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 Recent advances in computer vision and deep learning algorithms have 

yielded intriguing results. It can perform tasks previously requiring human 

eyes and brains. Semantic video segmentation for autonomous cars is difficult 

due to the high cost, low latency, and performance requirements of 

convolutional neural networks (CNNs). Deep learning architectures like 

SegNet and FlowNet 2.0 on the Cambridge-driving labeled video database 

(CamVid) dataset enable low-latency pixel-wise semantic segmentation of 

video features. Because it uses SegNet and FlowNet topologies, it is ideal for 

practical applications. The decision network chooses an optical flow or 

segmentation network for an image frame based on the expected confidence 

score. Combining this decision-making method with adaptive scheduling of 

the key frame approach can speed up the process. ResNet50 SegNet has a 

“54.27%” mean intersection over union (MIoU) and a “19.57” average FPS. 

In addition to decision network and adaptive key frame sequencing, 

FlowNet2.0 increased graphics processing unit (GPU) frame processing per 

second to “30.19” with a MIoU of “47.65%”. The GPU is used “47.65%” of 

the time. This performance gain illustrates that the video semantic 

segmentation network is faster without sacrificing quality. 
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1. INTRODUCTION 

Semantic segmentation is a popular topic in computer vision research. When each pixel in an image 

or video is given its own category, the process is known as semantic segmentation [1]. The deep learning model 

should be able to recognise, classify, and label every pixel in an image or video frame when it is given the 

input of an image. The four ideas of picture classification, object identification, semantic segmentation, and 

instance segmentation are contrasted in Figures 1(a)-(d). Prior research on semantic segmentation used dense 

depth maps [2] and 2D information such as colour and shape, which required a lot of labor-intensive human 

engineering. The difficulties of semantic segmentation and classification have been made easier to solve 

without the need for human engineering with the emergence of deep learning approaches and machine learning 

developments. Convolutional neural network (CNN) has shown superior results [3], [4] in assessing and 

labelling the characteristics of pictures with enhanced performance. CNN is used for semantic segmentation of 

images. As a result of CNN’s accomplishments in image semantic segmentation and other image processing 

tasks, intriguing new advancements in video semantic segmentation are beginning to emerge. Numerous 

research [5]–[7] have focused on video segmentation with the goal of enhancing its performance. Few studies 

have been conducted to minimise latency [8]–[11]. 
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(c) 

 
(d) 

 

Figure 1. Semantic segmentation of an image source: (a) image classification, (b) object localization,  

(c) semantic segmentation, and (d) instance segmentation 

 

 

Numerous significant initiatives, including fully convolutional network (FCN), pyramid scene parsing 

network (PSPNet), U shaped network (U-Net), segmentation network (SegNet), and DeepLab, have conducted 

semantic segmentation research [12]–[16]. The aforementioned networks are widely recognised for processing 

a single frame slowly, but they are quite good at foretelling the future. The goal of this study is to develop a 

framework for video semantic segmentation that can be applied to real-time tasks like in-building navigation 

and self-driving automobiles. For real-time applications, it is essential to achieve low latency employing 

methods from prior publications on dynamic video segmentation network (DVSNet) and deep feature flow 

(DFF), which include two networks. The optical flow and per-frame segmentation networks are present in both 

DVSNet and DFF. 

One of the most crucial components of this study are the decision network, a system for adaptively 

updating keyframes, and other techniques like label mapping and depth inferencing. Want to compare the 

outcomes when an encoder-decoder architecture, such as ResNet50 SegNet, is used as a segmentation network 

in place of the deep lab while keeping the same flow network. The studies employed the driving scenario 

dataset Cambridge-driving Labeled Video Database (CamVid) [17], which is quite comparable to the 

CityScape [18] used in the prior studies. 

A summary of the research on the various deep learning methods applied in this study is provided in 

section 2. The network topologies are explained in depth in section 3, and the training methods and operation 

of the video segmentation network are covered in section 4. Section 5 details the experiments that were carried 

out, their findings, a quantitative and qualitative interpretation of those data, and their conclusions. The final 

portion covers the conclusion, in which we go through the advantages and disadvantages of applying this 

segmentation technique as well as suggestions for future research. 

 

 

2. RELATED WORK 

Prior to the development of FCN [19], [20], only convolutional networks with a fully connected layer 

at the output were utilised in semantic segmentation networks [21]–[23]. The classification layer’s last fully 

connected layer was given top priority by FCN to be changed to a convolutional layer. Using this classification 

strategy, which involves removing a fully linked layer, the number of parameters is decreased, input picture 

size restrictions are abolished, and spatial data is retained. FCN has an impact on both the expanding and 

shrinking components of Krizhevsky et al. [24] U-Net idea for medical pictures. It uses downsampling and 

upsampling, similar to DeConvNet, to maintain track of data that could otherwise be lost during down 

sampling. The contracting portion is largely in charge of constructing the feature maps and using 3×3 

convolution to extract features during downsampling. However, the expansion step uses deconvolution, which 

produces fewer feature maps but larger spatial dimensions (height and width). U-Net replicates the feature 

maps that have been cropped from the contracting party to the expanding portion, allowing it to retain track of 

pattern information. SegNet uses the VGG-16 network (encoder including the top 13 convolution layers of 
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VGG-16) as an encoder [25]. For its prowess in handling categorization problems, this network is highly 

known. Alternative to replace, which is also FCN, eliminates the totally connected layer that is the topmost 

layer in the network to keep the high-resolution feature maps at the encoder output [26]. The final decoder’s 

output is given to the softmax classifier, which creates class probabilities using it. One of the most essential 

parts of video analysis is optical flow. The difference between the layers, which have the same dimensions as 

the input frame, is the offset of each pixel along two different axes, namely the x-axis and y-axis [27]. One of 

the first techniques for figuring out optical flow is the variational approach. This approach [28] was the norm 

for a sizable period of time. Due to the occurrence of local minima, the variational technique focused mostly 

on relatively small movements and gave priority to initializations that involved no motion field [29]. 

The Brox and Malik technique was used to create various algorithms, including PatchMatch [30], [31], 

FlowField [32], DiscreteFlow [33], and FullFlow [34]. Conditional random field (CRF) is used by both 

DiscreteFlow and FullFlow to process vector similarities. A significant technique created by Weinzaepfel and 

colleagues, DeepFlow [35], was influenced by Brox and Malik. A loss function is also included in the 

variational optical model called DeepFlow. It’s built on a deep matching method that enables the fusion of 

feature descriptors and matching. One or two of the most popular unified or combined matchings techniques 

are EpicFlow and RichFlow [36], [37]. One of the simplest methods for achieving video segmentation is to use 

image segmentation networks [38], [39]. However, they work on a “per frame” basis, which complicates the 

calculation because movies have more frames than static images do. Additionally, image semantic 

segmentation does not account for the temporal relationships between various frames [40]. Semantic 

segmentation of video via representation warping was proven by Hu et al. [41]. The authors’ method involves 

converting CNN models for image segmentation to video models. In order to warp intermediate CNN 

representations and combine them with the current frame, they first introduce a warping module called 

NetWarp. The computation time is effectively cut in half using DFF approaches. Fixed keyframe scheduling 

was also suggested coupled with the usage of two different networks, a segmentation network and an optical 

flow network [42], [43]. Furthermore, it lacks both flexibility and customisation since it employs fixed keyframe 

scheduling (implicating a constant update time between succeeding frames) [5], [44]. Zhang et al. [2] 

unsupervised’s learning approach for semantic segmentation of videos presents an entirely traditional adaptive 

network for semantic segmentation. However, in order to limit the degree of error in their predictions of the 

target data, they propose to employ labelled instances from the source domain together with a significant 

number of unlabeled examples from the target domain [45]. 

 

 

3. IMPLEMENTATION METHODOLOGY 

The DVSNet, which separates video frames using both per-frame and optical flow networks, is the 

inspiration for this study. For a video segmentation network, achieving minimal latency is the major objective. 

We may take use of the advantages of both of these incredibly potent networks by utilising them both. The 

segmentation network can forecast the outcome of its actions quite accurately. However, optical flow networks 

are widely renowned for their ability to forecast motion data very fast. This aids in accelerating and improving 

the performance of segmentation, along with spatial warping (in which the optical flow output is warped with 

the segmentation output). The segmentation network is slow since it processes data on a per-frame basis, and the 

optical flow network’s flows can occasionally be inaccurate. None of these networks, however, are without their 

limitations. In this part, network structures and study-related tactics are thoroughly described. Three low-latency 

networks are used in this study for video semantic segmentation. However, we use SegNet with ResNet50 

encoder as a segmentation network, which is distinct from SegNet with FlowNet2S as an optical flow network 

with spatial warping function. To reach a conclusion based on the difference between two successive frames, 

judgement networks (DN) are included. 

Figure 2 shows the interaction of our semantic segmentation network to the decision network. The 

initial iteration of our network sends the current frame to the segmentation network path to produce 

segmentation output. Next, it is established how key and current frames differ from one another. Based on their 

difference to segments, the decision network calculates each frame’s anticipated confidence score. A 0-100 

inference threshold is denoted by “t”. if a decision network’s predicted confidence score exceeds the threshold, 

the current frame is sent to the segmentation network. Because there are so many pixels separating the keyframe 

from the current frame, FlowNet2S is unable to make accurate predictions. As a result, changes were made to 

the key frame and segregated network pathways. The optical flow network, FlowNet2S, is predicted to make 

forecasts similar to those made by the segmentation network if the expected confidence score is lower than the 

cutoff. 
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Figure 2. Figure illustrating video segmentation network 
 

 

Routed network flow only current frames are permitted with segmentation. Flow network path is entered 

by the keyframe and the current frame. When the decision network chooses to partition the output, ResNet50 

SegNet does so. When the decision network picks a flow network path, frames supplied through FlowNet2S are 

distorted by utilising the most recent segmentation result. To further categorise the 11 classes, label-mapped flow 

network scale attributes are used. Segmented flow networks are produced as a result of these label-mapped scale 

fields and distorted output. The optical flow network cannot be segmented by itself. On a flow network route 

similar to a segmentation network, spatial warping aids in segmentation. ResNet50 Although the per-frame 

processing of SegNet is slow, the segmentation it creates is precise. A spatially warped optical flow network is 

rapid but not precise. As a result, segmentation is accelerated and produces efficient segmentation when switching 

between the two networks, utilising a flow network path the majority of the time, and using a segmentation 

network only when the frame difference is bigger. A keyframe is changed whenever a significant frame difference 

is found between two frames. Processing time is decreased through adaptive keyframe scheduling. 

 

3.1.  Training 

This study includes a choices network, a segmented network, an optical flow network with warping, 

and all three. Networks for segmentation and decision-making will be trained. We’ll train the FlowNet2S for 

the optical flow network using the cityscape dataset. SegNet has been trained using ResNet50 and then fine-

tuned using CamVid to serve as encoders and decoders for the imagenet database. Epoch-adaptive handling of 

the learning rate is provided by the Ada-delta optimizer. We utilised 367 pictures from CamVid, each at a 10-

step period, to train ResNet50 SegNet. ResNet50 SegNet uses weights that were trained on ImageNet. Model 

weights are reused in transfer learning on a related dataset. The output of the segmentation network is label-

mapped to eleven classes. During label mapping, we remove the “unlabelled” or “void” class from the CamVid 

dataset. After integrating the segmentation network (FlowNet2S with ResNet50 SegNet), this approach retains 

class labels. Then, FlowNet2S was connected to DVSNet in order to leverage its checkpoints, and scale 

variables were used to map the relevant labels. The CamVid dataset is small enough to train FlowNet on data 

samples of road scene, therefore using checkpoints from the baseline FlowNet actually wouldn’t improve flows 

when gliding chairs and 3D-object data are separate from road scenes/autonomous driving scenarios. As a 

result, we employ the FlowNet2S of the DVSNet design, which was created using 1.2 million datasets from a 

cityscape sample. Finally, we use sixth-layer flow characteristics to train the decision network. The decision 

network is trained as a regression model using flow network characteristics. The decision network should be 

able to predict the anticipated confidence score for a certain frame thanks to continuous learning. The 500 

training epochs are completed in 32-epoch batches with a decay rate of 0.99. The decision network gets better 

and better at predicting a frame’s expected confidence score through continuous learning and comparison to 

the ground truth confidence score. As a result, switching network pathways for segmentation and flow is 

effective. Only decision network training makes use of the ground truth confidence score. 
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3.2.  Experiments 

3.2.1. Evaluation of baseline network 

Resnet50 SegNet was trained at various epochs using the cross-entropy loss function and the Ada-delta 

optimizer. Accuracy and loss at various epoch rates are measured once the model has stabilised. The mean 

intersection over union (MIoU) values at various epoch rates were also examined. On 233 current frame 

pictures, MIoU, and classwise MIoU for epochs 10 to 50 and 100 were compared. Overall, the environment 

for autonomous driving was divided into more specialised divisions. In result 1, classwise MIoU scores at 

various epochs are compared to and discussed with ResNet50 SegNet and SegNet’s segmentation predictions. 

 

3.2.2. Evaluation of video semantic segmentation network 

In this experiment, we combine ResNet50 SegNet and FlowNet2S to decrease latency in the video 

segmentation network while keeping quality. The decision network forecasts the confidence score after 

combining the two networks. A video segmentation network known as the integrated network is seen on a test 

set of 6959 keyframes and current frames. To assess output quality and network speed, the segmentation 

predictions of the video segmentation network (ResNet50 SegNet+FlowNet2S) and each frame (ResNet50 

SegNet) are compared. A thorough analysis of the findings is provided in result 2. 

 

3.2.3. Validation of a video segmentation model at various “t” thresholds 

To evaluate the performance of the decision network by changing the threshold from 0-100. The 

segmentation network path makes an output prediction when t is close to 100. When “t” is near to zero, it is 

more probable that the flow network path for the predicted output will be selected. We test the system using 

various threshold values in light of this predicted behaviour. 

 

3.2.4. Depth inferences between objects 

The distance of an item as seen by the driver was shown. Calculate the distance in 2D between the 

driver and the chosen target object’s centre. The target object’s centre in this approach is the diagonal midpoint 

of the target object, and the driver’s reference point is the x-center of the picture frame. We only measure 

distances to bicycles, vehicles, people, and poles. The (1) is used to determine the euclidean distance between 

two places. 

 

𝐷𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (1) 

 

The pixel distance is then transformed to metres by applying the (1) pixel in metres=0.0002645833. 

In self-driving cars, depth information helps adjust the vehicle’s speed based on how far or close the item is. 

Helps avert accidents. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Results of the baseline model 

The input image is on the left, the anticipated output is on the right, and the ground truth is in the 

middle of Figures 3 and 4, respectively, showing the predicted output of ResNet50 SegNet and original SegNet. 

According to ground truth photographs, each class is assigned a distinct colour in the expected output, such as 

a purple automobile or a red structure. The anticipated output of Figure 4 was pretty similar to its ground truth 

label and the permitted SegNet predictions of Figure 3 (original, ground truth, and predicted). Segmentation 

maps that were deformed were rare in classes.  

 

 
 

 

 

 

 

 

 

Figure 3. Authorized SegNet implementation 

input image ground truth image predicted output 
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Figure 4. Customised ResNet50 SegNet 

 

 

Each of the 11 classes IoUs are displayed in Table 1. With the exception of “pavement” where MIoU 

decreased by 2%, 50 epoch classwise IoU on the test set yielded excellent findings and appears to be an 

improvement over earlier epochs. The class-wise IoU of the building, bicycle, fence, pedestrian, and tree 

decreased by more than 1% on testing data when the epoch was raised to 100. 

The model’s overfitting, which lacks adaptability and performs poorly on fresh data, may be to blame 

for this decline in accuracy for more categories as epochs grew. In order to extend the model, errors like this 

should be avoided as they are risky in automated driving. To maintain class generality, epoch 50 was selected 

after analysis. ResNet50 SegNet achieved a MIoU of 54.27%, 1.92 mean frames per second, and 19.57 frames per 

second on central processing unit (CPU) and graphics processing unit (GPU) on the CamVid test set (Table 2). 

ResNet50, a thin and moderately deep encoder network, outperformed DVSNet’s deeplab-fast network in terms 

of performance on GPU. We believe that deeper networks, such as ResNet100 and ResNet152, can improve 

prediction accuracy. Results from the first SegNet and ResNet50 SegNet are compared in Table 2. 

 

 

Table 1. Each class label’s IoU classwise 
ResNet50 SegNet 

Classes 10 epochs 20 epochs 30 epochs 40 epochs 50 epochs 100 epochs 

Sky 89.5 86.34 86.60 86.95 86.86 86.81 

Building 73.94 74.64 75.04 74.84 75.088 73.55 

Pole 3.7 6.44 10.7 10.88 12.49 14.73 
Road 88.01 88.7 89.88 89.86 89.28 90.64 

Pavement 64.99 66.89 69.68 69.25 67.67 71.16 

Tree 69.22 70.22 70.48 70.82 71.09 69.19 
Sign symbol 28.77 31.67 31.62 31.70 34.29 32.02 

Fence 20.54 25.85 25.23 25.21 27.74 25.98 

Car 70.05 72.13 72.24 73.49 73.44 73.89 
Pedestrain 25.56 21.19 31.91 32.71 34.11 32.48 

Bicyclist 13.1 22.38 27.5 26.19 32.47 37.16 

 

 

Table 2. Comparison of SegNet [15] MIoU scores with our developed model ResNet50 SegNet (our baseline) 

and ResNet50 SegNet+FlowNet2S 
Network MIoU Average FPS on CPU Average FPS on GPU 

SegNet (original) 60.07 - - 

ResNet50 SegNet (ourbaseline) 54.27 1.92 19.57 
ResNet50 SegNet+FlowNetr2S 47.65 16.84 31.27 

 

 

4.1.1. Results of video semantic segmentation network 

Results Results from experiment 2 are detailed in this section. The estimated segmentation output 

quality of the baseline model decreased and seemed distorted when the optical flow network was included. The 

outcome of ResNet50 SegNet was comparable to the flow network path chosen by the model, however 

numerous class estimates were off. Additionally, the network only accurately predicted some types, such as 

poles and fences as shown in Figure 5. A sign symbol was used in inaccurate forecasts. Pole may serve as a 

powerful symbol. Partial segmentation and distortions may result from information loss during flow 

construction. 

 



TELKOMNIKA Telecommun Comput El Control   

 

Video semantic segmentation with low latency (Channappa Gowda D V) 

1153 

   
 

Figure 5. ResNet50 SegNet+FlowNet2S 

 

 

While in balancing mode, the integrated network scored 47% MioU, CPU, and GPU frames per 

second (FPS) of 16.84 and 31.27 (Table 2). Flow network integration boosts processing speed while reducing 

quality by 6%. Loss of information during flow generation may explain the 6% quality drop. When the Flow 

network path is chosen, spatial warping helps preserve quality near the segmentation network. As the difference 

between consecutive frames grows, spatial warping of segmentation network output with lossy flows produces 

a drop in quality and MIoU values. 

FlowNet2S, a quick optical flow network, helps our video segmentation network function more 

quickly than per-frame. Instead of segmentation, the optical flow network just generates flow information. The 

output quality is maintained while segmentation is produced fast thanks to the spatial warping of optical flow 

network flows with newly segmented output from the segmentation network path. The optical flow network 

makes use of the slower segmentation network’s speed. Compared to DVSNet, our two-network system gained 

more. Details may be found in Table 3. In contrast to DVSNet’s 14.2 FPS, our network increased to 11.7 FPS. 

Compared to DVSNet, our network boosted FPS by 31.27, although the gain was smaller. 

 

 

Table 3. Gain in FPS using two network approaches 
Inference on GPU Segmentation network (Segmentation network+FlowNet2S) FPS gain 

Proposed work 19.57 (ResNet50 SegNet) 31.27 11.7 

DVSNet 5.6 (DeepLab_fast) 19.8 14.2 

 

 

4.1.2. Results collected at various threshold modes 

The MIoU and network speed at various CPU and GPU levels are shown in Table 4. The segmentation 

approach was often used if the threshold was fixed to 90, which corresponds to slow mode, and the network 

obtained a MIoU of 53.69% and a framerate of 7.87 and 26.69 on CPU and GPU, respectively. The 

segmentation and flow network pathways were randomly chosen once the threshold was set to 80. A MIoU of 

47.65%, 16.84 frames per second, and 31.27 on CPU and GPU were achieved by the network. The majority of 

the time, the flow network path was chosen if the threshold was fixed at 65. With a 32.55% MIoU, this 

improved network performance to 19.09 frames per second on CPU and 32.94 frames per second on GPU. IoU 

is shown in Table 5 per network speed mode.  

 

 

Table 4. The segmentation approach works at varying speed modes 

Speed mode Threshold “t” 
CPU GPU 

Speed MIoU Speed MIoU 

Very slow mode 95 1.92 54.27 19.57 54.27 

Slow mode 90 7.87 53.69 26.69 53.69 
Balanced mode 80 16.84 47.65 31.27 47.65 

Fast mode 65 19.19 32.55 32.94 32.54 

Very fast mode 0 25.45 18.00 35.88 18.00 

 

 

In fast mode, when FPS climbed, MIoU decreased. When speed was reduced in slow mode, MIoU 

rose. Thus, speed and output quality are compromised. The balanced mode combines speed and quality. Real-

time, users can adjust the ideal threshold based on interface suggestions. Providing speed and MIoU accuracy 

flexibility. After a certain point, speed saturates and doesn’t grow. Table 4 shows that with a threshold of 0, 

the maximum GPU speed is 35.88 FPS, just 3 FPS greater than fast mode. 
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Table 5. IoU by classwise in % for different speed modes 

Classes 
Class wise IoU on slow mode 

“t”=90 

Class wise IoU on balance mode 

“t”=80 

Class wise IoU on fast mode 

“t”=65 

Sky 86.28 83.54 67.63 

Building 75.30 72.49 53.16 

Pole 6.44 8.51 3.68 
Road 88.7 85.61 76.25 

Pavement 66.16 62.24 39.12 

Tree 70.38 65.59 42.44 
Sign symbol 30.95 25.04 12.79 

Fence 29.30 25.63 12.25 

Car 70.82 54.43 38.79 
Pedestrain 28.89 18.59 5.35 

Bicyclist 33.53 22.45 6.6 

 

 

4.1.3. Results of depth inference 

Figure 6 depicts the distances between bicycles and cars on bounding boxes. The cycle rider is 6.68 metres 

away from the reference location. The distance between two target cars is 8 m and 7.65 m. The 7.65 m car is 

getting closer, while the 8.00 m car is going away. When moving on a curving route, distance calculations are 

also erroneous. This may be because the euclidean distance is estimated as a straight line. 

 

 

 
 

Figure 6. Illustrating distance between objects in streets 

 

 

5. CONCLUSION 

We offer a video semantic segmentation network with minimal latency. We were able to construct 

our ResNet50 SegNet model with 54.27% MioU, 1.92 frames per second on CPU, and 19.57 frames per second 

on GPU. After introducing FlowNet2S with spatial warping, MIoU fell to 47.65%. CPU speed improved by 16.84 

FPS and GPU speed by 30.19 FPS in comparison to the base model. We were able to achieve low latency and 

segmentation quality comparable to ResNet50 SegNet by integrating an optical flow network. In this work, we 

place special emphasis on label mapping, which allows us to employ a model built on a dataset by converting the 

labels in our dataset into those in the model. This enables us to deal with well-trained models on large datasets. 

An optical flow network increases the frame rate in balanced mode by 11.7 FPS. The speed improvement of our 

network is lower than that of DVSNet. The network speed increased as the threshold went from slow to fast. 

Rapid mode had a 15% reduction in prediction quality, whereas slow mode had a 6% reduction. calculated the 

separation of items in a frame using a certain reference (x-axis centre). By figuring out how close an item is to 

the car, we can avoid collisions. Semantic segmentation may be performed via encoder-decoder networks with 

little delay. This study may be expanded to include encoder-decoder networks with unique encoder backbones 

like U-Net and FCN. The depth inference at road bends is improved by using a new distance metric. 
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