
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 1, February 2024, pp. 104~112

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i1.25096 104

Journal homepage: http://telkomnika.uad.ac.id

Real-time vehicle counting using custom YOLOv8n and

DeepSORT for resource-limited edge devices

Abuelgasim Saadeldin, Muhammad Mahbubur Rashid, Amir Akramin Shafie, Tahsin Fuad Hasan
Department of Mechatronics, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia

Article Info ABSTRACT

Article history:

Received Feb 27, 2023

Revised Dec 5, 2023

Accepted Dec 15, 2023

 Recently, there has been a significant increase in the use of deep learning and

low-computing edge devices for analysis of video-based systems, particularly

in the field of intelligent transportation systems (ITS). One promising

application of computer vision techniques in ITS is in the development of low-

computing and accurate vehicle counting systems that can be used to eliminate

dependence on external cloud computing resources. This paper proposes a

compact, reliable and real-time vehicle counting solution which can be

deployed on low-computational requirement edge computing devices. The

system makes use of a custom-built vehicle detection algorithm based on the

you only look once version 8 nano (YOLOv8n), combined with a deep

association metric (DeepSORT) object tracking algorithm and an efficient

vehicle counting method for accurate counting of vehicles in highway scenes.

The system is trained to detect, track and count four distinct vehicle classeses,

namely: car, motorcycle, bus, and truck. The proposed system was able to

achieve an average vehicle detection mean average precision (mAP) score of

97.5%, a vehicle counting accuracy score of 96.8% and an average speed of

19.4 frames per second (FPS), all while being deployed on a compact Nvidia

Jetson Nano edge-computing device. The proposed system outperforms other

previously proposed tools in terms of both accuracy and speed.

Keywords:

Edge computing

Vehicle counting

Vehicle detection

Vehicle tracking

You only look once version 8

nano

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muhammad Mahbubur Rashid

Department of Mechatronics, Faculty of Engineering, International Islamic University Malaysia (IIUM)

Gombak, Kuala Lumpur, Malaysia

Email: mahbub@iium.edu.my

1. INTRODUCTION

Over the past decade, the number of vehicles on the road have started to increase significantly, leading

to traffic congestion and safety concerns [1]. As a result, there have been a growing interest in traffic flow analysis

amongst researchers for the development of better traffic management systems. Traditionally, physical hardware

devices were used to collect real-time data about moving vehicles, often placed underneath roadways [2].

However, with recent advancements in technology and computer vision techniques, researchers have started to

explore vision-based solutions for gathering information such as the vehicle speed, type, direction of movement

and traffic density [3] which can be used for creation of more effective traffic flow management systems and

improved road safety.

Vision-based solutions are able to provide more detailed information and are significantly easier to

install and maintain as compared to traditional hardware sensors [4]. These solutions utilize cameras to capture

images or videos of traffic and then apply computer vision algorithms to extract useful information from the

captured data. The integration of vision-based solutions in intelligent transportation systems (ITS) is relatively

new. Despite recent substantial research efforts, there remains immense potential for advancements as

continuous breakthroughs in artificial intelligence (AI) and edge-computing systems unfold [5]. Most

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control

Real-time vehicle counting using custom YOLOv8n and DeepSORT for … (Abuelgasim Saadeldin)

105

contemporary solutions used for addressing the issue of vehicle counting in highway scenes typically rely on

cloud computing resources, which often demand high computational power, internet connectivity and are

vulnerable to security breaches [6], thereby exposing private and confidential data, including vehicle license

plate numbers through the web. On the other hand, edge computing systems have been proved to have lower

latency, enhanced stability and superior security in contrast to cloud-based methods [7]. This is particularly

useful in areas where privacy is essential such as in traffic management systems.

This research aims to develop a low-cost, efficient and secure real-time highway-based vehicle

counting system using state-of-the-art object detection and tracking algorithms. The system will be deployed

on low computationally expensive edge-computing devices where all of the computation will take place locally

and only the live vehicle counts will be passed through the web. The proposed system will utilize you only

look once version 8 nano (YOLOv8n), the latest and leading object detection algorithm [8], as the base model

for the custom vehicle detection algorithm. This will ensure accurate detection of small-scale vehicles in

highway scenes. To track the vehicles across different frames in the video sequence, the system will make use

of the simple online and realtime tracking with a deep association metric (DeepSORT) [9]. Finally, a unique

and efficient counting method will be implemented and used for counting of the tracked vehicles across the

highway scenes.

2. METHOD

The proposed solution is composed of three main components: vehicle detection, tracking and

counting. A custom vehicle detection algorithm based on the YOLOv8n will be developed and used to detect

as well as classify the four different classes of vehicles. Additionally, DeepSORT object tracking algorithm

will be used to assign vehicle IDs and track the vehicles as they move across in different frames in the video

sequence. Finally, we will also be implementing a unique vehicle counting method that counts the tracked

vehicles as they cross through a virtual polygon area on the highway in real-time. The summary of our proposed

vehicle counting system is displayed in Figure 1.

Figure 1. Proposed vehicle counting system

The dataset utilized in this study contains various sources of highway traffic images, including open-

source datasets, footages from CCTV cameras and manually captured images. The main open-source datasets

used in this research were the highway vehicle dataset [10] and miovision traffic camera dataset (MIO-TCD) [11].

The generated dataset consists of four distinct vehicle classes, namely: car, motorcycle, bus, and truck. Images

of the vehicles were captured under various conditions, including different locations, times of the day, and

weather conditions, while the vehicles themselves were of varying sizes. These factors contributed to a robust

dataset that can be applied to a variety of environments and weather conditions. The images were annotated

and divided into training, validation and test sets with a ratio of 0.7, 0.2, and 0.1, respectively. In total the

dataset consisted of 11,982 images. The distribution of vehicle classes in the dataset are as follows: cars account

for 58.23%, motorcycles account for 7.35%, buses account for 11.27%, and trucks account for 23.15%. The

Table 1 shows more detailed information about the generated dataset, including the number of instances of

each vehicle class in the training, validation, and test sets respectively.

Table 1. Generated vehicle dataset information
Subset Number of images Number of cars Number of motorcycles Number of buses Number of trucks

All 11,982 23,360 1,950 2,975 9,286

Train 8,237 16,252 890 1,382 6,500
Validation 2,350 5,487 60 395 2,653

Test 1,184 2,336 45 198 929

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 1, February 2024: 104-112

106

2.1. Vehicle detection

The study employed a convolutional neural network-based (CNN-based) vehicle detection algorithm

based on the YOLOv8, which is a popular object detection algorithm written in Python and makes use of the

PyTorch deep learning framework [8]. YOLOv8 offers five different model scales, including nano, small,

medium, large and extra-large, as illustrated in Figure 2. The model’s scales vary in depth and width,

maintaining the overall structure while increasing in both size and complexity [8]. The individual model

structures can be modified by increasing the number of neurons, hidden layers or by performing batch

normalization or weight initialization. In this study we utilized the smallest and fastest model, YOLOv8n as

the base and modified the structure by adding a few extra layers to improve the detection accuracy of small

vehicle objects observed in highway-scenes, while still maintaining a light-weight model suitable for

deployment on embedded devices.

Figure 2. The different YOLOv8 model scales

Detection of small-scale vehicles in highway-scenes is a challenging task for the default smallest

YOLOv8n model scale due to its simple model architecture. Hence, in order to further improve the detection

accuracy of smaller vehicle objects without compromising much on the model’s speed, we added an attention

mechanism layer as well as some additional up-sampling layers to the feature mean average precision (mAP).

The convolutional block attention module (CBAM) [12] replaces the original CONV module and reduces the

attention of the model on roads and other complex backgrounds, providing more detailed information about

the passing vehicles. The up-sampling layers help to detect as well as recognize different sizes and scales of

vehicles [13]. The improved model architecture, shown in Figure 3, incorporates the added attention

mechanism layer and small target detection layers (rows 12-13, 29-32, and 34-47, respectively).

Figure 3. Proposed vehicle detection deep neural network architecture

TELKOMNIKA Telecommun Comput El Control

Real-time vehicle counting using custom YOLOv8n and DeepSORT for … (Abuelgasim Saadeldin)

107

The attention mechanism layer, Conv_CBAM, is incorporated after the focus module in the backbone

network to improve the detection accuracy of small-scale vehicle objects. This replaces the original CONV

module and enables the algorithm to obtain more detailed information about passing vehicles by reducing the

inference on roads and other complex backgrounds. The CBAM works by making use of two main sub-modules

known as the channel attention module (CAM) and spatial attention module (SAM) [12]. Channel attention is

used to identify what important elements or features are present in an image, meanwhile, spatial attention is

used to identify where the important features are located in the image [12]. CAM makes use of the average-

pooling and max-pooling to generate the channel attention 𝑀𝑐(𝐹) (1) which is computed as (1):

𝑀𝑐(𝐹) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃 𝑜𝑜𝑙(𝐹))) = 𝜎(𝑊1(𝑊0(𝐹𝑎𝑣𝑔
𝑐)) + 𝑊1(𝑊0(𝐹𝑚𝑎𝑥

𝑐))) (1)

Where 𝜎 denotes the sigmoid function, 𝐹𝑎𝑣𝑔
𝑐 and 𝐹𝑚𝑎𝑥

𝑐 denote the average-pooled feature and max-pooled feature

respectively. Both features are passed to a shared network with multi-layer perceptron (𝑀𝐿𝑃) and one hidden

layer, outputting the channel attention mAP, 𝑀𝑐. On the other hand, SAM makes use of the average-pooling and

max-pooling to generate spatial attention mAP Ms(F) (2) which is computed as (2):

𝑀𝑠(𝐹) = 𝜎(𝑓7×7 ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]) = 𝜎(𝑓7×7 ([𝐹𝑠 𝑎𝑣𝑔; 𝐹𝑠 𝑚𝑎𝑥])) (2)

Where 𝜎 denotes the sigmoid function and 𝑓7×7 denotes a convolutional operation with filter size of 7×7. The

key innovation in this network lies in the integration of CBAM, enabling the model to learn spatial attention

features of vehicles by correlating channel and space. This, coupled with the additional up-sampling layers,

significantly increases the detection accuracy across various scales of vehicle objects [13].

2.2. Vehicle tracking

Once the detection of vehicles has been made by using the custom YOLOv8 algorithm, vehicle

features are then extracted and used as input in the DeepSORT multi-object tracking algorithm to match the

features with other video frames and correlate the same vehicle with other similar ones. DeepSORT uses a

combination of the Kalman filer and Hungarian algorithm for the tracking [14]. The Kalman filer predicts the

current state of a vehicle based on some previous value and provides uncertainties of that prediction [15]. Once

predictions have been made and the measurements have been updated, the optimal state estimate of the vehicle

is then obtained as can be seen in the cycle of the Kalman filter presented in Figure 4.

Figure 4. The cycle of Kalman filter [16]

In order to compute the current state estimate of the vehicle, the Kalman gain, measured value and previous or

predicted estimation values are used as shown in (3):

 𝑋𝑘 = 𝐾𝑛 . 𝑌𝑘 + (1 − 𝐾𝑛) . 𝑋𝑘−1 (3)

Where 𝑋𝑘 representes the current estimate of the vehicle in the 𝑘𝑡ℎ state. 𝑌𝑘 is the measured observation of the

trajectory of the vehicle at the current time. 𝐾𝑛 is the Kalman gain which is the weight given to the

measurements and 𝑋𝑘−1 is the predicted estimate of the vehicle in the previous state. Finally, once the optimal

state of the vehicle has been obtained. Mahalanobis distance is then utilized to account for uncertainties

introduced by the Kalman filter, determining whether each sample is an outlier or a member of the group [17].

The Hungarian algorithm is then used for vehicle association and ID attribution, assigning a unique

identification to the vehicles based on the vehicle features [17]. Figure 5 illustrates the block diagram of the

complete flow of data in the DeepSORT algorithm.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 1, February 2024: 104-112

108

Figure 5. Flow of data in the DeepSORT algorithm [18]

2.3. Vehicle counting

In order to avoid ID switches which often occurs when similar features observed in some vehicles,

we introduced a “virtual polygon area” to expand the robustness of the vehicle counting system. The virtual

polygon area divides the scene into two regions, zone 1 and zone 2, as illustrated in Figure 6. Zone 1 refers to

the region situated outside of the specified polygon area, whereas, zone 2 refers to the region situated within

the polygon area. The vehicle counting takes place once the vehicles have crossed the highway and their center

coordinates enters from zone 1 into zone 2, while maintaining a unique vehicle ID assignment. This approach

reduces reliance solely on vehicle tracking and ID assignment for counting, ensuring more accurate vehicle

counting results.

Figure 6. Virtual polygon area used for vehicle counting

2.4. Model deployment on low-computing edge device

An Nvidia Jetson Nano edge-computing device was utilized for deployment of our vehicle counting

system. The device is small in size and makes use of a single board computer (SBC) which enables it to bring

efficient computer performance to the edge. Furthermore, the decentralized character of edge platforms also

makes them highly reliable infrastructures [19]. Data is processed locally, providing offline capabilities, a

feature not readily available when continuously streaming video data to the cloud for processing, which is also

undesirable from a privacy perspective [20].

The edge-computing system platform was deployed on a busy highway located in Kuala Lumpur,

Malaysia and the flow of data was as follows; the process starts with acquiring video stream of vehicles using

a Logitech C920 pro HD webcam, followed by transmitting the information to the edge-computing device’s

RAM. The Jetson Nano then utilizes this information as input and performs vehicle detection, tracking and

counting while the Nvidia CPU controls modules such as the compute unified device architecture (CUDA) and

tensor cores using heterogenous parallel computing to accelerate the model by hardware. The system then

provides real-time outputs of vehicle detection and counting results for each of the trained vehicle classes,

which are displayed on a 7-inch LCD screen.

TELKOMNIKA Telecommun Comput El Control

Real-time vehicle counting using custom YOLOv8n and DeepSORT for … (Abuelgasim Saadeldin)

109

3. RESULTS AND DISCUSSION

The vehicle detection model was trained on a dataset of 8,237 images, with an additional 2,350 images

used for model validation. The primary metric used for evaluating the performance of the trained models were

the mean average precision, mAP@.5, and loss function plots. The model training results are presented in

Table 2, which include four distinct models. The first model utilizes the default YOLOv8n model architecture

with the original generated dataset. The second model utilizes the same YOLOv8n but with data augmentation

applied to the training images, this includes random image rotations, addition of noise, rain and varying

brightness. The third model utilizes the modified YOLOv8n architecture which adds a small object detection

layer and a CBAM to the network, in addition to data augmentation. Finally, the last model utilizes the same

modified YOLOv8n architecture but with the original dataset and no data augmentation applied. All of the

models were trained for 300 epochs and using an Nvidia RTX 3060 GPU.

Table 2. Trained vehicle detection models
Data augmentation Small object detection layer CBAM mAP@.5 Recall Precision Epochs

 95.6 91.1 91.6 300

√ 95.1 91.4 91.0 300
√ √ √ 97.2 93.2 92.1 300

 √ √ 97.5 92.5 93.3 300

In object detection, precision and recall are essential metrics used to evaluate the performance of a

trained model in correctly identifying detected objects [21]. Precision (4) measures the proportion of positive

vehicle identifications that were accurately identified using true positive (TP) and false positive (FP) detections.

On the other hand, recall (5) measures the proportion of actual positive identifications that were correctly

identified using true positive (TP) and false negative (FN) detections [21]. A high value of precision and recall

indicates that the model can accurately detect all positive vehicles correctly and classify them accurately.

Figure 7 depicts the precision-recall curve of our highest accuracy model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5)

Figure 7. Precision-recall curve

Upon the successful completion of our training, which took approximately 9 hours and 13 minutes to

complete, the loss function plots were also saved and are displayed in Figure 8. The plots depict three different

types of losses, namely the classification, objectness and box losses. The box regression loss indicates the

algorithm’s proficiency in locating the vehicle’s centre and how well the algorithm’s prediction of the bounding

boxes covered them. The classification loss evaluates the algorithm’s capacity to predict the correct vehicle

class upon detection of a vehicle object, and the objectness loss measures the likelihood that a vehicle exists in

a predicted region of interest.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 1, February 2024: 104-112

110

Figure 8. Model training plots over epochs on validation set

The modified YOLOv8n model architecture resulted in a faster convergence of the loss function plots

as compared to the original YOLOv8n model architecture. At approximately 150 epochs, the model using the

modified architecture had already converged with 11.58% lower loss as compared to using the default model

architecture. The mean average precision, mAP@.5 of the model gradually stabilizes after 200 epochs of

training and reached its highest score at 97.5% after 300 epochs of training. Applying data augmentation to the

training images helped to improve the model’s recall, allowing it to detect most of the positive vehicles

correctly. However, this also reduced the model’s precision, resulting in an increase in the number of false

positive detections.

We evaluated the accuracy of our vehicle detection model on the validation set and compared its

performance to the original YOLOv8n model architecture, which resulted in an average mAP@.5 score of 95.6%.

We also compared our model’s performance with other vehicle detection models, such as the YOLOv7 [22] which

had obtained an average mAP@.5 score of 95.2%, YOLOv5n [23] which obtained an average mAP@.5 score

of 93.2% and finally, the faster R-CNN [24] which had obtained an average mAP@.5 score of 89.05% on the

same validation set. All of the models were deployed on a 4 GB Nvidia Jetson Nano and the inference speed

was calculated. Our proposed algorithm demonstrated superior performance in terms of both average vehicle

detection mAP score as well as inference speed, as shown in Table 3.

Table 3. Vehicle detection accuracy comparison
Algorithm mAP@.5 Speed (FPS) Model size (mb)

Faster R-CNN [24] 89.1 0.5 182
YOLOv5n [23]

YOLOv7 [22]

YOLOv8n [8]
Proposed algorithm

93.2

95.5

95.6
97.5

16.3

17.1

19.5
19.4

14

12

6
6

With regards to vehicle counting, our experimental setup was deployed on three different highway

locations, each capturing real-time videos of vehicles including cars, motorcycles, buses and trucks crossing

through the roadway which can be viewed in the following link https://cutt.ly/U8pE2w4. The system was

deployed on a 4GB Nvidia Jetson Nano edge-computing device and our proposed method was able to achieve an

average vehicle counting accuracy score of 96.8% on our captured video data. To benchmark its performance, we

compared the counting accuracy with two other vehicle counting methods. The first method [25] utilized a

distance measurement line counter, achieving an average vehicle counting accuracy score of 92.2%. The second

method [10] utilized a virtual line counter, achieving an average vehicle counting accuracy score of 93.2%.

Our proposed vehicle counting method which makes use of a virtual polygon area counting approach

was able to achieve the highest vehicle counting accuracy score, avoiding duplicate counts and missed objects.

Additionally, the proposed counting method was also capable of counting vehicles on both on-going as well as

out-going traffic simultaneously. Overall, the vehicle counting system consisted of a lightweight vehicle

detection and tracking model and an efficient vehicle counting method, achieving an average inference speed

of 19.4 FPS on a low-computing Nvidia Jetson Nano edge device and 84 FPS on an RTX 3060 laptop GPU.

TELKOMNIKA Telecommun Comput El Control

Real-time vehicle counting using custom YOLOv8n and DeepSORT for … (Abuelgasim Saadeldin)

111

4. CONCLUSION

To summarize, our proposed vehicle counting solution has demonstrated through qualitative analysis

that it is well-suited for the task of vehicle detection and tracking in highway scenes. Our system combines a

custom vehicle detection algorithm based on the YOLOv8n model architecture, DeepSORT object tracking

algorithm and a unique “virtual polygon area” counting approach that yielded accurate and efficient vehicle

counting results. The system is also light-weight, can be deployed on edge devices with low computing power

and provides better security by keeping computation and data storage closer to the data source rather than

relying on cloud computing resources. Consequently, our solution offers a low-cost alternative that delivers

real-time performance on embedded devices such as on the Nvidia Jetson Nano.

ACKNOWLEDGEMENTS

The authors would like to express our sincere appreciation to the Faculty of Engineering at the

International Islamic University Malaysia for generously providing us with the necessary research facilities

and equipment required for conducting the research experiments presented in this paper.

REFERENCES
[1] A. E. Retallack and B. Ostendorf, “Current understanding of the effects of congestion on traffic accidents,” International Journal

of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi: 10.3390/ijerph16183400.

[2] V. Mandal and Y. Adu-Gyamfi, “Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative Analysis,”

Journal of Big Data Analytics in Transportation, vol. 2, no. 3, pp. 251–261, Dec. 2020, doi: 10.1007/s42421-020-00025-w.
[3] E. Verani and M. Pitsiava-Latinopoulou, “Traffic management integrated in the urban development of an area towards

sustainability,” in Proceedings of the International Conference on Changing Cities I: Spatial, morphological, formal and socio-

economic dimensions, 2013, pp. 2408–2417.
[4] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for public safety: A review,” Proceedings of the IEEE, vol. 107,

no. 8, pp. 1675–1696, 2019, doi: 10.1109/JPROC.2019.2925910.

[5] L. S. Iyer, “AI enabled applications towards intelligent transportation,” Transportation Engineering, vol. 5, p. 100083, 2021, doi:
10.1016/j.treng.2021.100083.

[6] G. S. Sriram, “Edge Computing vs. Cloud Computing: An overview of Big Data challenges and opportunities for large enterprises,”

International Research Journal of Modernization in Engineering Technology and Science, vol. 4, no. 1, pp. 1331–1337, 2022.
[7] K. Tiba, R. Parizi, Q. Zhang, A. Dehghantanha, H. Karimipour, and K.-K. R. Choo, “Secure Blockchain-Based Traffic Load

Balancing Using Edge Computing and Reinforcement Learning,” 2020, pp. 99–128, doi: 10.1007/978-3-030-38181-3_6.

[8] G. Jocher et al., “ultralytics/yolov3: v8 - Final Darknet Compatible Release.” Zenodo, Nov. 2020. doi: 10.5281/zenodo.4279923.
[9] S. Guo et al., “A Review of Deep Learning-Based Visual Multi-Object Tracking Algorithms for Autonomous Driving,” Applied

Sciences, vol. 12, no. 21, 2022, doi: 10.3390/app122110741.

[10] H. Song, H. Liang, H. Li, Z. Dai, and X. Yun, “Vision-based vehicle detection and counting system using deep learning in highway
scenes,” European Transport Research Review, vol. 11, no. 1, p. 51, Dec. 2019, doi: 10.1186/s12544-019-0390-4.

[11] Z. Luo et al., “MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization,” IEEE Transactions on Image

Processing, vol. 27, no. 10, pp. 5129–5141, 2018, doi: 10.1109/TIP.2018.2848705.
[12] S. Woo, J. Park, J. Lee, and I. S. Kweon, “CBAM: Convolutional Block Attention Module,” Eccv, p. 17, 2018.

[13] S. Kundu, H. Mostafa, S. N. Sridhar, and S. Sundaresan, “Attention-based Image Upsampling,” arXiv preprint arXiv:201209904,

2020.
[14] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, “Towards Real-Time Multi-Object Tracking,” in Computer Vision – ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI, Berlin, Heidelberg: Springer-Verlag, 2020,
pp. 107–122, doi: 10.1007/978-3-030-58621-8_7.

[15] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman Filter and Its Application,” in 2015 8th International Conference on Intelligent Networks

and Intelligent Systems (ICINIS), IEEE, Nov. 2015, pp. 74–77, doi: 10.1109/ICINIS.2015.35.
[16] M. Ulusoy, “Insight into Kalman filtering-probability distribution fnc,” 2023.

[17] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” Proceedings -

International Conference on Image Processing, ICIP, vol. 2017-Septe, pp. 3645–3649, 2018, doi: 10.1109/ICIP.2017.8296962.
[18] D.-L. Dinh, H.-N. Nguyen, T. Thai, and K.-H. Le, “Towards AI-Based Traffic Counting System with Edge Computing,” Journal

of Advanced Transportation, vol. 2021, pp. 1–15, 2021, doi: 10.1155/2021/5551976.

[19] S. Leroux, B. Li, and P. Simoens, “Automated training of location-specific edge models for traffic counting,” Computers and
Electrical Engineering, vol. 99, no. April, pp. 1–7, 2022, doi: 10.1016/j.compeleceng.2022.107763.

[20] C. Ponnusamy, R. D., V. Praveena, A. Jeba, and B. B., “Data Security and Privacy Requirements in Edge Computing: A Systemic

Review,” 2021, pp. 171–187, doi: 10.4018/978-1-7998-4873-8.ch009.
[21] A. Badithela, T. Wongpiromsarn, and R. Murray, Evaluation Metrics for Object Detection for Autonomous Systems. 2022. doi:

10.48550/arXiv.2210.10298.

[22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[23] G. Jocher et al., “ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.” Zenodo, Nov. 2022, doi:

10.5281/zenodo.7347926.
[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017, doi:

10.1109/TPAMI.2016.2577031.
[25] M. Fachrie, “A Simple Vehicle Counting System Using Deep Learning with YOLOv3 Model,” Jurnal RESTI (Rekayasa Sistem

dan Teknologi Informasi), vol. 4, no. 3, pp. 462–468, 2020, doi: 10.29207/resti.v4i3.1871.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 1, February 2024: 104-112

112

BIOGRAPHIES OF AUTHORS

Abuelgasim Saadeldin received the B.Eng. degree in Mechatronics Engineering

from the International Islamic University Malaysia (IIUM), in 2019, achieved his Master of

Science in Engineering in July of 2023, and is currently pursuing his Doctor of Philosophy in

Engineering. He has a great interest in AI, computer vision and backend software development.

With over 2 years of industry working experience, he has worked on several research projects,

including development of drones for automated crowd surveillance, AI vehicle parking system,

autonomous AI vehicle with road following and collision avoidance and many more. In

addition, he has also accomplished several achievements, including being awarded certified

Jetson AI specialist by Nvidia in 2021 and awarded certified engineer in computer vision by

Certifai in 2020. He can be contacted at email: abuelgasim.smm@live.iium.edu.my.

Muhammad Mahbubur Rashid received the B.Eng. degree from Bangladesh

University of Engineering and Technology in Dhaka in Electrical and Electronic Engineering

in 1992. He then went on to earn his Master of Science from University Malaya in 2003 and

Doctor of Philosophy in Electrical Engineering from the same university in 2007. He is

currently employed as an associate professor in the International Islamic University Malaysia’s

Department of Mechatronics Engineering. In 1992, he began his employment at Apex Spinning

and Knitting Mills as an assistant engineer. More than 80 of his papers have been published in

journals and conference proceedings. Advanced control systems, simulation, nonlinear

modeling, instrumentation, deep learning, computer vision, renewable energy, and power

electronics are some of his areas of interest in study. He can be contacted at email:

mahbub@iium.edu.my.

Amir Akramin Shafie received the B.Eng. degree in Mechanical Engineering

from the University of Dundee and an M.S. in Mechatronics from the University of Abertay

Dundee in Scotland. In 2000, the University of Dundee in Scotland awarded him a doctorate in

the discipline of engineering. International Islamic University Malaysia (IIUM) has employed

he as a professor in the department of Mechatronics since 2005. He also serves as the Dean of

Kulliyyah of Engineering (2010–2012), Deputy Dean Academic Affairs Kulliyyah of

Engineering (2006–2010), and Director of Research Management Centre (RMC) from 2021.

Current research interest span both autonomous mechatronic system and intelligent system

including machine learning in manufacturing and health. He can be contacted at email:

aashafie@iium.edu.my.

Tahsin Fuad Hasan received the B.Eng. degree in Mechatronics Engineering from

the International Islamic University Malaysia (IIUM), in 2022 and is currently pursuing his Master

of Science in Engineering. His interests lie in AI, machine learning, and human-machine

interaction. He can be contacted at email: tahsin10797@gmail.com.

https://orcid.org/0000-0001-7453-7511
https://scholar.google.com/citations?user=tele9PoAAAAJ
https://www.webofscience.com/wos/author/record/HNQ-3179-2023
https://orcid.org/0000-0002-7943-2337
https://scholar.google.com/citations?user=apQGqcYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55420033000
https://www.webofscience.com/wos/author/record/2957668
https://orcid.org/0000-0003-2440-7537
https://scholar.google.com.my/citations?user=5FGOlOkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=24825318400
https://www.webofscience.com/wos/author/record/29927059
https://orcid.org/0009-0002-7286-947X
https://scholar.google.com/citations?user=ciSFzloAAAAJ&hl=en

