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 This study aimed to develop a brain-computer interface that can control an 

electric wheelchair using electroencephalography (EEG) signals. First, we used 

the Mind Wave Mobile 2 device to capture raw EEG signals from the surface of 

the scalp. The signals were transformed into the frequency domain using fast 

Fourier transform (FFT) and filtered to monitor changes in attention and 

relaxation. Next, we performed time and frequency domain analyses to 

identify features for five eye gestures: opened, closed, blink per second, 

double blink, and lookup. The base state was the opened-eyes gesture, and we 

compared the features of the remaining four action gestures to the base state to 

identify potential gestures. We then built a multilayer neural network to 

classify these features into five signals that control the wheelchair’s 

movement. Finally, we designed an experimental wheelchair system to test the 

effectiveness of the proposed approach. The results demonstrate that the EEG 

classification was highly accurate and computationally efficient. Moreover, 

the average performance of the brain-controlled wheelchair system was over 

75% across different individuals, which suggests the feasibility of this 

approach. 
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1. INTRODUCTION 

Brain-computer interfaces (BCI) are devices that acquire and analyze brain activities, then convert 

them into output signals to control desired actions. BCI technology has found applications in several fields, 

including rehabilitation robotics [1], [2], driver fatigue monitoring [3], [4], gaming [5], and cognitive 

biometrics [6], [7]. Several techniques can be used to measure brain signals, such as electroencephalography 

(EEG) [8], magnetoencephalography (MEG) [9], and functional magnetic resonance imaging (FMRI) [10]. 

Among these methods, EEG is widely used in many applications because it is cost-effective, easy to use with 

minimal training, and can be used for mobile testing. EEG measures the electrical activity of the brain 

through electrodes placed on the scalp and is divided into six main frequency bands: delta (0.5−4 Hz), theta 

(4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz), gamma (30−50 Hz), and high gamma (80−150 Hz). Two key 

challenges in improving the performance of EEG classification are how to use spectral analysis techniques to 

extract useful features from EEG signals and how to design a robust classifier. 

With spectral analysis of the EEG signals, there are various techniques used. For example, 

Adeli et al. [11] proposed the wavelet transform to analyze and characterize the EEG signal of the 3-Hz spike 
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and slow-wave epileptic discharges. Li et al. [12] proposed a quantum wavelet packet transformation 

(QWPT) module to extract the wavelet packet energy entropy feature of the multi-channel and multi-sample 

EEG signal. Rahman et al. [13] introduced a hybrid principal component analysis (PCA) and t-statistical 

approach for feature extraction of emotion from multichannel EEG signals. Bajaj et al. [14] proposed a 

tunable Q-factor wavelet transform (TQWT) to extract the non-stationary characteristic of the EEG signal for 

identifying a neurological change in alertness and drowsiness states. A short-time Fourier transform (STFT) 

was used to analyze EEG signals to obtain time-frequency representations [15], [16]. Li and Chen [17] 

applied a fast Fourier transform (FFT) to generate the EEG matrix and PCA neural network to learn the 

hidden information from the frequency matrix of EEG signals. FFT was also used to extract features of stroke 

patients’ EEG signals [18]. The choice of the appropriate spectral analysis technique depends on the 

complexity and characteristics of the EEG signals to be analyzed. FFT is a suitable method due to its time-shift 

invariance in both time and frequency domains and its computational efficiency. 

To design a powerful classifier, machine learning (ML) techniques have been applied for EEG 

classification. For example, Sharma et al. [19] showed the performance of the multi-layered perceptron 

(MLP) model classified the EEG signals with 90% accuracy and half the classification time compared to 

traditional ML-based models (i.e., support vector machines, k-nearest neighbors, random forest, logistic 

regression, and Bayes). In [15], [20]–[23] introduced a convolutional neural network (CNN) for EEG 

classification. In addition, many other ML techniques were also used for classification such as extreme 

learning machine (ELM) [3], [24], ensemble support vector learning (ESVL) [25], quantum machine learning 

(QML) [12], long short-term memory (LSTM) and variants [26], [27], recurrent neural network (RNN) [28], 

you only look once (YOLO) algorithm [29]. These classifiers can be trained on either raw EEG signals or 

meaningful features extracted from pre-processed signals in the time and frequency domains. However, 

a dataset is a set of images or series, so the computational cost is quite large. By selecting appropriate 

features and classifiers, the classification performance of EEG signals can be greatly improved.  

In this study, we use Mind Wave Mobile 2 to measure raw EEG signals from the surface of the scalp. 

The signals are then transformed into the frequency domain using FFT. To extract meaningful features for 

classification, we analyze the signals in both the time and frequency domains and obtain 9 features including 

amplitude, peak frequency, phase, period, and root mean square for 5 action gestures: opened-eyes, closed-eyes, 

blink per second, double blink, and lookup. Before analysis, noise in the appropriate frequency bands is removed 

through filtering. Subsequently, these features are fed into MLP neural networks for classification of 5 signals to 

control wheelchair movement: forward, backward, turn left, turn right, and stop. Finally, we test the experimental 

wheelchair system on 5 different individuals to evaluate the effectiveness of our proposed approach. 

The rest of this paper is structured as: in section 2, we present our methodology for feature extraction 

and classification using neural networks. Section 3 provides an in-depth analysis of our EEG classification 

results, along with the brain-controlled wheelchair. Finally, in section 4, we draw our conclusions based on the 

findings of this study. 
 

 

2. METHOD 

2.1.  EEG-based brain-controlled wheelchair approach 

The diagram in Figure 1 illustrates the process of measuring, extracting, analyzing, and classifying 

EEG signals. It includes components such as data acquisition, feature extraction, classifier-based MLP neural 

networks, and a wheelchair system. In which, the MindWave Mobile 2 is used to measure EEG signals from 

the surface of the scalp, and to transmit power spectrum data to a computer via Bluetooth. The analysis is 

focused on 5 action gestures: opened-eyes, closed-eyes, blink per second, double-blink, and gaze direction 

(look-up). The features of the EEG signals are analyzed in both the time and frequency domains and are then 

used as inputs for the neural network classifier. The output of the classifier is sent as control signals through 

RF networks to operate a wheelchair. 

 

2.2.  EEG feature extraction 

After collecting the EEG data, it was analyzed and filtered to monitor changes in attention and 

relaxation. The frequency domain was transformed using FFT, and a set of potential features was extracted, 

which included 4 time-domain and 5 frequency-domain features. The time-domain EEG feature extraction 

comprised the maximum, minimum, mean, and root mean square (RMS) of frequency components less than 

30 Hz. In the frequency domain, the EEG feature extraction involved the mean and maximum of the alpha 

band within the range of 8−13 Hz, the mean and maximum frequencies of the delta and theta bands in the 

range of 1−7 Hz, and the peak frequency. These 9 features were then inputted into the MLP neural network, 

which classified them into 5 control signals for the wheelchair. 
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Figure 1. Block diagram of EEG-based brain-controlled wheelchair 
 

 

2.3.  EEG classification using MLP neural model 

This section employs MLP neural networks for EEG classification. The architecture of the MLP 

neural classifier includes the input layer 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘) , . . . , 𝑥9(𝑘)] represents the 9 features of the 

EEG signal. The output layer 𝑦(𝑘) = [𝑦1(𝑘), 𝑦2(𝑘) , . . . , 𝑦5(𝑘)] consists of the 5 output signals of the 

classified neural network, namely opened-eyes, closed-eyes, blinks per second, double blink, and look-up, 

respectively. 𝑣𝑗𝑛 denotes the weighting value of the input layer, 𝑤𝑚𝑗  represents the weighting value of the 

hidden layer. 𝑓𝑗(. ) denotes a sigmoid function at the hidden layer, 𝐹(. ) represents a linear activation 

function at the output layer, respectively. We determine the output neural model as: 
 

𝑦𝑖(𝑣, 𝑤) = 𝐹𝑖(∑ 𝑤𝑖𝑗𝑓𝑗(∑ 𝑣𝑗𝑙𝑥𝑙
𝑚
𝑙=1 )

𝑞
𝑗=1 ) (1) 

 

In the training process, both the input vector 𝑥 and the output vector 𝑦𝑟𝑒𝑓  are known and the 

synaptic weights (𝑣, 𝑤) are adapted to obtain appropriate functional mappings from the input 𝑥 to the output 

𝑦𝑟𝑒𝑓 . Generally, the adaptation process can be carried out by minimizing the network error function which is 

based on a measure of closeness in terms of a mean sum of square error (MSSE) criterion: 
 

𝑀𝑆𝑆𝐸((𝑣, 𝑤) , 𝑍𝑁) =
1

2𝑁
∑ [𝑦𝑟𝑒𝑓(𝑘) − 𝑦(𝑘|(𝑣, 𝑤))]

𝑇
[𝑦𝑟𝑒𝑓(𝑘) − 𝑦(𝑘|(𝑣, 𝑤))]𝑁

𝑡=1  (2) 

 

Where, the training data 𝑍𝑁 is specified by 𝑍𝑁 = {[𝑥(𝑘), 𝑦𝑟𝑒𝑓(𝑘)]|𝑘 = 1, . . . , 𝑁}.  
 

 

3. RESULTS AND DISCUSSION 

3.1.  Extracted features dataset 

The data was collected by measuring each person’s actions for 30 minutes, corresponding to five 

different gestures: opening their eyes, closing their eyes, blinking per second, double blinking, and looking up. 

EEG raw data was collected and pre-processed to remove electrical signal noise at 30 Hz. The detailed 

analysis of one participant’s features is as: the base state is the opened-eyes gesture, and the features of the 

remaining four action gestures were compared to the base state to identify potential gestures. Figure 2 

displays both the EEG raw signal in the time domain and the EEG signal in the frequency domain after FFT. 
 

 

  
 

Figure 2. EEG signal pattern when opened-eyes 
 
 

After analyzing numerous signal samples, it was found that the “eyes-closed” features differ from the 

eyes-opened features in the alpha frequency range (8−13 Hz), particularly in the frequency range of 9−11 Hz, 

as depicted in Figure 3(a) and Figure 3(b). Table 1 shows the extracted features, including the maximum and 

mean amplitude of the alpha frequency range (9−11 Hz). We see that mean amplitude of eyes-closed signal is 

4.5 times larger than eyes-opened signal. 



TELKOMNIKA Telecommun Comput El Control   

 

Electroencephalography-based brain-computer interface using neural networks (Pham Van Huu Thien) 

1071 

When analysing the blink action gesture, it becomes evident that the blink per second and double 

blink features differ from the opened-eyes features in the time domain and in the frequency range of 1−7 Hz, 

as shown in Figure 4(a), Figure 4(b), Figure 4(c), Figure 5(a), Figure 5(b) and Figure 5(c). Table 2 provides 

the feature extraction details for the opened-eyes, blink, and double blink gestures, including the maximum 

and mean amplitude, peak frequency (fmax) in the 1−7 Hz range, and maximum, minimum, and mean 

amplitude in the time domain. The results show that the features are sufficiently different to distinguish 

between the blink per second and double blink features. 

Only one gaze direction gesture called the look-up, which involves moving the gaze from the center to 

the top. The EEG signal analysis in the frequency domain does not differ from the base state of opened-eyes, 

except in the time domain, as shown in Figure 6(a) and Figure 6(b). To extract features in this case, a low-pass 

filter was utilized to eliminate the component signal with a frequency greater than 30 Hz. After completing the 

filtering process, the root mean square (RMS) amplitude in the time domain was 141.96 and 1817.51 for 

opened-eyes and look-up, respectively. 
 

 

Table 1. Opened-eyes and closed-eyes feature extraction 

Gesture 
Alpha signal in (9-11Hz) range 

Max (dB) Mean (dB) 

Opened-eyes 2.70 2.17 

Closed-eyes 14.09 9.80 

 
 

  
  

(a) (b) 
 

Figure 3. EEG alpha signal pattern in (9−11 Hz) domain: (a) opened-eyes and (b) closed-eyes 
 
 

   
   

(a) (b) (c) 
 

Figure 4. EEG pattern of opened-eyes, blink, double blink in (1-7 Hz) domain: (a) opened-eyes, (b) blink per 

second, and (c) double blink 
 
 

Table 2. Opened-eyes, blink, and double-blink feature extraction 

Gesture 
1−7 Hz frequency domain (dB) Time-domain (uV) 

Max Mean fmax Max Min Mean 

Opened-eyes 42.65 10.27 1 Hz 106.00 -13.00 42.65 

Blink 72.54 44.23 3 Hz 440.00 -280.00 44.39 

Double blink 264.98 64.62 6 Hz 551.00 -297.00 47.51 

 

 

In summary, a total of 300 samples were collected from 1 participant shows as Table 3. The dataset was 

split into two categories: 210 samples for training data and 90 samples for validating and testing data. The table 

includes 𝑥1 and 𝑥2, which represent the maximum and mean amplitude in the 9−11 Hz range, respectively. 
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𝑥3, 𝑥4, and 𝑥5 indicate the maximum, mean, and peak frequency in the 1−7 Hz range, respectively. 𝑥6, 𝑥7, 𝑥8, 

and 𝑥9 denote the maximum, minimum, mean, and RMS in the time domain, respectively. Finally, 𝑦1 to 𝑦5 are 

the five gestures considered in this study, namely opened-eyes, closed-eyes, blink per second, double-blink, and 

look-up. 
 
 

   
   

(a) (b) (c) 
 

Figure 5. EEG pattern of opened-eyes, blink, double blink in the time domain: (a) opened-eyes, (b) blink per 

second, and (c) double blink 
 

 

  
  

(a) (b) 
 

Figure 6. EEG pattern of opened eyes and look-up in the time domain: (a) opened-eyes and (b) look-up 
 
 

Table 3. The data set extracted features for classification 

No 
𝑥-input 𝑦-output 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 1 2 3 4 5 

1 6 3 44 12 1 120 -40 44 216 1 0 0 0 0 
… … … … … … … … … … - - - - - 

60 10 8 40 13 1 106 -65 40 194 1 0 0 0 0 

61 7 5 40 10 1 115 -40 40 455 0 1 0 0 0 
… … … … … … … … … … - - - - - 

120 8 7 54 12 1 167 -28 54 454 0 1 0 0 0 

121 46 34 98 71 4 664 -350 44 293 0 0 1 0 0 
… … … … … … … … … … - - - - - 

180 87 75 93 52 3 691 -291 49 268 0 0 1 0 0 

181 94 75 187 103 6 614 -305 55 358 0 0 0 1 0 
… … … … … … … … … … - - - - - 

240 91 63 248 90 5 677 -289 56 323 0 0 0 1 0 

241 11 6 35 15 1 182 -110 35 1563 0 0 0 0 1 
… … … … … … … … … … - - - - - 

300 11 8 53 12 1 214 -156 53 1944 0 0 0 0 1 

 
 

3.2.  EEG classification results 

In this section, the neural network toolbox of MATLAB is utilized to perform EEG classification 

using the data set described in Table 3. After a trial and error run, the number of suitably hidden layer 

neurons is determined to be 9. The MLP neural model is trained using 20 epochs, with mean squared error 

(MSE) value of 6.10−9 obtained for the training data and 1.10−8 for the testing data. The MSE value for 

EEG classification is 0.0065597. Figure 7 depicts the MSE achieved during the training of the MLP model. 

Following successful training, the MLP neural model is employed for EEG classification to control the 

electrical wheelchair. 
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Figure 7. MSE in training MLP neural model for EEG classification 

 

 

3.3.  Controlling wheelchair 

3.3.1. Experimental wheelchair configurations 

In Figure 1, a flowchart of EEG data acquisition based on MindWave Mobile 2 to control a 

wheelchair is shown. The wheelchair is capable of moving in five different directions, namely forward, 

backward, left turn, right turn, and stopping. The experimental wheelchair’s architecture is presented in 

Figure 8(a) and a flowchart of EEG classification is shown in Figure 8(b). 

In this system, [H1] and [H2] are permanent magnet motors that operate on 24 volts, with a power 

rating of 250 watts, and are equipped with a 75 RPM reduction gearbox. [H3] comprises a pair of power 

supplies that provide power to the wheelchair system. [H4] is a microcontroller board that transmits and 

receives EEG data from the computer via the ZigBee RF transceiver module [H8]. It also controls the speed of 

the two motors for movement and measures signals from the ultrasonic sensor [H5] located at the front and back of 

the wheelchair to avoid obstacles. [H6] is an integrated circuit consisting of two H-bridges that utilize Mosfet 

IRF3205 to drive two motors with a maximum current of 10 A for each motor (maximum current of up to 30 A). 

 

 

   
   

(a) (b) 

 

Figure 8. Wheelchair systems and flowchart of EEG classification: (a) photo of wheelchair and (b) flowchart 

 

 

3.3.2. Flowchart to control a wheelchair 

In sub-section 3.2, we extracted 9 features and utilized the MLP neural model to classify them into 5 

gestures, namely opened-eyes, closed eyes, blink per second, double-blink, and look-up. However, in reality, 

only 3 gestures, namely closed eyes, look-up, and double-blink, are suitable for controlling a wheelchair. 

Two gestures consisting of opened eyes and a blink per second are not feasible, since these gestures are 

infrequent human occurrences. In light of this, the authors propose a method of controlling the wheelchair 

based on the 3 above gesture signals, as demonstrated in Table 4. In which, 3 gestures including closed-eyes, 

look-up, and double-blink are denoted as A, B, and C, respectively. Figure 8(b) shows a flowchart to read 

EEG signals via MindWave Mobile 2 and classification based on MLP neural model on the embedded 

computer to send signals to control the wheelchair. 
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Table 4. EEG signal frame to control a wheelchair 

No 
Control signal 

Wheelchair 
Frame 1 Frame 2 

1 B B Move forward 

2 B C Turn left 

3 C B Turn right 
4 C C Move backward 

5 A  Stop 
 

 

3.3.3. Wheelchair performance results 

The wheelchair is operated by 5 participants, in which 1 person is got data set for training and 

validating MLP neural model in part 3.2, 1 disabled person, and 3 normal people. Each person controls the 

wheelchair 20 times. Table 5 shows the wheelchair performance results of 5 participants.  

Based on the above results, an accuracy of 78% was attained for forward and backward movement, with 

72% for turning right, 68% for turning left, and 70% for stopping. The highest accuracy of 92% was recorded for 

the 5th individual whose sample data was used for training and validating the MLP neural classifier. Conversely, 

the lowest accuracy of 50% was achieved by the 1st individual due to the limitations of using brain waves to control 

eye movements. The 2nd to 4th participants were not familiar with using brain waves to control eye gestures and 

had yet to undergo MLP neural network training, resulting in accuracies ranging from 68% to 80%. Although 

the wheelchair performed well overall, all participants should be trained before using it to increase accuracy. 
 

 

Table 5. The wheelchair performance results 

Operation 
Disabled person Normal people not yet training Trained 

Avarage 
1 2 3 4 5 

Move forward 6/10 7/10 8/10 8/10 10/10 78% 

Move backward 5/10 7/10 9/10 8/10 10/10 78% 
Turn left 4/10 6/10 8/10 7/10 9/10 68% 

Turn right 4/10 7/10 8/10 8/10 9/10 72% 

Stop 6/10 7/10 7/10 7/10 8/10 70% 
Avarage 50% 68% 80% 76% 92% 73.2% 

 

 

4. CONCLUSION 

The study successfully extracted 9 features from 5 distinct action gestures, namely opened-eyes, 

closed-eyes, blink per second, double blink, and lookup, both in the time and frequency domains. These features 

were then processed and classified using MLP neural networks to effectively control the movement of a 

wheelchair, including forward, backward, left, right, and stopping. The experiment aimed to evaluate the 

effectiveness of this approach, which resulted in a remarkable 99% accuracy in EEG classification performance. 

Moreover, the average performance of the brain-controlled wheelchair achieved by 5 individuals was over 75%, 

indicating the system’s robustness and practicality. However, due to the EEG device’s fixed position with only 

one pair of sensors, it could only receive brain waves related to concentration and meditation, limiting its ability 

to receive signals from other brain regions. Additionally, collecting EEG data from stimuli that cause eye 

fatigue is not ideal. To address these limitations, future work will use EEG sensors that measure multiple points, 

specifically in the posterior brain regions, to directly collect Mu waves related to EEG motor imagery signals to 

better classification of motor intentions and enhanced control of the wheelchair. 
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