
TELKOMNIKA Telecommunication Computing Electronics and Control 

Vol. 21, No. 4, August 2023, pp. 805~814 

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v21i4.24463      805 

 

Journal homepage: http://telkomnika.uad.ac.id 

Competent scene classification using feature fusion of pre-trained 

convolutional neural networks 
 

 

Thirumaladevi Satharajupalli1, Kilari Veera Swamy2, Maruvada Sailaja1 
1ECE Department, Jawaharlal Nehru Technological University, Kakinada-533003, Andhra Pradesh, India 

2ECE Department, Vasavi College of Engineering, Ibrahimbagh, Hyderabad-500 031, Telangana, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Aug 29, 2022 

Revised Dec 10, 2022 

Accepted Feb 16, 2023 

 

 In view of the fact that the development of convolutional neural networks 

(CNN) and other deep learning techniques, scientists have become more 

interested in the scene categorization of remotely acquired images as well as 

other algorithms and datasets. The spatial geometric detail information may 

be lost as the convolution layer thickness increases, which would have a 

significant impact on the classification accuracy. Fusion-based techniques, 

which are regarded to be a viable way to express scene features, have 

recently attracted a lot of interest as a solution to this issue. Here, 

we suggested a convolutional feature fusion network that makes use of 

canonical correlation, which is the linear correlation between two feature 

maps. Then, to improve scene classification accuracy, the deep features 

extracted from various pre-trained convolutional neural networks are 

efficiently fused. We thoroughly evaluated three different fused CNN 

designs to achieve the best results. Finally, we used the support vector 

machine for categorization (SVM). In the analysis, two real-world datasets 

UC Merced and SIRI-WHU were employed, and the competitiveness of the 

investigated technique was evaluated. The improved categorization accuracy 

demonstrates that the fusion technique under consideration has produced 

affirmative results when compared to individual networks. 
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1. INTRODUCTION  

Classifying remote sensing images into various classes depending on image content has gotten a lot of 

attention nowadays because of its wide range of applications. Classification of remote sensing image scenes is 

primarily a machine learning and computer vision problem. The investigation of scene classification entails 

convolutional neural networks (CNNs) were highly successful. However, to train their parameter sets, most of 

these models require vast amounts of labeled data and many iterations. Several CNN-based scene categorization 

approaches [1]-[3] have arisen as a result of varied tactics for utilizing CNNs. Deep learning models, such as 

AlexNet [4], and VGG-Net [5], have achieved considerable success in computer training data [6], ImageNet [7]. 

In 2012, Krizhevsky took first place in the ImageNet large scale visual recognition challenge. For a specific 

purpose, acquiring a large dataset can be expensive. When it comes to remote sensing image scene 

categorization, deep neural network model-based methods are becoming increasingly popular [8], [9]. Deep 

learning-based scene image categorization has a distinct advantage over typical machine learning methods in 

that can be extracted from more complicated and relevant feature structures [10], [11]. Deep layers can then 

be used to get crucial and discriminatory feature representation, while irrelevant versions are ignored. 

https://creativecommons.org/licenses/by-sa/4.0/
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There are three types of CNN-based techniques utilizing pre-trained utilizing CNNs to act as feature 

extractors and fine-tuning already trained models on target datasets and creating new CNN models for scene 

categorization from scratch [12], [13]. The way that CNN is affianced as a feature extractor is the simplest of 

the three approaches. CNNs were first introduced as feature extractors. In 2015, Penatti et al. [14] applied 

CNNs to image scene categorization using remote sensing and investigated the adaptive ability of off-the-shelf 

CNNs for remote sensing image categorization. CNNs outperform low-level descriptors in their studies, 

according to the researchers. Later, Cheng et al. [15] researched how to fully utilize pre-trained CNNs for scene 

categorization by treating them as feature extractors. Marmaris et al. [16] presented a two-stage CNN scene 

categorization framework. It utilized CNNs that had been pre-trained to extract a collection of interpretations 

from images. Covariance-based multilayer feature fusion is also proposed [17]. Classifiers were then given the 

extracted representations. 

Various structures of CNNs have varying receptive fields and may capture different types of data 

from images. In this paper, AlexNet, VGG-19, and VGG-16 are employed as deep feature extractors 

independently, and to improve accuracy, features extracted by two of three are fused using canonical 

correlation analysis (CCA) and form three fused networks, which are assessed and compared. The datasets 

from UC Merced and SIRI-WHU, both of which are publicly available and created for research purposes, 

were used to assess the performance of the fused networks. 

The remainder of this work is structured in a succeeding manner. Section 2 shows and explains the 

scene classification workflow established on the individual pre-trained CNN model including a flow chart of 

three fusion networks. In section 3, we will find typical datasets that exhibit experimental evaluation and 

analysis. This paper comes to an end with the section 4 conclusion. 

 

 

2. WORKFLOW OF THE PROPOSED METHOD 

Convolutional, pooling, and fully connected layer are the core components of the pre-trained CNN 

model, which only use pre-trained weights [18]. Figure 1 shows a distinctive remote sensing image scene 

categorization procedure using a CNN model that has been pre-trained. Samples of the input training images 

are loaded into the input layer, which pre-processes and modifies the image dimensions as per the network 

model’s input layer. The finishing output is achieved with a fully connected layer after some a succession of 

pooling and convolutional computations which are then used as final features and applied to support vector 

machine (SVM) for classification. 

 

 

 
 

Figure1. A feature extractor’s flowchart that makes use of pre-trained CNN 

 

 

For image scene classification, we employed pre-trained deep CNN models, where used AlexNet, 

VGG-19, and VGG-16 as feature extractors and selected helpful layers to acquire a good depiction of the image 

scene. We are the first to integrate several fully connected layers of the AlexNet, VGG-Net architecture, where 

each layer’s output is expected to be a feature descriptor and is fused to produce a final feature illustration of the 

input image. Other individual feature representation methods perform less than fused deep feature learning. 

The visual scene is well described by fused features, which offer a lot of information. 

In very high resolution (VHR) image scene categorization, the purpose of feature fusion is to combine 

two correlated scene features into a single feature vector with much more discriminant data than the input 

feature vectors. Here novelty of this paper is combining characteristics collected from dense layers of two 

different pre-trained networks to create various fusion networks. Finally, a multi-kernel learning approach was 

used to train the SVM classifier, as illustrated in Figure 2. 
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Figure 2. Proposed fused pre-trained CNNs flowchart for scene categorization 
 

 

Combining two or more characteristics properly is becoming increasingly difficult. We are using the 

canonical correlation approach to combine two distinct feature vectors to create a new feature vector that is 

significantly more discriminative than the original two. This approach transforms a correlation analysis of 

two random vectors into a few uncorrelated pairs of variables. 𝑀 and 𝑁 are two zero-mean arbitrary vector 

matrices. Determine a couple of orientations that will improve the projection’s correlation. Choose a 

collection of canonical variables. Two features matrices 𝑀 and 𝑁, in addition, 𝑀 ∈ 𝑅𝑎𝑥𝑛  and 𝑁 ∈ 𝑅𝑏𝑥𝑛 where 

𝑛 is the training feature vectors containing the matrices. 𝑀’s covariance matrix is epitomized as 𝐶𝑝𝑝 ∈ 𝑅𝑎𝑥𝑎 

as well as 𝐶𝑞𝑞 ∈ 𝑅𝑏𝑥𝑏  is the covariance matrix of 𝑁 between-sets the covariance matrix is 𝐶𝑝𝑞 ∈ 𝑅𝑎𝑥𝑏 and 

𝐶𝑞𝑝 = 𝐶𝑝𝑞
𝑇 . Overall covariance matrix 𝐶 ∈ 𝑅(𝑎+𝑏)×(𝑎+𝑏) is deliberate as: 

 

𝐶 = (
𝑣𝑎𝑟(𝑝) 𝑐𝑜𝑣(𝑝, 𝑞)

𝑐𝑜𝑣(𝑞, 𝑝) 𝑣𝑎𝑟(𝑞)
) = (

𝐶𝑝𝑝 𝐶𝑝𝑞

𝐶𝑞𝑝 𝐶𝑞𝑞
) (1) 

 

It’s difficult to deduce the correlations between all these matrices two pairs of feature vectors since the 

correlations between two groups of feature vectors might not conform to a predictable pattern. CCA’s goal is 

to describe a linear combination [19] that maximizes correlation. 
 

𝑀∗ = 𝑊𝑝
𝑇  𝑀 and 𝑁∗ = 𝑊𝑞

𝑇 𝑁 (2) 
 

𝐶𝑜𝑟𝑟 (𝑀 ∗, 𝑁 ∗) =
𝑐𝑜𝑣 (𝑀∗,𝑁∗) 

𝑣𝑎𝑟(𝑀∗),𝑣𝑎𝑟(𝑁∗)
 (3) 

 

Wherever: 

− (𝑀∗) = 𝑊𝑝
𝑇𝐶𝑝𝑝𝑊𝑝 

− 𝑣𝑎𝑟(𝑁∗) = 𝑊𝑞
𝑇𝐶𝑞𝑞𝑊𝑞   

− 𝑐𝑜𝑣 (𝑀 ∗, 𝑁 ∗) = 𝑝𝑇𝐶𝑝𝑞𝑊𝑞   
Exploiting the covariance between 𝑀 ∗ and 𝑁 ∗ considering the constraints 𝑣𝑎𝑟(𝑀 ∗) = 𝑣𝑎𝑟(𝑁 ∗) = 1. 

The transformation matrices 𝑊𝑝, 𝑊𝑞 is initiated by especially the eigenvalue concerns. 
 

𝐶𝑝𝑝 − 1𝐶𝑝𝑞 𝐶𝑞𝑞 − 1𝐶𝑞𝑝𝑊𝑝^  =  ^2𝑊𝑝^  

𝐶𝑞𝑞 − 1𝐶𝑞𝑝 𝐶𝑝𝑝 − 1𝐶𝑝𝑞𝑊𝑞^  =  ^2𝑊𝑞^ (4) 
 

Where 𝑊𝑝
^ and 𝑊𝑞

^ are eigenvectors. ^2 is the diagonal matrix with the highest eigenvalues or correlation 

squares. Each equation contains the following number of non-zero eigenvalues: 

− 𝑑 = 𝑟𝑎𝑛𝑘(𝐶𝑝𝑞) ≤ 𝑚𝑖𝑛(𝑛, 𝑎, 𝑏) which is to be listed in descending manner 𝛼1 ≥ 𝛼2 ≥ 𝛼3 … ≥ 𝛼𝑑. 

− 𝛼1
𝑇𝑀 and 𝛽1

𝑇𝑁 (the first pair) 

− 𝛼2
𝑇𝑀 and 𝛽2

𝑇𝑁 (the second pair) 

− 𝛼𝑑
𝑇𝑀 and 𝛽𝑑

𝑇𝑁 (the 𝑑𝑡ℎ pair) 
 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 4, August 2023: 805-814 

808 

𝑀∗ = (𝛼1
𝑇𝑀, 𝛼2

𝑇𝑀, … … … , 𝛼𝑑
𝑇𝑀) = (𝛼1, 𝛼2, … … … , 𝛼𝑑)𝑇𝑀 = 𝑊𝑝

𝑇   

𝑁∗ = (𝛽1
𝑇𝑁, 𝛽2

𝑇𝑁, … … … , 𝛽𝑑
𝑇𝑁) = (𝛽1, 𝛽2, … … … , 𝛽𝑑)𝑇𝑁 = 𝑊𝑞

𝑇 (5) 

 

The ordered eigenvectors analogous to non-zero eigenvalues make up the transformation matrices 𝑊𝑝 and 𝑊𝑞. 

A summing of the changed feature vectors is used for feature-level fusion. Canonical discriminant correlation 

The following features are included: 

 

𝑍 = 𝑀∗ + 𝑁∗ = (𝑊𝑝
𝑇𝑀 + 𝑊𝑞

𝑇𝑁) = (
𝑊𝑝

𝑊𝑞
)

𝑇

(
𝑀
𝑁

) (6) 

 

SVM: this categorization is based on the data of choice, which manages space with high-dimensional 

features with choice constraints. Using a set of labeled training datasets, SVM can produce linear capacity in 

either input space or maximum space [20]. This allows us to distinguish between positive and negative 

samples. A data matrix that has been labeled to either a positive or negative class is utilized as input data 

used in the SVM’s training phase. One can utilize trained SVM to forecast what the class has predicted in 

test samples. 

The benefits of CCA are straightforward to apply to two variables. The intermodality relationship is 

thought to be linear in CCA, and both modalities are interchangeable and given the same considerations. 

Linear feature transforms do not affect canonical correlations. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  UC Merced land-use dataset 

UC Merced land-use dataset [21]: a lot of work has gone into making datasets available to the 

general public, including the first publicly accessible high-resolution remote sensing imagery collected for 

scene classification. This University of California Merced (UCM) land-use dataset [22] comprises 2,100 

aerial shots of scenes distributed into 21 land-use scenario groups. Every single class contains 100 images 

that are 256×256 pixels in dimensions and have a resolution of every pixel, 0.3 meters. This dataset was 

created exhausting the United States Geological Survey’s National Map, which was retrieved using aerial 

ortho imagery (USGS). This dataset features overlying land-use classifications, such as Figure 3 exhibits 

representations of sample images from every class Figure 3(a) agricultural, Figure 3(b) airplane, Figure 3(c) 

baseball diamond, Figure 3(d) beach, Figure 3(e) buildings, Figure 3(f) chaparral, Figure 3(g) denseresidential, 

Figure 3(h) forest, Figure 3(i) freeway, Figure 3(j) golfcourse, Figure (3k) harbou, Figure 3(l) intersection, 

Figure 3(m) mediumresidential, Figure 3(n) mobilehomepark, Figure 3(o) overpass, Figure 3(p) parkinglot, 

Figure 3(q) river, Figure 3(r) runway, Figure 3(s) sparse residential, Figure 3(t) storagetanks and Figure 3(u) 

tenniscourt and it’s been widely utilized for visual scene categorization and retrieval using remote sensing data. 

 

3.2.  SIRI-WHU 

SIRI-WHU [23]: it’s a collection of 2,400 remote sensing images that have been categorized into 

12 scene types. Every single class comprises 200 images that are 200×200 pixels in size and have a 

resolution of 2 meters. It was sent to Wuhan University’s intelligent data extraction and remote sensing 

(RS IDEA) group via Google Earth (Google Inc.). In Figure 4, sample images from the SIRI-WHU dataset are 

displayed Figure 4(a) agriculture, Figure 4(b) commercial, Figure 4(c) harbor, Figure 4(d) idle land, Figure 4(e) 

industrial, Figure 4(f) meadow, Figure 4(g) overpass, Figure 4(h) park, Figure 4(i) pond, Figure 4(j) residential, 

Figure 4(k) river, and Figure 4(l) water are among the 12 land-use categories. Even though this dataset has been 

studied using a variety of approaches [24], the number of scene classes is very small. It also concentrates mostly 

on China’s urban areas. 

 

3.3.  AlexNet 

AlexNet: the ImageNet large-scale image recognition competition (ILSVRC) was won by AlexNet [4] 

in 2012. The first to notice it was Alex Krizhevsky and his coworkers. This model has three fully connected 

layers in addition to a pooling layer and five convolutional layers. The initial and second convolutional layers 

are constrained by two normalization layers. This model accepts images with a 227×227 input size. 

The second fully-connected layer is where the 4096-pixel-long output feature vector is generated. SVM was 

used in our study to categorize the AlexNet CNN feature. 
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(a) (b) (c) (d) (e) (f) (g) 
       
       

       
       

(h) (i) (j) (k) (l) (m) (n) 
       

       

       
       

(o) (p) (q) (r) (s) (t) (u) 
 

Figure 3. Example images of 21 classes’ depiction of UC Merced dataset: (a) agricultural, (b) airplane, (c) baseball 

diamond, (d) beach, (e) buildings, (f) chaparral,(g) denseresidential, (h) forest, (i) freeway, (j) golfcourse, 

(k) harbou, (l) intersection, (m) mediumresidential, (n) mobilehomepark, (o) overpass, (p) parkinglot, (q) river, 

(r) runway, (s) sparse residential, (t) storagetanks, and (u) tenniscourt 
 

 

3.4.  VGG-Net  

VGG-Net: a proposal was made in [5] and emerged victorious in the ILSVRC-2014 competition’s 

localization and classification tasks. Two well-known architectures are VGG-19 and VGG-16. In this 

evaluation, the designs and overall performance were improved to a somewhat greater extent. This model 

contains 3 fully-connected layers, 5 pooling layers, and 13 convolutional layers. Images with a size of 

224×224 are used as input to this model. The output feature vector is 4096 pixels long and derives from the 

second fully connected layer. In our evaluation, we employed SVM to classify the VGG-Net CNN feature. 
 

3.5.  Fused network 

Fused network: two pre-trained networks are used to create this network. The input layers of the 

pre-trained networks continue to stay the same for AlexNet 227×227, and for VGG-19, VGG-16 224×224, 

up to feature extraction, the procedure is the same as for individual pre-trained networks, and the output 

feature is obtained from the second dense layer with dimension 4096, the fusion of these features can be done 

using the conical correlation concept already explained in section 2. It is possible to combine these two 

feature vectors from two distinct networks to obtain a final feature vector with a dimension of 4096. In our 

evaluation, we employed SVM to classify the fused net feature. 

We employ the UC Merced dataset and the SIRI-WHU dataset to examine the scene categorization 

performance of individual pre-trained, fused networks. We use the experiment setup from [25] for evaluation, 

which chooses a total of 80 images from each category that will be used for training and the rest for testing. 

Regarding classification accuracy, the technique when fusion is absent is compared to several fusion 

methods, with fusion networks showing a significant improvement. 
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(a) (b) (c) (d) 
    

    

    
    

(e) (f) (g) (h) 
    

    

    
    

(i) (j) (k) (l) 
 

Figure 4. Example image depiction of the SIRI-WHU dataset: (a) agriculture, (b) commercial, (c) harbor, (d) idle 

land, (e) industrial, (f) meadow, (g) overpass, (h) park, (i) pond, (j) residential, (k) river, and (l) water 
 

 

3.6.  Metrics used for evaluation 

Metrics used for evaluation: when it comes to image classification, the average accuracy, overall 

accuracy, and confusion matrix are the three metrics that are most frequently employed for evaluation 

purposes. The number of samples that have been correctly recognized is calculated by dividing the total 

number of samples by the category to which they are assigned. This division is performed irrespective of the 

quality of the overall assessment. The average accuracy is determined by adding up the classification 

accuracy of each class, regardless of the number of samples that are included in each category. The overall 

accuracy value and the average accuracy value are identical this is because the count for each class in the 

dataset is thesame. Because of this, we only used overall accuracy and confusion matrix criteria to judge the 

performance of the various classification algorithms used in this work. The confusion matrix and overall 

accuracy measurements were also looked into to ensure consistency. A total of five iterations of the study 

confirmed that an 80 to 20 split between training and testing yielded the best results. The formula for 

calculating the accuracy, which is expressed as a percentage of correct occurrences, is: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
  (7) 

 

The proportion of truly positive occurrences that are expected to occur in all positive situations is known as 

precision. The formula is as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 

The recall calculation equation determines the predicted percent of true positive samples. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 

An exhaustive mathematical calculation, the F1-score considers both accuracy and recall. 
 

𝐹1 =
2 𝑋 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (10) 
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Figure 5 illustrates together the confusion matrix in addition to the accuracy. In the first row, networks 

Figure 5(a) AlexNet, Figure 5(b) VGG-19, and Figure 5(c) VGG-16 are the proposed individual pre-trained 

CNN-based network classification is shown, while for scene categorization, the final feature extractor is a single 

fully-connected layer FC7. In the second row, a fusion-based proposed network confusion matrix with accuracy 

is shown Figure 5(d) AlexNet−VGG-19, Figure 5(e) AlexNet−VGG-16, and Figure 5(f) VGG-19−VGG-16. 

Pre-trained AlexNets had an overall acuuracy (OA) of 79.76 percent, VGG-19 had an OA of 81.19 percent, and 

VGG-16 had an OA of 83.81 percent, according to experiments on the University of California Merced dataset, 

but fusion-based pre-trained networks had an OA of 89.28 percent, 90.23 percent, and 91.42 percent, 

respectively. The proposed approach provides optimal classification efficiency for the majority of classes in the 

case of UCM with an average gain of 8% in classification accuracy. 

In the testing of the SIRI-WHU dataset, the confusion matrix is shown in Figure 6. To classify scenes, 

the fully connected layer FC7 is employed as the final feature extractor, as illustrated in the first row, Figure 6(a) 

AlexNet, Figure 6(b) VGG-19, Figure 6(c) VGG-16 and potential fusion-based classification models are 

displayed in the second row as Figure 6(d) AlexNet-VGG-19, Figure 6(e) AlexNet−VGG-16, and Figure 6(f) 

VGG-19−VGG-16. Whereas the accuracy of AlexNet’s preprocessed single layer is 86.52 percent, VGG-19 is 

87.60 percent, and VGG-16 is 88.04 percent, the proposed technique enhances accuracy by 90.62 percent, 

91.87 percent, and 92.91 percent, respectively.  

Table 1 illustrates the corresponding performance assessment for the two datasets. The proposed 

scenario indicates an increase in OA. When multiple individual pre-trained and fusion-based learning 

networks are utilized. As demonstrated in Figure 7 correspondingly Figure 7(a) UCM dataset and the Figure 7(b) 

SIRI-WHU dataset the proposed technique achieves optimal Improves categorization performance in the 

majority of classes and overall accuracy by 4%. 
 
 

Table 1. Evaluation results comparison for the individual proposed fused network accuracies for the two 

datasets UCM, SIRI-WHU 

Method Network used 
UCM dataset with 80% training 

(overall accuracy %) 

SIRI-WHU dataset with 80% training 

(overall accuracy %) 

Pre-trained individual network FC7 

as a feature extractor 

AlexNet 79.76 86.45 

VGG-VD19 81.19 87.7 

VGG-VD16 83.81 88.12 
Proposed fusion network using CCA AlexNet − 

VGG-19 

89.28 90.62 

AlexNet − 

VGG-16 

90.23 91.87 

VGG-19 − 

VGG-16 

91.66 92.91 

 
 

   
   

(a) (b) (c) 
   

   

   
   

(d) (e) (f) 
 

Figure 5. First row consistent to single-layered confusion matrix using three pre-trained networks: (a) AlexNet, 

(b) VGG-19, (c) VGG-16 second row resultant to proposed fusion, (d) AlexNet-VGG-19, (e) AlexNet-VGG16, 

and (f) VGG-19−VGG-16 of UC Merced dataset 
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(a) (b) (c) 
   

   

   
   

(d) (e) (f) 
 

Figure 6. First row consistent to single-layered confusion matrix using three pre-trained networks: (a) AlexNet, 

(b) VGG-19, (c) VGG-16 second row resultant to proposed fusion, (d) AlexNet−VGG-19, (e) AlexNet−VGG-16, 

and (f) VGG-19−VGG-16 of SIRI-WHU dataset 
 

 

  
 

Figure 7. Proposed fusion-based networks versus pre-trained networks comparison of using (a) UC Merced 

and (b) SIRI-WHU datasets 
 

 

  
  

Figure 8. Comparison of F1 results when compared to 

pre-trained networks the UC Merced dataset improved 

classes using the suggested fusion networks 

Figure 9. Comparison of F1 scores SIRI-WHU dataset 

improved classes using suggested fusion networks 

compared to ones that have already been pre-trained 
 



TELKOMNIKA Telecommun Comput El Control   

 

Competent scene classification using feature fusion of … (Thirumaladevi Satharajupalli) 

813 

From the UCM dataset, Figure 8 depicts the F1 scores. Individual pre-trained networks and 

proposed fusion-based approaches are presented with F1 scores of improved classes. The proposed fusion 

approach benefits a wide range of classes, including denseresidential, which improves accuracy from 20% to 

68%, golfcourse, river, runway, sparseresidential, which improves accuracy from 90% to 100%, and 

baseballdiamond, intersection, storagetanks, and tenniscourt. 

Figure 9 displays the SIRI-WHU dataset’s recommended fusion networks and single-layered pre-trained 

networks F1 scores. As can be observed, the recommended strategy improves scores in the majority of classes. 

In the SIRI-WHU dataset, the river and pond improves from 70% to 95%. The classes industrial, overpass are 

achived 80 to 90 % and majority of categories scored above 95%. 
 

 

4. CONCLUSION 

Significant advances in remote sensing technology have presented us with a torrent of remote 

sensing data for scene categorization using images from remote sensing throughout the previous decade. 

Because there is a scarcity of freely available remote-sensing image data, especially for deep learning-based 

expertise, which severely restricts the development of new approaches. The purpose of this research was to 

investigate in what manner machine learning also fusion network designs performed while categorizing data. 

Using the UCM and SIRI-WHU datasets, classification was done on three feasible architectures: AlexNet, 

VGG-19, and VGG-16. With accuracy from a pre-trained network of 89 percent, 90 percent, and 91 percent 

for the UCM dataset and 91 percent, 92 percent, and 93 percent for the SIRI-WHU dataset, the suggested 

methodology improved the state-of-the-art and created a standard. The classification results of the machine 

learning concept were compared using SVM. The use of fusion networks has been proven to be an effective 

strategy for optimal outcomes. This methodology can only determine the linear correlation between two 

features. Future extensions could include handling non-linear feature spaces with more than two dimensions. 
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