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 This work offers the sliding mode control (SMC) based control scheme for a 

railway traction transmission system fed by a five-level T-type inverter. This 

nonlinear control approach is created for the speed and torque loop control of 

the permanent magnet synchronous motor (PMSM) railway traction drive 

system supplied by a multi-level inverter. The article also includes a 

mathematical model of a PMSM motor and torque load to design controllers. 

The paper expressed the vector voltage modulation design incorporating a 

five-level T-Type inverter. The research proposes a control scheme for the 

railway traction drive system that enhances transmission quality by lowering 

the torque ripper and stator current harmonic distortion and extending 

converter life. Through MATLAB simulation, the study findings are validated. 
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1. INTRODUCTION 

Nowadays, permanent magnet synchronous motors (PMSMs) are often utilized in electric vehicles 

and railway traction drives (RTDs) [1]-[3]. According to Ha et al. [4], Kuntanapreeda [5] study, this motor 

generates torque to extend the operating speed range. Moreover, it has features compatible with vehicle 

transmission’s mechanical aspects, such as regenerative braking. On the other hand, the PMSM railway 

traction system often uses the field-oriented control (FOC) approach [6]. Consequently, the FOC reduces the 

usage of torque ripper and torque closed-loop control in railway trains. The regulated PMSM drive 

mechanism is very efficient [7]. However, PMSM motors can produce resistance torque when the motor is 

operating. The resistance torque will restrict the engine’s ability to promote sufficient torque and speed [8], 

[9]. This issue will be resolved using the maximum torque per ampere (MPTA) approach. The MPTA has a 

feature to generate the best torque for the PMSM at a particular phase current. MTPA control maintains a 

specific torque angle between the positive d-axis and the current phase in the d-q frame [10]-[13]. 

The speed and torque loops are often controlled by cascading the traction vector control 

architecture. These controllers are refined and upgraded to provide various control strategies’ torque and 

speed responses. The control methods are proportional integral (PI), active disturbance rejection control 

(ADRC), ADRC, deadbeat, backstepping, flatness, passive, and sliding mode control. These control 

approaches have advocated the benefits of a more comprehensive speed range, little harmonic distortion, and 

no overturning [14]-[16]. For instance, the PI control approach provides quick and easy design benefits, but 
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when disturbed, the torque and speed response is simple to alter [17]. Providing a solid assurance for the 

necessary answers is the rolling control approach. This approach is still in use. However, it is still susceptible 

to motor parameter changes and system noise [18]. In particular, the sliding mode control stabilizes the 

system following the chosen sliding surface, addressing the sensitivity to motor settings and many other 

problems. In addition, the sliding control design is thoroughly and clearly shown using mathematical 

calculations. According to the Lyapunov theorem of [19]-[21] documents, the traction drive system is 

stabilized. This article will be presented sincerely with the sliding mode control design for speed and torque 

loop control. This technique reduces torque ripper, and the railway traction drive system operates steadily 

over the whole speed range. 

Additionally, it enhances torque response to fulfill demands for speed and precision. Space vector 

modulation (SVM) for a five-level 𝑇-type inverter will be discussed in this post. In terms of transistor valve 

switching frequency, harmonic distortion, and converter life, this multi-level inverter is superior to other 

structural two-level and multi-level inverters, claims the paper [22]-[26]. Table 1 displays these ratings. 

Table 1 demonstrates that the 𝑇-type multi-level inverter has the advantage of decreasing the 

number of semiconductor valves and capacitors while increasing the voltage level. The study is organized as: 

First, section 1 the introduction expresses the reason for the slide mode controller application of a PMSM 

railway traction drive fed by a multi-level inverter. Second, the PMSM motor and load mathematical model 

is presented in section 2. Third, a detailed explanation of 5-level voltage vector modulation will be provided 

in section 3. Fourth, the sliding mode control (SMC) method for the speed and torque loops is under control 

in section 4. Section 5 will present the simulation results and a short assessment of the suggested railway 

traction drive system’s control structure. Finally, conclusion in section 6. 
 

 

Table 1. Comparing multi-level inverter structures 

Structure 
Neutral point clamped 

(NPC) 
Flying capacitor 

(FC) 
Cascaded H-bridge 

(CHB) 
𝑇 −Type 

Valve number insulated gate bipolar transistor 

(IGBT) 

24 24 24 9 

Valve number diode 24 24 0 0 

Clamp diode 36 0 0 0 

Number of capacitors 4 4 6 0 

 

 

2. MATHEMATICAL MODEL OF A PMSM MOTOR AND TORQUE LOAD 

2.1.  The mathematical mode of a PMSM motor 

Based on the documentation [27], the PMSM’s mathematical model is as follows since the FOC 

technique is utilized to govern it. 
 

{
𝑢𝑠𝑑 = 𝐿𝑠𝑑

𝑑𝑖𝑠𝑑

𝑑𝑡
+ 𝑅𝑠𝑖𝑠𝑑 − 𝜔𝐿𝑠𝑞𝑖𝑠𝑞

𝑢𝑠𝑞 = 𝐿𝑠𝑞
𝑑𝑖𝑠𝑞

𝑑𝑡
+ 𝑅𝑠𝑖𝑠𝑞 + 𝜔𝐿𝑠𝑑𝑖𝑠𝑑 + 𝜔𝜓

  (1) 

 

Where: 𝑖𝑠𝑑 , 𝑖𝑠𝑞  are 𝑑𝑞 components of the stator current; 𝑢𝑠𝑑, 𝑢𝑠𝑞 are 𝑑𝑞 components of the stator voltage; 

𝐿𝑠𝑑, 𝐿𝑠𝑞  are 𝑑𝑞 components of stator inductance, 𝜔 is mechanical speed; 𝜓 is rotor flux; 𝑧𝑝 is number of 

poles. The following is a description of the motor’s torque calculation in (2):  
 

𝑇𝑀 =
3

2
𝑧𝑝[𝜓𝑖𝑠𝑞 + (𝐿𝑠𝑑 − 𝐿𝑠𝑞)𝑖𝑠𝑑𝑖𝑠𝑞] (2) 

 

The equation represents the PMSM’s mechanical in (3): 
 

𝑇𝑀 = 𝑇𝐿 +
𝐽𝑑𝜔

𝑑𝑡
  (3) 

 

Where: 𝑇𝑀 ,𝑇𝑇 are motor and load torques; 𝐽 is inertia torque. 

 

2.2.  Mathematical model of load torque 

The load torque is the total of the forces that oppose the motion of the railroad transmission motor. 

The following formula is used to compute the load mode: 
 

𝐹(𝑡) = 𝑎11𝑀 + 𝑎12𝑛 + 𝑎2𝑀𝜐(𝑡) + 𝑎3𝐴𝑘𝜐(𝑡)2 + 𝑀𝑔 𝑠𝑖𝑛 𝛼  (4) 
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Where, 𝑀, 𝑛, 𝐴, 𝑘, 𝛼 represent the weight of the train, the shaft, the surface area in the direction of 

displacement, the track and gear parameters; 𝜐 is train speed. 

 

 

3. THE SMC CONTROLER DESIGN OF SPEED AND TORQUE CONTROL LOOPS 

3.1.  Speed controller 

The SMC is an efficient tool for nonlinear systems, load torque disturbances, and parameter 

variation changes. The steps that the speed control for a railroad traction motor is intended to take are: 

 

�̇� +
1

𝐽
𝑇𝐿 =

1

𝐽
𝑇𝑀  (5) 

 

Where: 𝑇𝑚 =
3

2

𝐿𝑚
2

𝐿𝑟
𝑝𝜓𝑟𝑑

𝑖𝑠𝑞

𝐿𝑚
= 𝑘𝜔𝑖𝑠𝑞; 𝑘𝜔 =

3

2

𝐿𝑚

𝐿𝑟
𝑝𝜓𝑟𝑑 𝑎 =

𝑇𝐿

𝐽
; 𝑏 =

𝑘𝜔

𝐽
 

The speed error can be determined as: 

 

𝑒(𝑡) = 𝜔(𝑡) − 𝜔∗(𝑡)𝛥𝑏 (6) 

 

Next, the sliding surface variable 𝑠(𝑡):  

 

𝑠(𝑡) = 𝑒(𝑡) − ∫ (𝑘 − 𝑐)𝑒(𝑡)𝑑𝑡
𝑡

0
= 0 (7) 

 

With 𝑐 is a typical motion under sliding mode control to error to zero for all times. The variable structure 

speed controller is designed as: 

 

𝑢(𝑡) = 𝑘𝑒(𝑡) − 𝛽 𝑠𝑔𝑛( 𝑠)  (8) 

 

The gain defined before with 𝑘 is 𝑘 < 0 to (𝑘 − 𝑐) < 0. The switching gain, 𝛽, must be selected to 𝛽 ≥ 𝑑(𝑡), 

sgn(.) is the switching function. Then, defining Lyapunov function and derivate it. As shown in (9): 

 

𝑉(𝑡) =
1

2
𝑠(𝑡)𝑠(𝑡) (9) 

 

The derivative (10) is then calculated as: 

 

�̇�(𝑡) = 𝑠[𝑑 − 𝛽 𝑠𝑔𝑛( 𝑠) + 𝑐𝑒] < 0 (10) 

 

In (10) �̇�(𝑡) < 0 , that is, the SMC design and SMC circumstances. Consequently, the system’s SMC may 

be calculated as: 

 

 𝑖∗
𝑠𝑞(𝑡) = 𝑖𝑠𝑞(𝑡) =

1

𝑏
[𝑘𝑒 − 𝛽 𝑠𝑔𝑛( 𝑠) + 𝑎 + �̇�∗] (11) 

 

3.2.  Torque controller 

The SMC is designed to generate the rotor voltage reference from the torque and flux vector: 

 

𝑠𝑇 = 𝑒𝑇 = 𝑇𝑚
∗ − 𝑇𝑚 (12) 

 

𝑠𝜓 = 𝑒𝜓 = 𝜓∗ − 𝜓 (13) 

 

From (12) and (13) can be written by matric: 

 

[
�̇�𝑇

�̇�𝜓
] = − [

3/2𝑧𝑝(𝐿𝑠𝑑𝑖𝑠𝑞 − 𝐿𝑠𝑞𝑖𝑠𝑞) 3/2𝑧𝑝[(𝐿𝑠𝑑𝑖𝑠𝑑 − 𝜓) − 𝐿𝑠𝑞𝑖𝑠𝑑]

(𝐿𝑠𝑞𝑖𝑠𝑞 − 𝜓)𝐿𝑠𝑑 𝐿𝑠𝑞
2 𝑖𝑠𝑞

] [
𝑖̇𝑠𝑑

𝑖̇𝑠𝑞
] (14) 

 

Where: 

 

𝐾 = [
1.5𝑧𝑝(𝐿𝑠𝑑𝑖𝑠𝑞 − 𝐿𝑠𝑞𝑖𝑠𝑞 1.5𝑧𝑝[(𝐿𝑠𝑑𝑖𝑠𝑑 − 𝜓) − 𝐿𝑠𝑞𝑖𝑠𝑑]

(𝐿𝑠𝑑𝑖𝑠𝑑 − 𝜓)𝐿𝑠𝑑 𝐿𝑠𝑞
2 𝑖𝑠𝑞

]; 𝐴 = [

−𝑅𝑠

𝐿𝑠𝑑
𝑧𝑝𝜔

−𝑅𝑠

𝐿𝑠𝑑

−𝑅𝑠

𝐿𝑠𝑞

]; 𝐵 = [

1

𝐿𝑠𝑑
0

0
1

𝐿𝑠𝑞

] 𝐻 = [
0

𝑧𝑝𝜓

𝐿𝑠𝑞

] 
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In (14) can be written: 

 

[
�̇�𝑇

�̇�𝜓
] = −𝐾(𝐴 [

𝑖𝑠𝑑

𝑖𝑠𝑞
] + 𝐵 [

𝑢𝑠𝑑

𝑢𝑠𝑞
] + 𝐻) (15) 

 

Control variable for torque and flux can be calculated from (15): 

 

[
𝑢𝑠𝑑

∗

𝑢𝑠𝑞
∗ ] = 𝐵−1(𝐾−1 [

𝑙11 𝑙12

𝑙21 𝑙22
] [

𝑠𝑇 𝑠𝜓

𝑠𝑔𝑛(𝑠𝑇) 𝑠𝑔𝑛( 𝑠𝜓)𝑠𝑔𝑛] − 𝐴 [
𝑖𝑠𝑑

𝑖𝑠𝑞
] − 𝐻) (16) 

 

The sliding face is choice as shown: 

 

{
�̇�𝑇 = −𝑙11𝑠𝑇 − 𝑙12 𝑠𝑔𝑛( 𝑠𝑇)

�̇�𝜓 = −𝑙12𝑠𝜓 − 𝑙22 𝑠𝑔𝑛( 𝑠𝜓)
 (17) 

 

The stability research provided an application of the Lyapunov approach. Regarding the potential Lyapunov 

function: 
 

𝑉(𝑡) =
1

2
𝑠(𝑡)𝑠(𝑡) (18) 

 

The derivative (18) is then calculated as: 
 

�̇� = −𝑠𝑇(𝑙11𝑠𝑇 + 𝑙12𝑠𝑔𝑛(𝑠𝑇)) − 𝑠𝜓(𝑘21𝑠𝜓 + 𝑙22𝑠𝑔𝑛(𝑠𝜓)) (19) 

 

The derivative (19) can be written as shown: 
 

�̇� = −[(𝑙11𝑠𝑇
2 + 𝑙12|𝑠𝑇|) + (𝑙21𝑠𝜓

2 + 𝑙22|𝑠𝜓|] (20) 

 

with 𝑙𝑖𝑗  are positive gain if �̇� < 0, then the torque response is established sustainably. 

 

 

4. MODULATION FOR 𝑻-TYPE 5-LEVEL INVERTER 

Based on Ha et al. [22], structure for a 𝑇-type 5-level inverter is shown Figure 1. This 𝑇-type 

inverter has 5-level: ½ 𝑉𝑑𝑐, − 𝑉𝑑𝑐, 0, + ½ 𝑉𝑑𝑐, + 𝑉𝑑𝑐. (𝑉𝑑𝑐  is DC voltage). The 𝑇-type 5-level inverter is 

modulated by space vector modulation (SVM). Implementation SVMs steps: 

Step 1: from modulation voltage, convert the coordinate system from 𝑎𝑏𝑐 to 𝛼𝛽. 

Step 2: from 𝛼𝛽 to 𝑔, ℎ coordinate system. 

Step 3: determine the sector position of the modulation vector. 

Step 4: determine the modulation period for the vector. 

Step 6: determine the switching state. 

Step 7: pulse the valve. 
 
 

 
 

Figure 1. A 𝑇-type 5-level inverter structure 
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The space vector 3-phase 5-level is shown in Figure 2, [22]. It can be seen in Figure 1 that, for an 

𝑛-level 3-phase converter, the number of switching states will be 𝑛3, and there are 6𝑥(𝑛 − 1)2 triangles in 

the spatial vector diagram. Thus, for a 5-level 𝑇-type inverter, the number of switching states will be 53, and 

there are 72 triangles in the space vector diagram. Table of state vectors in sectors is shown at Table 2. 

 

 

 
 

Figure 2. The structure of the SMC controllers combined the 𝑇-type 5 level inverter for RTD applications 

 

 

Table 2. Table of state vectors in sectors 
State vector I II III IV V VI 

[
𝑘𝑖𝑥

𝑘𝑖𝑦
] [

(𝑘𝐴 − 𝑘𝐵) 

(𝑘𝐵 − 𝑘𝐶 )
] [

(𝑘𝐴 − 𝑘𝐶) 

(𝑘𝐵 − 𝑘𝐴 )
] [

(𝑘𝐵 − 𝑘𝐶) 

(𝑘𝐶 − 𝑘𝐴 )
] [

(𝑘𝐵 − 𝑘𝐴) 

(𝑘𝐶 − 𝑘𝐵)
] [

(𝑘𝐶 − 𝑘𝐴) 

(𝑘𝐴 − 𝑘𝐵)
] [

(𝑘𝐶 − 𝑘𝐵) 

(𝑘𝐴 − 𝑘𝐶)
] 

[

𝑘𝐴

𝑘𝐵

𝑘𝐶

] [
𝑘

𝑘 − 𝑘1𝑥

𝑘 − 𝑘1𝑠

] [

𝑘 − 𝑘2𝑦

𝑘
𝑘 − 𝑘2𝑠

] [
𝑘 − 𝑘3𝑠

𝑘
𝑘 − 𝑘3𝑥

] [
𝑘 − 𝑘4𝑠

𝑘 − 𝑘4𝑦

𝑘

] [
𝑘 − 𝑘5𝑥

𝑘 − 𝑘5𝑠

𝑘

] [

𝑘
𝑘 − 𝑘6𝑠

𝑘 − 𝑘6𝑦

] 

 

 

5. RESULTS AND DISCUSSION  

The control structure of 5 level 𝑇-type inverter for railway traction motor is presented in Figure 2. 

Simulation with parameters of 5 level 𝑇-type inverter and PMSM’s parameters used railway traction motor 

follow as Table 3. 𝑇-type inverter simulation parameters using SVM are expressed in Table 4. 

 

 

Table 3. Simulation with PMSM’s parameters used RTD 
Parameters Symbol Value 

DC voltage 𝑈𝑑𝑐 600 

Frequency of modulation 𝑓𝑠 2000Hz 

Power 𝑃𝑑𝑚 270 kW 

Rated speed 𝑛𝑑𝑚 3000 rpm 

Rated voltage 𝑈𝑑𝑚 400V 

Pole pair 𝑝 1 

Power factor 𝑐𝑜𝑠 𝜑 0.9 

Stator resistance 𝑅𝑠 0.0126 𝛺 

Rotor resistance 𝑅𝑟 0.00865𝛺 

Rotor inductance 𝐿𝑟 0.00822H 

Mutual inductance 𝐿𝑚 0.0088H 

Voltage  750 VDC 

Maximum speed for the train  80km/h 
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Table 4. Simulation parameters of 𝑇-type 5 level inverter 
Power circuit  Parameter 

DC capacitor C1 𝑈𝑑𝑐 

DC capacitor C1 𝑓𝑠 

Filter inductor Li 𝑃𝑑𝑚 

DC voltage Vc 𝑛𝑑𝑚 

Filter capacitor 𝑈𝑑𝑚 

Pulse frequency 𝑝 

 

 

5.1.  Evaluating results of 𝑻-type 5 level inverter 

Character of the 𝑇-type 5 level inverter is evaluated based on output voltage responses and current 

harmonic distortion. The inverter output voltage response is shown in Figure 3. The current harmonic 

distortion is shown in Figure 4. 

 

 

  
 

Figure 3. The inverter output voltage response 

 

Figure 4. The current harmonic distortion 

 

 

Through simulation results of Figure 3 and Figure 4, there are some results as shown: 

a. The inverter output voltage has the form of 5 levels, with an amplitude of 600 V  

b. Sine wave output current with low harmonic distortion THD=1.74% 

c. DC voltage on two unbalanced capacitors, with maximum difference up to 𝛥𝑉𝑐𝑚𝑎𝑥=20 V (6%) 
 

5.2.  Evaluating results of the SMC controller 

Case 1: the railway traction drive system is fed by a 5-level 𝑇-type inverter to simulate and evaluate 

the SMC controller in the traction drive system. Through the modeling of the given situation, some typical 

functioning RTMs are: 

a. From 𝑡 = 0.5 𝑠 to 𝑡 = 2.5 𝑠, the PMSM motor is operating at pull process with parameters: 

𝑡1𝑠 = 0 (𝑘𝑚/ℎ); 𝑡2𝑠 = 30 (𝑘𝑚/ℎ); 𝑡3𝑠 = 60 (𝑘𝑚/ℎ)  

b. From 𝑡 = 2.5 𝑠 to 𝑡 = 5.5 𝑠, the PMSM motor is operating at coasting process with parameters: 

 𝑡6𝑠 = 50 (𝑘𝑚/ℎ). 

c. From 𝑡 = 6 𝑠 to 𝑡 = 8 𝑠, the PMSM motor is operating at braking process with parameters:  

𝑡7𝑠 = 10 (𝑘𝑚/ℎ); 𝑡8𝑠 = 0 (𝑘𝑚/ℎ). 

Simulation results in case 1 are shown in Figure 5. Figure 5(a) shows the speed responses of SMC 

and PI controllers, Figure 5(b) conveys torque responses of SMC and PI controllers, and Figure 5(c) displays 

the total harmonic distortion (THD) of a 𝑇-type 5-level inverter of SMC and PI controllers.  

Based on the simulation results of Figure 5(a) and Figure 5(b), it is found that the SMC controller 

design for torque and speed controller has more advantages than the PI controller. The actual speed matches the 

reference speed with a fast set time. The ripple torque is small with 𝛥𝑇𝑀=10%. Meanwhile, the PI controller’s 

ripple torque is still high 𝛥𝑇𝑀%=20%. Therefore, the 𝑇-type 5-level inverter is torque-ripper-reduced. 

Moreover, in the research to ensure low THD and low ripple torque. In addition, the simulation results of 

Figure 5(c) show the THD for the 𝑇-type 5 level inverter combined SMC controller with THD=3.89%.  

In contrast, the PI controller structure combined with the multi-level inverter results in a THD of 6.58%, 

much higher than the proposed control structure. 

Case 2: to showcase the reliability of the railway traction drive system, the paper used an example 

where the rotor resistance raised by 50%. Through the simulation of the following scenario, some typical 

working RTM are just as: 

Vab
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a. From 𝑡 = 0.5 𝑠 to 𝑡 = 3 𝑠, the PMSM motor is working following parameters in a pull process: 

𝑡1𝑠 = 0 (𝑘𝑚/ℎ); 𝑡2𝑠 = 40 (𝑘𝑚/ℎ); 𝑡3𝑠 = 70 (𝑘𝑚/ℎ). 

b. From 𝑡 = 3 𝑠 to 𝑡 = 6 𝑠, the PMSM is operating at coasting process with parameters: 𝑡6𝑠 = 60 (𝑘𝑚/ℎ). 

c. From 𝑡 = 6 𝑠 to 𝑡 = 8 𝑠, the IM is operating at braking process with parameters: 𝑡7𝑠 = 5 (𝑘𝑚/ℎ); 

𝑡8𝑠 = 0 (𝑘𝑚/ℎ). 

 

 

SMC controller PI controller 

  
(a) 

  

  
(b) 

  

  
(c) 

 

Figure 5. The railway traction drive system fed by a 5-level 𝑇-type inverter with constant rotor resistance 

analysis with of: (a) speed responses of SMC and PI controllers, (b) torque responses of SMC and PI 

controllers, and (c) the THD of a 𝑇-type 5-level inverter of SMC and PI controllers 

 

 

Simulation results for the railway traction drive system fed by a 5-level 𝑇-type inverter with rotor 

resistance increasing to 50% are shown in Figure 6. Figure 6(a) shows the speed responses of SMC and PI 
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controllers, Figure 6(b) conveys torque responses of SMC and PI controllers, and Figure 6(c) displays the 

THD of a 𝑇-type 5-level inverter of SMC and PI controllers. 

Based on the simulation findings in Figure 6(a) and Figure 6(b) for the SMC controller, the system 

was stable, with a rapid stabilization time and an actual speed that tracks the intended rate. Furthermore, the 

torque response is modest (20%). On the other hand, the simulation results of Figure 6(c) show that THD’s 

5-level inverter value rose to 3.93%, and the output voltage is in a sine wave shape. Meanwhile, the PI 

controller had a rate decrease at the speed setting step and had a significant ripple torque in the simulation 

results of Figure 6(a) and Figure 6(b) for the PI controller. THD’s 5-level inverter value, on the other hand, 

rose to 12.55 % (Figure 6(c)). 
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Figure 6. The railway traction drive system fed by a 5-level 𝑇-type inverter with rotor resistance increasing to 

50% analysis with (a) speed responses of SMC and PI controllers; (b) torque responses of SMC and PI 

controllers of SMC and PI controllers; and (c) the THD of a 𝑇-type 5-level inverter of SMC and PI controllers 
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6. CONCLUSION 

This paper proposes successfully researching a speed and torque controller using SMC control to 

control PMSMS motors fed by 𝑇-type multi-level inverters applied to railway traction drives. The simulation 

results proved that the multi-level inverter gave a sinusoidal phase voltage response, and the current harmonic 

distortion was slight. Furthermore, with the advantage of the 𝑇-type multi-level inverter, the speed and torque 

loop SMC controller achieves such achievements as the small torque ripper response and the required speed 

response. Responds to the necessary speed and torque even when system parameters change. However, the 

torque ripper still needs to be improved by intelligent controllers such as fuzzy combined with a neural or 

sliding mode controller connected with anti-vibration to strengthen and enhance this high-performance railway 

traction drive. 
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