Item 
Amount 

E1 E2 E3 

Annual energy cost (RM/year) 6,642,224.00 16,004,697.58 21,164,360.00 

Annual energy cost saving (RM/year) 941,366.00 1,288,751.80 552,414.42 

Investments cost (RM) 56,600.00 56,600.00 56,600.00 
Payback period (year) 0.06 0.04 0.10 

 

 

4. CONCLUSION  

The electricity cost has been successfully reduced by applying the simultaneous demand side 

strategies and implementing the optimization of ACO and PSO algorithms. The proposed simultaneous DSM 

strategies have shifted the peak usage of industrial D, E1, E2, and E3 load profiles to off-peak zones based on 

the six-segmentation of EToU electricity tariff. The valley filling strategies have changed the load profile load 

curve by filling in the off-peak zones. The load clipping and load shifting have successfully reduced the peak 

consumptions and shift them to off-peak zones. As a result, the maximum demand in the baseline cases has been 

shifted to mid-peak zones, contributing to the decrease in electricity bill cost. Other than that, the performance of 

optimization algorithms, ACO, and PSO has been analyzed, and the ability to handle the energy load profile makes 

it easier for the optimization process. PSO algorithms were found more efficient in reducing the price of 

electricity while using the EToU tariff rates. From the analysis, the D tariff users should remain using the flatt 

tariff as the electricity usage and price are cheaper. Meanwhile, for E1, E2 and E3, they should change to EToU 

tariff. But the users need to carefully manage their load profile to utilize the benefits from EToU tariff fully. As for 

future research recommendations, the study would be extended to define the available load that could contribute to 

the more specific load management strategies. 
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