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 The combination of hyperspectral imaging and artificial neural network 

(ANN) can predict fruit ripeness. This work investigated the application of 

hyperspectral imaging and ANN models with the k-fold cross-validation 

method for ripeness prediction of oil palm fresh fruit bunches (FFB) for in-

line sorting and grading machine vision. Crude palm oil (CPO) is an 

exporting commodity for countries such as Indonesia and Malaysia. Oil 

palm FFB ripeness determines the quality of CPO. The unique shapes and 

colors of FFBs need innovative methods to substitute tedious and 

cumbersome manual sorting and grading. The oil palm FFB samples used in 

this study were categorized previously based on color and loosed fruits. We 

applied the Savitzky-Golay (SG) smoothing filter and 7-fold cross-validation 

for hyperspectral datasets before being used for the ANN models and a 

confusion matrix to find the ANN model accuracies. We obtained 72 data 

points after SG filter and data selection from 523 data points. The prediction 

results showed an average accuracy of 79.48%, in which three folds with k 

of 2, 5, and 7 gave the highest accuracy of 90%. The results confirmed the 

potential use of hyperspectral imaging, with k-fold cross-validation and 

ANN models for ripeness prediction of oil palm FFBs. 
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1. INTRODUCTION  

Computer vision is an imaging technique using a computer and a camera that has had many 

applications in agriculture. It has flourished in the last two decades for evaluating the quality of fruits and 

vegetables. Ripeness, external or internal damages, and chemical contents are among the quality attributes 

often used for classifications and predictions of fruits and vegetables [1]. Machine vision uses computer 

vision with other instruments to perform automatic tasks, especially for non-destructive and fast sorting and 

grading of fruits and vegetables. Machine vision aims to substitute tedious, time-consuming sorting and 

grading process [2]. Computer vision obtains images of fruits and vegetables and performs many steps, such 

as preprocessing, segmentation, feature extraction, and classification. Information extracted from the 

resulting images can represent the qualities of fruits and vegetables based on external and internal 

characteristics [3].  

Computer vision methods have evolved rapidly due to technological advances in computers, image 

detectors, and image processing methods. Conventional computer vision uses a color camera and white light. 

It is applied to assess the external characteristics of fruits, such as color, shapes, sizes, or textures. Spectral 

imaging is a computer vision technique that combines imaging methods and spectroscopy. It has not only 
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spatial but also spectral information. Spectral imaging includes hyperspectral and multispectral imaging. 

Hyperspectral imaging has more advantages over traditional imaging due to continuous wavelength region 

coverage, providing higher image resolution [4]. It can predict maturity and ripeness based on the internal 

characteristics of fruits and vegetables [5]. Hyperspectral imaging has been used widely in food industries for 

evaluating the quality and safety of food products [6]. It has been able to predict apple internal quality [7], 

moisture content (MC), dry matter content (DMC), firmness (F) of dates [8], and dry matter content of 

avocado [9]. 

Many types of computer vision require machine learning to classify fruits and predict fruit qualities, 

including hyperspectral imaging. Machine learning is part of artificial intelligence used intensively in 

computer vision. It contains algorithms to analyze, learn, and make decisions from datasets. Deep learning is 

the advancement of machine learning which is more robust because it has complex algorithms. It is in 

demand since many multifaceted problems are found in fruit and vegetable classification [10]. Artificial 

neural networks (ANN) and convolutional neural networks (CNN) are two types of deep learning methods 

used in many applications in fruit classification. This machine learning type has been applied with 

hyperspectral imaging to classify or predict fruit physical-chemical characteristics, such as predicting 

firmness and soluble solid contents of Korla pear [11] and tomatos [12]. 

Classification of fruit and vegetables using hyperspectral imaging and ANN model need reliable input 

datasets. Some image preprocessing steps are essential for hyperspectral datasets due to random noise from 

many sources, such as misalignments of optical components, sensor sensitivity, and inappropriate reflectance 

calibrations [13]. One of the preprocessing techniques for hyperspectral datasets is Savitzky-Golay (SG) 

filtering. SG filtering performs curve fitting successive subsets of an adjacent dataset using the least-squares 

digital polynomial smoothing filter [14]. This method has been used for hyperspectral images of peanut seed 

vigor [15] and strawberry water content estimation and ripeness classification [16]. The next step after SG 

filtering is to validate the training datasets using k-fold cross-validation. K-fold cross-validation is one of the 

methods used to validate an estimation model and find reliable variables [17]. It is a popular procedure for 

evaluating the performance of classification algorithms [18]. This technique is part of preprocessing methods 

used in machine learning for wide-ranging problems, such as predicting the notch frequency of an 

ultra-wideband (UWB) antenna [19] and quality attributes of orange fruit using hyperspectral imaging [20].  

Crude palm oil (CPO) is one of the export commodities which contribute to the economic growth of 

countries in Southeast Asia, such as Indonesia and Malaysia. However, these industries have faced crucial 

problems such as CPO quality, process automation, and environmental issues that challenge the industry 

sustainability. Small holder plantations have less access to certification bodies [21]. Oil palm fresh fruit 

bunches (FFBs) are the source of CPO. The main CPO quality attributes are oil contents and free fatty acids, 

which relate to the ripeness of oil palm FFBs. High oil contents and low free fatty acids are the desirable 

qualities of oil palm FFBs arriving in a palm oil refinery. Sorting and grading FBBs are very crucial 

processes in obtaining high-quality FFBs. However, in practice, they are still done manually and 

destructively. Electronic sensors and imaging techniques were capable to predict the ripeness levels of oil 

palm FFBs and improve the sorting and grading processes. A detection system has used a 670 nm light 

source and an optical sensor to determine the FFB ripeness levels [22]. Moreover, imaging techniques such 

as thermal imaging [23], laser-induced fluorescence imaging [24], and near-infrared (NIR) spectroscopy [25] 

have been proposed to determine and predict FFB ripeness. 

In this study, we developed a hyperspectral imaging-based machine vision that suits the environment 

in the reception area at a palm oil refinery facility. The system consisted of a conveyor unit, a hyperspectral 

imaging unit, a light-tight box, and an image processing software unit. Hyperspectral imaging has been used 

for oil palm FFB ripeness detection with K-mean clustering analysis [26] and ANN model [27]. Most of the 

innovations regarding the prediction of oil palm applied traditional computer vision and other instruments. 

Traditional computer vision uses a webcam or smartphone with color spaces such as red green blue (RGB) or 

hue saturated value (HSV). Bulge and commercial spectrometers were also used which are difficult to 

integrate for real-time machine vision. Some systems were on a laboratory scale. More study is necessary to 

implement efficiently hyperspectral imaging and ANN model in a real-time oil palm FFB sorting and grading 

machine vision. We proposed a feed-forward ANN model to predict FFB ripeness levels, categorized as 

unripe (immature) and ripe (mature). We used SG filtering and k-fold cross-validation techniques on the 

datasets of spectral reflectance intensities, resulting from the hyperspectral imaging system before being used 

in the ANN model. A confusion matrix measured the accuracy of the prediction. We used self-written 

Matlab-based software to do the image processing and analysis process. This paper contains an introduction, 

method, results, and discussion, followed by a conclusion. 
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2. METHOD 

Designing ANN models with k-fold cross-validation for predicting the ripeness levels of oil palm 

FFBs required some stages. The first stage was the acquisition of FFB images using a hyperspectral imaging 

system. The second was to resize and reduce the format of the hyperspectral images and calibrate each image 

using a white reference image and a dark image. The next stage was to impose the region of interest (ROI) 

and average to obtain spectral data represented by the average reflectance intensities versus wavelength for 

each FFB. Later, SG smoothing and K-fold cross-validation would validate the spectral datasets for the ANN 

model. The last step was to design and implement the ANN on the hyperspectral datasets. We used a 

confusion matrix to measure the prediction performance and a graphical user interface (GUI) to display the 

SG smoothing and ANN prediction. 

  

2.1.  Hyperspectral images 

The hyperspectral images of oil palm FFB were acquired using a hyperspectral imaging system, as 

shown in Figure 1 [26]. The system consisted of a Sentech NIR Monochrome camera with a resolution and 

sensor size of 2.2 MP and 2/3”, a specim impector V10 spectrograph in 400-1000 nm (Vis-NIR) region, a pair 

of Dolan Jenner halogen line light sources, a belt conveyor, and a control unit. The camera has Senko 25 mm, 

2/3” lens. The hyperspectral imaging system used a line-scanning scheme controlled using a MATLAB-based 

acquisition program and contained in a light-tight or black box to minimize room light. The distance from the 

camera lens end to the conveyor surface was 83 cm. The line lights were positioned at each box side forming 

45° angle to the vertical line. 

 

 

 
 

Figure 1. The optical and hardware components of the hyperspectral system 

 

 

This study used samples of oil palm FFBs from a vicinity plantation about 7 kilometers from our 

laboratory. The harvested Tenera FFB samples were categorized previously as fractions F0, F1, F2, F3, and 

F4 based on color changes and the number of loosed fruits [23], helped by experienced harvesters. The 

standards for ripeness fractions categorize F0 and F1 as unripe, F2 and F3 as ripe, and F4 as the overripe. The 

FFB fractions were classified further for this study as unripe or immature (F0, F1) and ripe or mature (F2, F3, 

and F4) since F4 fraction FFBs are acceptable in the sorting area. Table 1 shows the color images of unripe 

and ripe oil palm FFBs captured from three sides, where the FFB back side image was uncounted due to 
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infertile fruits on half of the side. Unripe or immature FFBs have colors ranging from blackish to purple, 

while the ripe or mature FFBs have red to orange colors with some loosed fruit from bunches. Each FFB has 

a ripeness fraction symbol on its stalk for easy identification.  

Image acquisition was performed on each oil palm FFB moving on a conveyor. First, a calibration 

was made for the hyperspectral optical unit using three visible lasers with 405 nm, 532 nm, and 650 nm 

wavelengths. It aimed to calibrate pixels on the wavelength axis of a hyperspectral cube image where the 

Specim v10 spectrograph specim has a wavelength range of 400-1,000 nm. We have 23 image acquisition 

times for building the ANN model dataset. Each had 8 FFBs consisting of 4 ripeness fractions (184 FFBs). 

The FFBs were scanned immediately within 24 hours after harvesting to maintain the ripeness levels. The 

image acquisition used a line scan scheme with 250 frames per second speed. We also took white and dark 

reference images. The acquisition process saved the recorded images in matfile (.mat) format for image 

processing.  

 

 

Table 1. Images of three sides of an oil palm bunch 
Ripeness category Front side Right side Left side 

    

Unripe (immature) 

   
Ripe (mature) 

   
    

 

 

2.2.  Image preprocessing and spectral mean conversion 

The image processing for oil palm FFB images aimed to obtain the reflectance intensities of light in 

the wavelength range of 400–1000 nm. The oil palm FFB images obtained using the hyperspectral system 

and MATLAB acquisition software have a size of 1088×2048 px in 4D format. The first step of the image 

processing was to resize the images for faster image processing time and convert into 3D format and store 

them in Matfile (mat) format. The 3D spectral images had a matrix format of (𝜆, 𝑦, x) with 𝜆 as wavelength 

and 𝑥, 𝑦 as spatial coordinates. One of the essential steps in spectral image processing is to correct each 

spectral image using a standard white reference image and a dark image. The (1) shows the relation of the 

corrected intensity (𝐼𝑐) as the function of 𝐼𝑟 , 𝐼𝑑, and 𝐼𝑤 were the raw hyperspectral image intensity, the dark 

image intensity, and the white reference image intensity, respectively [26]. 

 

𝐼𝑐 =
𝐼𝑟−𝐼𝑑

𝐼𝑤−𝐼𝑑
 (1) 

 

The resized, reduced, and corrected spectral images had a dimension of (𝜆, 𝑦, 𝑥). Then, the spectral 

images were converted to images of a matrix format of (𝑥, 𝑦, 𝜆). The final hyperspectral images had a size of 

(1024×1088×544), which has 544 wavelengths. Spectral mean conversion for each image was performed to 

get mean reflectance intensities for a wavelength range of 400–1,000 nm for each FFB sample [13]. The 

image processing stage obtained 523 useable spectral data points. 

 

2.3.  Smoothing and k-fold cross-validation 

Smoothing is a preprocessing step before the hyperspectral images available for the ANN classifier. 

The hyperspectral images contain random noise due to optical misalignment, inhomogeneous lighting, and 

sensor noise. Here SG filter functioned to smooth the dataset. After conversation and resizing, the spectral data 
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become a matrix with a size of 𝑁×544, which 𝑁 is the number of spectral data. It means each spectral data has 

a spectrum with wavelengths of 544. Each spectrum plot consists of reflectance intensity on the y-axis  

and wavelength on the x-axis. In this study, we used the MATLAB program to do SG smoothing. SG filter 

was performed on a window portion of the hyperspectral spectrum using a polynomial function to fit by the 

least square method [14]. We used framelen of 11 and an order of 3 for the polynomials, with a dt of 1/551. 

The training and testing data need to be compatible with the ANN classifier. Therefore, data selection 

is crucial. The total number of data points obtained previously was 523. However, not all the data points are 

suitable for designing the ANN model. Data selection tries to find the average of the data points and choose 

the data point closest value to the average value. This technique aims to reduce error when applied to the ANN 

classifier. This process resulted in 72 data points, ready to be inputted into the ANN classifier. 

Cross-validation is one of the machine learning techniques used to evaluate and test a classifier model. 

The cross-validation method has many forms, which include k-fold cross validation. The k-fold cross-validation 

aims to select training and testing datasets to have ANN models with higher accuracy. Another objective of 

k-fold cross validation is to avoid a classifier mode having an overfitting condition.  

We divided evenly, randomly the 72 data points into seven parts or subsets [18] as shown in  

Table 2. Each subset is called the k-fold. There existed 7-fold (fold 1–fold 7) where folds 3 and 4 had 11 data 

points, and other folds had 10 data points, respectively. Iteration of fold 3 and fold 4 had 11 testing data 

points and 61 training data points hence training ratio was 15:85. For folds 1, 2, 5, 6, and 7, each had 10 

testing data points and 62 training data points, hence had a training ratio of 13:87. Each fold was tested for its 

accuracy and compared to the other folds. Fold with the highest accuracy will be used for the ANN model.  

Table 2 shows the partition of the 1st to 7th fold with seven iterations. At the first iteration, 1st fold 

subset was used as testing data, while 2nd to 7th fold subsets were the training data. Similarly, at the second 

iteration, the 2nd fold subset was used as the testing data, 1st fold, and the 3rd fold-the 7th fold subsets were the 

training data. The iteration process would continue correspondingly. After the iteration process, the accuracy 

of each subset was calculated. This process intended to find the average accuracy level of the designed ANN 

model and which k-fold had the highest accuracy. 

 

 

Table 2. Separation of training and testing data 
Cross validation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 

Iteration 1 Test Train Train Train Train Train Train 
Iteration 2 Train Test Train Train Train Train Train 

Iteration 3 Train Train Test Train Train Train Train 

Iteration 4 Train Train Train Test Train Train Train 
Iteration 5 Train Train Train Train Test Train Train 

Iteration 6 Train Train Train Train Train Test Train 

Iteration 7 Train Train Train Train Train Train Test 

 

 

2.4.  Designing and implementation of ANN model 

After completing the k-fold cross-validation process, we designed an ANN. The ANN was a 

feedforward ANN with backpropagation functions. Figure 2 shows the architecture of the ANN. It has  

499-10-1 that indicates 499 inputs, 10 hidden layers, and one 1 output. Input data consisted of 72 data points, 

each having a value of 544. The ANN used training ratios of 13:87 and 15:85 as described previously in  

k-fold cross-validation process.  

The next step was to use the ANN model for the oil palm FFB ripeness prediction. Before predicting 

the ripeness levels of oil palm FFB, the ANN was trained using data subsets from the k-fold cross-validation 

until reaching the optimal results. The ANN parameters include epochs of 100 and learning rate of 0.1. The 

ANN system was written in MATLAB language of version 9.8.0.1323502 and equipped with GUI. GUI 

displayed the hyperspectral spectrum before and after smoothing using the SG filter. It can also show the 

estimation result for ripeness levels of oil palm FFBs. The ANN model was implemented on the 

hyperspectral images taken using the imaging system. The ANN algorithms were considered potential to be 

implemented if the prediction accuracy was more than 75%. 

 

2.5.  Accuracy analysis using confusion matrix 

Using metrics is the final step to measure the accuracy of the ANN model for the hyperspectral 

images. Confusion matrix is one of the popular methods to measure ANN classifier performance. A confusion 

matrix aims to describe estimation model performance in a chart shown in Figure 3 [28]. The chart in Figure 3 

contains the accuracy and statistical parameters, such as error rate, recall, and precision. In this study, the 

confusion matrix was used to describe the performance of each fold validation. 
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Figure 2. Structure of the designed neural network 

 

 

 
 

Figure 3. Confusion matrix of prediction and actual values 

 

 

The accuracy calculation uses positive and negative values, which are 1 for positive and 0 for 

negative. However, for this prediction, the result of the negative value means unripe FFB, while the positive 

value means ripe FFB. Equations for accuracy prediction, error rate, recall, and precision [29] are described 

in (2)-(5), respectively. Here, true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN) are defined as TP=correct prediction result with positive value, TN=correct prediction result with 

negative value, FP=incorrect prediction result with positive value, and FN=incorrect prediction result with 

negative value. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (2) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗× 100% (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
× 100%  (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%  (5) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Savitzky-Golay smoothing 

Figure 4 shows the original hyperspectral spectral of an oil palm fresh fruit bunch compared to the 

filtered spectrum using the SG algorithm. SG filter is one of the preprocessing techniques, which is also 

applied to hyperspectral images [30]. Hyperspectral spectra have noises due to the complexity of the 

hyperspectral imaging system with many electronic and optical components involved. Therefore, it needs 

spectral preprocessing and calibration of image data [13]. Figure 4 show that SG smoothing has reduced the 

spectral noises significantly. 
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As shown in Figure 4, the hyperspectral spectrum has the relative reflectance intensity in the y-axis 

and the wavelength range in the x-axis. The x axis is associated with the wavelength ranges of the camera 

detector, lens, spectrograph, and halogen lamps of 400–1000 nm region. The visible-infrared spectrum has 

higher intensities in the region of 700–900 nm, the same fashion found in similar research of hyperspectral 

and infrared imaging on oil palm fresh fruit bunches [25], [27]. The measurement using four-band optical 

sensors showed higher reflectance intensities in the infrared region (700–900 nm) due to fewer absorbances 

by chlorophyll and anthocyanin in the mesocarp layer [22].  

 

 

 
 

Figure 4. Original hyperspectral spectrum and after SG filtered 

 

 

3.2.  Displaying ANN results 

The graphical user interface-GUI has been created for this study, which could be used for any 

hyperspectral data of oil palm FFBs. It had two buttons, which functioned to input hyperspectral images and 

to process and predict the result using the ANN. Figure 5 shows the GUI front view. In Figure 5, the front 

view of the GUI has two boxes for a hyperspectral image, the resulted spectra (left) and SG-filtered spectra 

(right). 

 

 

 
 

Figure 5. The GUI front view with spectral data input and the prediction result 
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The operation of the GUI starts by using the two available buttons. Each hyperspectral image is 

inserted automatically by clicking the <input hyperspectral image> button. The left box of the GUI shows the 

hyperspectral spectra of the inserted image. The next step is to process the hyperspectral data point. By 

clicking the button <predict>, the hyperspectral spectra are filtered by the SG filter algorithm and displayed 

on the right. The bottom right section shows the prediction result of ANN for oil palm FFB. The results have 

two options, immature (unripe) or mature (ripe). Oil palm FFBs arrived at the reception area of an oil palm 

mill are often categorized using two ripeness levels, unripe and ripe. Then the immature FFBs are separated. 

Other FFB conditions are related to external damages, such as rotten, empty, and long stalk FFBs. These 

categories need other sorting methods, such as object detection. 

 

3.3.  Testing data and prediction result 

Results of testing the hyperspectral data of oil palm FFB using the k-fold cross-validation method 

had the highest accuracy for the 2nd fold, 5th fold, and 7th fold with 90 % accuracy. The results show that the 

n-fold cross validation method can measure the ANN accuracy. One of the standard metrics used to measure 

the performance of an ANN classifier based on k-fold validation is a mean squared error (MSE). Figure 6 

shows the predicted and the actual result by the ANN model for the 7th fold prediction, which gives an MSE 

of 8.9924e-23. K-fold cross-validation works by finding the lowest MSE as the ‘optimal’ model. The 

discrepancy between the target and the ANN model could be due to the averaging effect [17] and noisy 

hyperspectral images. 

 

 

 
 

Figure 6. Comparison graph of prediction results and test data on 7-fold 

 

 

3.4.  Accuracy 

Testing the ANN model using the k-fold cross validation method showed that each fold had a 

different accuracy. Table 3 shows the accuracy results of each fold for the ANN model in predicting the 

ripeness level of oil palm FFB. The accuracy calculation used positive and negative values represented by 1 

and 0. The prediction results also used two states which are immature and mature. The immature state has a 

negative value, and the mature state has a positive value. 

Table 3 shows the highest accuracies given by the 2nd fold, 5th fold, and 7th fold with 90% accuracy. 

The lowest accuracy was obtained by the 4th fold, followed by the 6th and 3rd fold, with accuracies below 

75%. Lower accuracy on the 3rd fold, 4th fold, and 6th fold could be due to less k used. The k-fold  

cross-validation with more folds and a small number of replications should be used for performance 

evaluation [18].  

Table 4 shows the evaluation of the ANN model used to predict the ripeness levels of oil palm FFB. 

Table 4 shows that the average accuracy for all seven folds is 79.17%. The result also displays that the 

highest accuracy belongs to the 2nd fold, 5th fold, and 7th fold. The results imply that the ANN model has a 

prediction category as <fair classification>. It also shows that the best dataset used for training the ANN 
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model is the dataset of the 7th fold, which gives an accuracy of 90% and is categorized as <excellent 

classification>. This result is slightly less by 5 % using similar hyperspectral imaging and ANN experiment 

of oil palm FFBs [27]. It was possibly due to the push broom scheme of hyperspectral imaging used in this 

study, where slightly unmatched the conveyor speed and frame rate per second (fps), creating blur images. 

 

 

Table 3. Comparison of prediction results and testing data 

Fold-n 
Test data Prediction result 

Accuracy (%) 
Mature Immature Mature Immature 

Fold-1 5 5 3 7 80 
Fold-2 5 5 6 4 90 

Fold-3 6 5 5 6 72.72 

Fold-4 5 6 3 8 63.63 
Fold-5 5 5 4 6 90 

Fold-6 5 5 6 4 70 

Fold-7 5 5 4 6 90 

 

 

Table 4. Evaluation results of confusion matrix 
Evaluation Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%) Fold 6 (%) Fold 7 (%) Total (%) 

Accuracy 80 90 72.72 63.63 90 70 90 79.17 
Misclassification 20 10 27.27 36.36 10 30 10 20.83 

Recall 37.5 55.56 50 28.57 44.44 57.14 44.44 45.61 

Precision 100 83.33 80 66.67 100 66.67 100 83.87 

 

 

4. CONCLUSION 

This study aimed to investigate the potential use of an ANN and k-fold cross-validation to predict 

the ripeness levels of oil FFB. The prediction used hyperspectral images obtained using hyperspectral 

imaging. The ripeness levels were immature (unripe) and mature (ripe). SG filter was applied to smooth the 

hyperspectral data before being inserted into the neural network algorithm. The constructed ANN model used 

the k-fold cross-validation method to test its performance, which consisted of 7 folds. The evaluation 

performances of the testing used confusion matrix. The resulting confusion matrix parameters show that the 

average accuracy of the ANN model reaches 79.48%. The highest accuracies of 90 % belong to the 2nd fold, 5th 

fold, and 7th fold. The results showed that hyperspectral imaging with the SG filter, k-fold cross-validation, and 

ANN model is prospective to predict the ripeness levels of the oil palm FFB. These results will be the 

foundation toward using multispectral imaging in a rapid sorting and grading machine vision of oil palm FFBs. 
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