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 The generalized new Mersenne number transforms (GNMNTs) have proved 

to be significant number theoretic transforms (NTTs) used to calculate 

convolutions and correlations accurately. In this paper, by applying the 

principles of the decimation-in-frequency (DIF) approach with appropriate 

relations in finite field modulo Mersenne primes, two new fast algorithms for 

computing odd NMNT (ONMNT) and odd-squared NMNT (O2NMNT) are 

introduced. Moreover, by formulating a unified index mapping scheme for 

data sequence, a close relationship between the structures of the developed 

algorithms has been established. As a result, it has been shown that only a 

single universal butterfly structure is adequate to execute both algorithms. 

Consequently, a unified implementation platform can be used to compute the 

ONMNT as well as the O2NMNT. The validity of the development has been 

checked via an example for fast calculations of different types of 

convolutions, using both the GNMNTs and the proposed algorithms. 
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1. INTRODUCTION 

The generalization of discrete transforms, such as generalized discrete Fourier transform (GDFT) [1] 

generalized discrete Wang or Hartley transforms (DWT/GDHT) [2]–[4], discrete sine transform (DST) [5] and 

discrete cosine transform (DCT) [6], have been proved to be an essential tool in digital signal processing and 

informatics fields, for instance, filter banks applications, signal representations [7] and fast computation of 

different kinds of convolutions [8]. While the new Mersenne number transform (NMNT) in its present form 

has wide applications in signal processing [9]–[11], image processing [12] and encryption [13]–[15], therefore, 

it is desirable to generalize the development of NMNT to other transforms such as the GNMNTs. 

A complete set of the generalized NMNTs has been proposed by introducing two new transforms, 

which are the odd NMNT (ONMNT) and the odd-squared NMNT (O2NMNT), for incorporation into a 

generalized type of the NMNT transforms, which are defined based on the modulo of the Mersenne primes 

within a finite field that can be utilized for efficient computations of exact convolution and correlation for 

signal processing and other applications [16], [17]. Using a transform length that is based on a power-of- two, 

they are inherently appropriate for implementation into efficient algorithms. Consequently, this allows for 

calculations using these transforms to be performed both efficiently and free from errors. Unlike their previous 

counterparts, such as Fermat number transform (FNT) [18], [19] and the Mersenne number transform (MNT) 

[20], these transforms are highly flexible as they are able to include many different transform lengths and make 

best use of the range defined by the modulus.  

https://creativecommons.org/licenses/by-sa/4.0/
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The name odd NMNT comes from the fact that if Xo(k) is the N-point ONMNT for the sequence x(n), 

then the output samples of Xo(k) are the same as the odd-indexed samples of the length 2N NMNT of a sequence 

ẋ(n), where ẋ(n) is x(n) with N zero padding. A similar case can be observed for the odd-squared NMNT; if Xoo 

(k) is an N-point O2NMNT for the sequence x(n), then the output samples of Xoo(k) are the same as the odd-

indexed samples of the length 2N ONMNT of a sequence ẍ(n), where ẍ(n) is x(n) with N zero padding. 

The new transforms are therefore integer transforms defined by the Mersenne primes, with simple 

arithmetic operations equivalent to one’s complement, and their calculations do not give rise to any rounding 

and/or truncation errors. These transforms have large transform length power-of-two, and hence their 

calculations can be developed using fast algorithms. They also possess the skew cyclic convolution property 

and therefore can be applicable for fast calculation of error free convolution and correlation functions. 

The outline of this paper is as follows. Section 2 reviews the definition and properties of the ONMNT 

and O2NMNT transforms and the calculation of their parameters. A complete derivation of proposed DIF 

ONMNT and O2NMNT fast algorithms are developed in sections 3. Section 4 shows a method for efficient 

calculation of different types of convolutions based on GNMNTs. 

 

 

2. THE GENERALIZED NMNT 

Explaining In general, the transform kernel of the NMNT can be expanded to permit shifts in either 

time, frequency index or both indices [21], [22]. The developing invertible transforms referred to as generalized 

new Mersenne number transforms (GNMNTs) [16] defined for ( no, ko=1,0) as: 

 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝛽 (
(2𝑛+𝑛𝑜)(2𝑛+𝑘𝑜)

4
) 𝑚𝑜𝑑 𝑀 𝑝𝑁−1

𝑛=0 𝑘 = 0,1, . . . , 𝑁 − 1 (1) 

 

The inverse GNMNTs are the scaled transpose of (1) defined as: 

 

𝑥(𝑛) = ∑ 𝑋(𝑘)𝛽 (
(2𝑛+𝑛𝑜)(2𝑛+𝑘𝑜)

4
)𝑁−1

𝑘=0 𝑚𝑜𝑑 𝑀 𝑝𝑛 = 0,1, . . . , 𝑁 − 1  (2) 

 

where modMp represents modulo Mp and β is the transform kernel defined as: 

 

𝛽(𝑛𝑘) = 𝛽1(𝑛𝑘) + 𝛽2(𝑛𝑘) 
𝛽1(𝑛𝑘) = 𝑅𝑒((𝛼1 + 𝑗𝛼2)𝑑)𝑛𝑘 𝑚𝑜𝑑 𝑀 𝑝 
𝛽2(𝑛𝑘) = 𝐼𝑚((𝛼1 + 𝑗𝛼2)𝑑)𝑛𝑘 𝑚𝑜𝑑 𝑀 𝑝 (3) 

 

Also α1=±(2q)modMp and α2=±(-3q)modMp for q=2p-2, Im(.), Re(.) denote imaginary and real parts of 

the enclosed term respectively. The NMNT has the transform length for is N=2m, 0 < m ≤ p; d=(2p+1/N) is an 

integer power of two.  

Three interesting special forms of the GNMNTs occur when no and ko take the values 0 or 1. Firstly, 

when no=0 and ko=0, the transform kernel will be β(nk) and the GNMNT reduces to the NMNT. Secondly, 

when no=0 and ko=1 it defines as an NMNT with a half sample delay in a time domain, giving a new transform 

called the odd NMNT (ONMNT). Its inverse can be obtained simply by introducing a half sample advance in 

the NMNT domain, i.e., no=1 and ko=0, and it is called inverse ONMNT (IONMNT). Finally, setting both no=1 

and ko=1 produces another transform called the odd-squared ONMNT (O2NMNT). Next section will review 

the definition and properties of the GNMNTs. 

 

2.1.  Definition and properties of GNMNTs  

The ONMNT Xo(k) of an integer sequence x(n) for transform length (No=2m, 0 < m ≤ p-1) is defined 

by setting (no=0, ko=1) in (1): 

 

𝑋𝑜(𝑘) = ∑ 𝑥(𝑛)𝛽 (
𝑛(2𝑘+1)

2
)𝑁−1

𝑛=0 𝑚𝑜𝑑 𝑀 𝑝              𝑘 = 0,1, . . . , 𝑁 − 1 (4) 

 

Similarly, the odd-squared O2NMNT Xoo(k) of an integer sequence x(n) for transform length (Noo=2m, 

0 < m ≤ p-2) is defined by setting (no=1, ko=1) in (1) as (5): 

 

𝑋𝑜𝑜(𝑘) = ∑ 𝑥(𝑛)𝛽 (
(2𝑛+1)(2𝑘+1)

4
)𝑁−1

𝑛=0 𝑚𝑜𝑑 𝑀 𝑝             𝑘 = 0,1, . . . , 𝑁 − 1 (5) 

 

As shown from the definitions of the ONMNT given by (4) and the O2NMNT given by (5), it is 

necessary to compute the half and quarter indices of the transform parameters (i.e., β1(n/2) and β2(n/2) for 
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ONMNT and β1(n/4) and β2(n/4) for O2NMNT), that can be calculated from the definition of β1 and β2 given 

in (3) as: 

a. The NMNT has a transform length N defined as (N=2m, 0 < m ≤ p), so the value of (d=2p+1/N) in (3) for 

maximum transform length (Nmax=2p ) is equal two. 

b. Also, the length of transform for the ONMNT No defined as (N=2m, 0 < m ≤ p-1), thus the value of  

(d=2p+1/No) to maximize transform length (Nmax=2p-1) is equal to four. Hence for a specified p and N, the 

values of the ONMNT parameters β1(n/2) and β2(n/2) have the identical values of the NMNT parameters 

β1(n) and β2(n) for length 2N respectively. 

c. Similarly, the transform length of the O2NMNT Noo is defined as (N=2m, 0 < m ≤ p-2), thus the value of 

(d=2p+1/Noo) to maximize transform length (Nmax=2p-2) is equal to eight. Hence, for a specified p and N, the 

values of O2NMNT parameters β1(n/4) and β2(n/4) have the same values as the NMNT parameters β1(n) 

and β2(n) respectively at length 4N.  

As an example for the calculation of these parameters and without losing of generality, the Mersenne 

prime p is chosen to be 7 with modulus Mp=27-1=127, the values of α1 and α2 are α1=(232)mod 127=16 and 

α2=(-332)mod 127=88 respectively. For maximum transform length (d=2), the term  

(α1+j α2)2modMp can be factorized to ((α2
1- α2

2)+2jα1α2)modMp. According to (3), β1=(α2
1- α2

2) modMp and 

β2=(2 α1α2)modMp, therefore, values of β1 and β2 are 5 and 22 respectively. For other transform lengths, β1 and 

β2 can be repeatedly calculated for various values of d as illustrated in Table 1. For sake of clarity and assuming 

all operations performed modulo Mersenne primes, the term modMp will be omitted for convenient in the 

algorithms development. 

 

 

Table 1. NMNT parameters for modulus Mp=27-1=127 
Transform length N d β1 β2 

128 2 5 22 

64 4 49 93 

32 8 102 97 
16 16 106 103 

8 32 119 119 

4 64 0 1 

2 128 126 0 

 

 

3. DEVELOPMENT OF FAST ALGORITHMS FOR GNMNTs 

This section presents the development of ONMNT and O2NMNT fast algorithms using the decimation 

in frequency approach. For ease derivation it starts with the following NMNT identity that has been proved in 

[10]. 

 

𝛽(𝑎 + 𝑏) = 𝛽1(𝑎)𝛽(𝑏) + 𝛽2(𝑎)𝛽(−𝑏) (6) 

 

Also, some special values for the transform parameters β1 and β2 that have been proved in [11] are 

give in (7), because they are important in the algorithm’s derivation. 

 

𝛽1(𝑎 − 𝑏) = [𝛽1(𝑎)𝛽1(𝑏) + 𝛽2(𝑎)𝛽2(𝑏)] 
𝛽2(𝑎 − 𝑏) = [𝛽2(𝑎)𝛽1(𝑏) − 𝛽1(𝑎)𝛽2(𝑏)] (7) 

 

and for integer (v)  

 

𝛽1(𝑣
𝑁

4
) = (−1)𝑣/2𝑎𝑛𝑑𝛽2(𝑣

𝑁

4
) = 0𝑒𝑣𝑒𝑛𝑣 

𝛽2(𝑣
𝑁

4
) = (−1)(𝑣−1)/2𝑎𝑛𝑑𝛽1(𝑣

𝑁

4
) = 0𝑜𝑑𝑑𝑣 (8) 

 

3.1.  Development of fast ONMNT algorithm 

The derivation begins by applying (6) into the definition of ONMNT, therefore (4) can be decomposed 

to: 

 

𝑋𝑜(𝑘) = ∑ 𝑥(𝑛)𝛽 (𝑛𝑘 +
𝑛

2
)𝑁−1

𝑛=0 = ∑ 𝑥(𝑛)𝛽1 (
𝑛

2
)𝑁−1

𝑛=0 𝛽(𝑛𝑘) + ∑ 𝑥(𝑛)𝛽2 (
𝑛

2
)𝑁−1

𝑛=0 𝛽(−𝑛𝑘) =

∑ [𝑥(𝑛)𝛽1 (
𝑛

2
) + 𝑥(𝑁 − 𝑛)𝛽2 (

𝑛

2
)] 𝛽(𝑛𝑘)𝑁−1

𝑛=0  (9) 
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In the first step, the input sequence x(n) is divided into two equal sequences, each having a length 

equal to N/2. Applying (6), we get: 

 

𝑋𝑜(𝑘) = ∑ [𝑥(𝑛)𝛽1 (
𝑛

2
) + 𝑥(𝑁 − 𝑛)𝛽2 (

𝑛

2
)] 𝛽(𝑛𝑘)𝑁 2⁄ −1

𝑛=0  − ∑ [𝑥 (𝑛 +
𝑁

2
) 𝛽2 (

𝑛+𝑁 2⁄

2
) −𝑁 2⁄ −1

𝑛=0

𝑥 (
𝑁

2
− 𝑛) 𝛽1 (

𝑛+𝑁 2⁄

2
)] 𝛽 ((𝑛 +

𝑁

2
)𝑘) (10) 

 

Using (7) and (8) for (v= 1), yields: 

 

𝑋𝑜(𝑘) = ∑ [𝑥(𝑛)𝛽1 (
𝑛

2
) + 𝑥(𝑁 − 𝑛)𝛽2 (

𝑛

2
)] 𝛽(𝑛𝑘)𝑁 2⁄ −1

𝑛=0 − ∑ [𝑥 (𝑛 +
𝑁

2
) 𝛽2 (

𝑛

2
) −𝑁 2⁄ −1

𝑛=0

𝑥 (
𝑁

2
− 𝑛) 𝛽1 (

𝑛

2
)] 𝛽 ((𝑛 +

𝑁

2
)𝑘) (11) 

 

Applying (6) into the second summation of (11), get: 

 

𝑋𝑜(𝑘) = ∑ [𝑥(𝑛)𝛽1 (
𝑛

2
) + 𝑥(𝑁 − 𝑛)𝛽2 (

𝑛

2
)] 𝛽 (

𝑛
𝑘

)

𝑁 2⁄ −1

𝑛=0

 

− ∑ [x (n +
N

2
) β

2
(

n

2
) − x (

N

2
− n) β

1
(

n

2
)] β(nk)β

1
(

N

2
k)

N 2⁄ −1

n=0

 

− ∑ [𝑥 (𝑛 +
𝑁

2
) 𝛽2 (

𝑛

2
) − 𝑥 (

𝑁

2
− 𝑛) 𝛽1 (

𝑛

2
)] 𝛽(−𝑛𝑘)𝛽2 (

𝑁

2
𝑘)𝑁 2⁄ −1

𝑛=0  (12) 

 

The second step of the development is by considering the even- and odd-frequency components 

separately, as: 

a. The even-frequency components Xo(2k) can be obtained by using (8) for (v= 4) get: 

 

𝑋𝑜(2𝑘) = ∑ {
[𝑥(𝑛) + 𝑥(

𝑁

2
− 𝑛)] 𝛽1(

𝑛

2
) −

[𝑥(𝑁 − 𝑛) − 𝑥(𝑛 +
𝑁

2
)] 𝛽2(

𝑛

2
)
} 𝛽(2𝑛𝑘)

𝑁/2−1
𝑛=0  (13) 

 

b. The odd-frequency components Xo (2k+1) can be obtained by applying (7) and (8) for (v=2) as (14): 

 

𝑋𝑜(2𝑘 + 1) = ∑ [𝑥(𝑛)𝛽1 (
𝑛

2
) + 𝑥(𝑁 − 𝑛)𝛽2 (

𝑛

2
)] 𝛽(2𝑛𝑘 + 𝑛)

𝑁 2⁄ −1

𝑛=0

 

+ ∑ [𝑥 (𝑛 +
𝑁

2
) 𝛽2 (

𝑛

2
) − 𝑥 (

𝑁

2
− 𝑛) 𝛽1 (

𝑛

2
)] 𝛽(2𝑛𝑘 + 𝑛)𝑁 2⁄ −1

𝑛=0  (14) 

 

Applying (6) into (12) and rearranging, get: 

 

𝑋𝑜(2𝑘 + 1) = ∑ [𝑥(𝑛) + 𝑥 (
𝑁

2
− 𝑛)] [𝛽1(𝑛)𝛽1 (

𝑛

2
) + 𝛽2(𝑛)𝛽2 (

𝑛

2
)] 𝛽(2𝑛𝑘)

𝑁 2⁄ −1

𝑛=0

 

+ ∑ [𝑥(𝑁 − 𝑛) + 𝑥 (𝑛 +
𝑁

2
)] [𝛽2(𝑛)𝛽1 (

𝑛

2
) + 𝛽1(𝑛)𝛽2 (

𝑛

2
)] 𝛽(2𝑛𝑘)𝑁 2⁄ −1

𝑛=0  (15) 

 

Therefore, the odd-frequency component Xo (2k+1) can be obtained by applying (7) into (15), yields: 

 

𝑋𝑜(2𝑘 + 1) = ∑ {
[𝑥(𝑛) − 𝑥(

𝑁

2
− 𝑛)] 𝛽1(

𝑛

2
) +

[𝑥(𝑁 − 𝑛) + 𝑥(𝑛 +
𝑁

2
)] 𝛽2(

𝑛

2
)
} 𝛽(2𝑛𝑘)

𝑁/2−1
𝑛=0  (16) 

 

Combing four points together leads to the in-place butterfly of the DIF ONMNT algorithm shown in 

Figure 1. 
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Figure 1. Butterfly of the ONMNT DIF algorithm, dotted and solid lines represent subtractions and additions 

respectively; θ1=k/2 is the rotation angle 

 

 

3.2.  Development of fast O2NMNT DIF algorithm 

In this algorithm, the derivation begins by dividing the output sequence of Xoo(k) in (5) into its even 

and odd parts, as (17) and (18):  

 

𝑋𝑜𝑜(2𝑘) = ∑ 𝑥(𝑛)𝛽 (
(2𝑛+1)((2𝑘+1)2𝑘)

4
)𝑁−1

𝑛=0 = ∑ 𝑥(𝑛)𝛽 (
(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)𝑘

2
)𝑁−1

𝑛=0 = ∑ 𝑥(𝑛)𝛽(𝐴)𝑁−1
𝑛=0  (17) 

 

𝑋𝑜𝑜(2𝑘 + 1) = ∑ 𝑥(𝑛)𝛽 (
(2𝑛+1)(2(2𝑘+1)+1)

4
)𝑁−1

𝑛=0   

= ∑ 𝑥(𝑛)𝛽 (
(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)(𝑘+1)

2
)𝑁−1

𝑛=0 = ∑ 𝑥(𝑛)𝛽(𝐵)𝑁−1
𝑛=0  (18) 

 

Define two auxiliary sequences Y(k) and Z(k) as (19): 

 

𝑌(𝑘) = (𝑋𝑜𝑜(2𝑘 + 1) + 𝑋𝑜𝑜(2𝑘))/2 
𝑍(𝑘) = (𝑋𝑜𝑜(2𝑘 + 1) − 𝑋𝑜𝑜(2𝑘))/2 (19) 

 

Also, from (6) the following relations can be obtained: 

 

𝛽(𝐴) + 𝛽(𝐵) = 2𝛽1(
𝐴 − 𝐵

2
)𝛽(

𝐴 + 𝐵

2
) 

𝛽(𝐴) − 𝛽(𝐵) = 2𝛽2(
𝐴−𝐵

2
)𝛽(−

𝐴+𝐵

2
) (20) 

 

Replacing values of 𝐴 and B in (17) and (18), yields: 

 

𝐴 + 𝐵 = (
(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)𝑘

2
) + (

(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)(𝑘+1)

2
) = (2𝑛 + 1)(2𝑘 + 1)  

𝐴 − 𝐵 = (
(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)𝑘

2
) − (

(2𝑛+1)(2𝑘+1)

4
+

(2𝑛+1)(𝑘+1)

2
) =

(2𝑛+1)

2
 (21) 

 

Substituting (21) into (20) and then in (19), Y(k) and Z(k) can be written as (22) and (23): 

 

𝑌(𝑘) = ∑ 𝑥(𝑛)𝛽1 (
2𝑛+1

4
) 𝛽 (

(2𝑛+1)(2𝑘+1)

2
)𝑁−1

𝑛=0  (22) 

 

𝑍(𝑘) = ∑ 𝑥(𝑛)𝛽2 (
2𝑛+1

4
) 𝛽 (−

(2𝑛+1)(2𝑘+1)

2
)𝑁−1

𝑛=0  (23) 

 

The second step of the algorithm’s derivation is by dividing sequences Y(k) and Z(k), into two equal 

parts each having a length equals to N/2 as (14) and (25): 

 

𝑌(𝑘) = ∑ 𝑥(𝑛)𝛽1 (
2𝑛 + 1

4
) 𝛽 (

(2𝑛 + 1)(2𝑘 + 1)

2
)

𝑁 2⁄ −1

𝑛=0

 

+ ∑ 𝑥 (𝑛 +
𝑁

2
) 𝛽1 (

2𝑛+1

4
+

𝑁

4
) 𝛽 (

(2𝑛+1)(2𝑘+1)

2
+

𝑁

2
)𝑁 2⁄ −1

𝑛=0  (24) 

 

x(n)

x(n+N/2)

x(N-n)


1

β
1
( )

x(n)

x(n+N/2)

x(N-n)

x(N/2-n)

x(N/2-n)


1

β
2
( )

1
β

2
( )


1

β
1
( )


1

β
1
( )


1

β
1
( )


1

β
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𝑍(𝑘) = ∑ 𝑥(𝑛)𝛽2 (
2𝑛 + 1

4
) 𝛽 (

(2𝑛 + 1)(2𝑘 + 1)

2
)

𝑁 2⁄ −1

𝑛=0

 

+ ∑ 𝑥 (𝑛 +
𝑁

2
) 𝛽2 (

2𝑛+1

4
+

𝑁

4
) 𝛽 (−

(2𝑛+1)(2𝑘+1)

2
−

𝑁

2
)𝑁 2⁄ −1

𝑛=0  (25) 

 

Applying (8) for (v=1) into (24) and (25), get: 

 

𝑌(𝑘) = ∑ [𝑥(𝑛)𝛽1 (
2𝑛+1

4
) + 𝑥(𝑛 +

𝑁

2
)𝛽2 (

2𝑛+1

4
)] 𝛽 (

(2𝑛+1)(2𝑘+1)

2
)

𝑁/2−1
𝑛=0  (26) 

 

𝑍(𝑘) = ∑ [𝑥(𝑁 − 𝑛 − 1)𝛽2 (
2𝑛+1

4
) − 𝑥(

𝑁

2
− 𝑛 − 1)𝛽1 (

2𝑛+1

4
)] 𝛽 (

(2𝑛+1)(2𝑘+1)

2
)

𝑁/2−1
𝑛=0  (27) 

 

From (19), Xoo(2k)=Y(k)-Z(k) and is given by: 

 

𝑋𝑜𝑜(2𝑘) = ∑ {
[𝑥(𝑛) + 𝑥(

𝑁

2
− 𝑛 − 1)] 𝛽1 (

2𝑛+1

4
) +

[𝑥(𝑛 +
𝑁

2
) − 𝑥(𝑁 − 𝑛 − 1)] 𝛽2 (

2𝑛+1

4
)

} 𝛽 (
(2𝑛+1)(2𝑘+1)

2
)

𝑁/2−1
𝑛=0  (28) 

 

and the Xoo (2k+1)=Y(k)+Z(k)] and is given by: 

 

𝑋𝑜𝑜(2𝑘 + 1) = ∑ {
[𝑥(𝑛) − 𝑥(

𝑁

2
− 𝑛 − 1)] 𝛽1 (

2𝑛+1

4
) +

[𝑥(𝑛 +
𝑁

2
) + 𝑥(𝑁 − 𝑛 − 1)] 𝛽2 (

2𝑛+1

4
)

} 𝛽 (
(2𝑛+1)(2𝑘+1)

2
)

𝑁/2−1
𝑛=0  (29) 

 

Combining four points together gives the in-place butterfly shown in Figure 2. 
 

 

 
 

Figure 2. Butterfly of the O2NMNT DIF algorithm, dotted and solid lines represent subtractions and additions 

respectively; θ2=(2k+1)/4 is the rotation angle 

 

 

3.3.  Comparison between algorithms 

In this section, the relationship between the structures of the developed algorithms is discussed by 

showing the similarities between butterflies of the developed algorithms. It is clearly noticed that the ONMNT 

butterfly shown in Figure 1 is almost identical to the O2NMNT butterfly shown in Figure 2. Both butterflies 

have the same size; twiddle factors and structures. Moreover, both butterflies have the property of in-place 

computation and all rotation angles (θ1 for ONMNT and θ2 for O2NMNT) of the multipliers needed to be 

computed or read from a lookup table in a specified stage of the ONMNT algorithm are also needed in the 

analogous stage of the O2NMNT algorithm. The main difference between two butterflies is in the indexing 

scheme, as the butterfly shown in Figure 2 is shifted compared to the corresponding butterfly shown in  

Figure 1. This change in indexing is due to the existence of the frequency index (ko) of the O2NMNT given by 

(5), which does not exist in the ONMNT given by (4). It can be concluded that there are different indexing 

schemes in two algorithms. This is to be anticipated, since the ONMNT has only shift in time index (no) while 

the O2NMNT has two shifts for each of the time and frequency indices. Making the indexing process for both 

algorithm identical, all data that are stored for normal indexing (i.e., x(n) and x(n+N/2)) for the ONMNT 

algorithm are stored at the corresponding locations assigned for the O2NMNT algorithm, and the remaining 

data that are stored for retrograde indexing [23] (i.e., x(N-n) and x(N/2-n)) in the former are stored at the 

locations designated for the new retrograde indexing (i.e., x(N-n-1) and x(N/2-n-1)) of the latter. Therefore, 
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with this indexing adaptation, both butterflies shown in Figures 1 and 2 are identical. As a result, there is a 

close relationship between the ONMNT and O2NMNT algorithms that should help in the development of a 

single software or hardware module for the implementation of these algorithms to compute the ONMNT as 

well as the O2NMNT. 

 

 

4. SKEW-CYCLIC CONVOLUTION OF GNMNTs 

Both ONMNT and O2NMNT have the skew-cyclic convolution (SCC) property and therefore can be 

utilized in a number of applications, such as for fast computation of linear convolution [8], [24]. The SCC of 

two signals x(n) and h(n) of length N denoted by ySCC (n) is defined as (30): 

 

𝑦𝑆𝐶𝐶(𝑛) = ∑ 𝑥(𝑙)ℎ(𝑛 − 𝑙)𝑛
𝑙=0 − ∑ 𝑥(𝑙)ℎ(𝑁 + 𝑛 − 𝑙)𝑁−1

𝑙=𝑛+1  (30) 

 

Let Xo(k) and Ho(k) be the ONMNT of x(n) and h(n) and let Yoo (k), Xoo(k) and Hoo(k) be the O2NMNT 

of ySCC (n), x(n) and h(n) respectively. The SCC property of GNMNTs is defined into two forms as (31) and 

(32) (see [6] for proof) 

 

𝑌𝑜𝑜(𝑘) = 𝑋𝑜𝑜(𝑘)𝛱1𝐻𝑜(𝑘) = 𝑋𝑜𝑜(𝑘)𝐻𝑜
𝑒𝑣(𝑘) − 𝑋𝑜𝑜(𝑁 − 𝑘 − 1)𝐻𝑜

𝑜𝑑(𝑘) (31) 

 

𝑌𝑜𝑜(𝑘) = 𝑋𝑜𝑜(𝑘)𝛱1𝐻𝑜(𝑘) = 𝑋𝑜𝑜(𝑘)𝐻𝑜
𝑒𝑣(𝑘) − 𝑋𝑜𝑜(𝑁 − 𝑘 − 1)𝐻𝑜

𝑜𝑑(𝑘) (32) 

 

where Ho
ev(k), Ho

od(k) in (31) and Hoo
ev(k), Hoo

od(k) in (32) represent even and odd parts for Ho(k) and 

Hoo(k) respectively. Figures 3 and 4 illustrate the SCC calculations of the GNMNTs, where the operator 𝜫1 

and 𝜫2 are as defined by (31) and (32) respectively. 

 

 

 
 

Figure 3. Fast skew-cyclic convolution using the GNMNTs based on (30) 

 

 

 
 

Figure 4. Fast skew-cyclic convolution using the GNMNTs based on (31) 

 

 

4.1.  Calculation of convolutions using GNMNTs  

One of the most important applications of the GNMNTs is for fast computating of different kinds of 

convolutions to be used in digital filtering and other applications [25]. The linear convolution can be computed 

efficiently using both CC and SCC. For instance, let yscc(n) and ycc(n) be the output of the skew-cyclic and 

cyclic convolutions respectively, and let the output of the linear convolution is given as  

y(m) = [y1(n) y2(n)] for m = 0,1,…,2N-1, such that: 
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𝑦(𝑚) = {
𝑦1(𝑛) = ∑ 𝑥(𝑙)ℎ(𝑛 − 𝑙)                    0 ≤𝑛

𝑙=0 𝑛 ≤ 𝑁 − 1

𝑦2(𝑛) = ∑ 𝑥(𝑙)ℎ(𝑛 + 𝑁 − 𝑙)          𝑁 ≤ 𝑛 ≤ 2𝑁 − 1𝑁−1
𝑙=𝑛+1

 (33) 

 

From the CC and SCC definitions, it follows that y1(n)=[ycc(n)+yscc(n)]/2 and  

y2(n)=[ ycc(n)- yscc(n)]/2. Consequently, the CC can be calculated by mapping it to SCC (or conversely) based 

on the relationships between ONMNT and NMNT, which can then be computed by the fast convolution 

algorithm described by (31) and (32). An important aspect for this approach is that the conventional 

convolution can be computed via combining both SCC and CC circular convolutions each of length N, as a 

substitute of the traditional method based on stuffing zeros that requires length of 2N transforms.  

Furthermore, there are savings in arithmetic complexity compared with the standard method. Let A(N) 

and M(N) be the number of additions and multiplications respectively required to compute the linear 

convolution. If the assumption is made that h(n) is known a priori, and consequently H(k) can be pre calculated 

and saved, then the complexity calculations of carried out as follows 

a. For GNMNT, we need to calculate two O2NMNTs of length N to obtain the SCC and CC, plus 2N 

multiplications and N additions to compute ∏’s , as given in (31) and (32). Also, 2N additions are required 

to calculate y(n) from y1(n) and y2(n), as given in (33). Therefore, for this method  

A(N)= 4Ao(N)+4N and M(N)=4Mo(N)+4N. where Ao(N) and Mo(N) are the number of additions and 

multiplications for the O2NMNT respectively. 

b. For the conventional method [12], we need to calculate one NMNT of length 2N to get the CC, plus 4N 

multiplications and 2N additions for [both forward and inverse transforms. Therefore for this method A(N)= 

2AN(2N)+2N and M(N)=2MN(2N)+2N. Where AN(N) and MN(N) are the number additions and of 

multiplications for the NMNT respectively. 

Assuming that the transforms are implemented based on single butterfly implementations that require 

Nlog2N multiplications and (3N/2)log2N additions [5], we get arithmetic complexity based on GNMNTs  

M(N)= 4Nlog2N+4N and A(N)=6Nlog2N+4N while the arithmetic complexity based on NMNT is equal to 

A(N)= 6Nlog2N+6N and A(N)=6Nlog2N+8N. Therefore, it clear that the calculations of the linear convolution 

based on GNMNTs method require 2N fewer multiplications and 4N fewer additions than the conventional 

method. 

The following example illustrate the utilization of the GNMNTs for the calculations of cyclic, skew-

cyclic and linear convolutions. For the sake of validation and without losing of generality, it is necessary to 

calculate these convolutions for the following 8-point two integer data x(n) and h(n) generated randomly: 
 

x(n)=[11  4 12 19 29 3 19] 
 

h(n)=[22 19 13 5 11 9 7 2] 
 

Choosing Mp=27-1=127, will be enough to calculate these convolutions without overflow. From  

Table 1, with the transform length N=8 and d=32, values of β1 and β2 are 119 and 119 respectively. For 

ONMNT, the parameters can be calculated for d=16, therefore values of β1(1/2) and β2(1/2) are 106 and 103 

respectively. Using these parameters, the ONMNT transformed sequences Xo(k) and Ho(k) for the x(n) and h(n) 

respectively, are given as: 
 

Xo(k) =[35 7 89 7 42 49 121 119] 
 

Ho(k)=[36 64 120 94 122 115 108 25] 
 

Similarly, For O2NMNT, the parameters can be calculated for d=8, therefore values of β1(1/4) and 

β2(1/4) are 102 and 97 respectively. Using these parameters, the O2NMNT transformed sequences Xoo(k) and 

Hoo(k) for the x(n) and h(n) respectively, are given as: 
 

Xoo(k) =[0 18 93 10 69 99 74 20] 
 

Hoo(k) =[1 91 80 99 40123 85 53] 

 

Firstly, the SCC of x(n) and h(n) can be computed using the O2NMNT convolution property, The 

output of skew convolution will be: 

 

yscc(n)=[4 42 104 94 12 19 6 73 ]  
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Secondly, the CC of x(n) and h(n) can be computed using the NMNT convolution property [10]. The 

output of cyclic convolution will be:  

 

ycc(n)=[ 99 44 100 15 40 83 82 73 ]  

 

Finally, the linear convolution of these sequences is computed from yscc(n) and ycc(n) as given in 

section 4.1; the desired convolution result y(n) is: 

 

y(n)=[ 115 43 102 118 26 51 44 73 111 1 125 24 14 32 38] 

 

Therefore, we can clearly observe that the advantage of using the GNMNTs for computing the error-

free convolutions is that the linear convolution of length 2N-1 can be calculated by N-point circularly 

convolution sequences using transforms lengths N-point, without any reduction in the dynamic range. 

 

 

5. CONCLUSIONS  

In this project, two new algorithms based on decimation-in-frequency approach and proper finite field 

Cooley-Tukey relations for computing fast ONMNT and O2NMNT transforms have been developed. 

Additionally, a unified approach has been proposed to illustrate that there have existence of a closed relation 

between the developed GNMNTs algorithms. It is obvious from this relationship that both algorithms have a 

very close structure and the identical number of stages are required. Consequently, the ONMNT butterfly can 

also be used for computing the O2NMNT by applying an appropriate indexing scheme. However, the 

multipliers have to be calculated or loaded from a lookup table in a specified stage of the ONMNT algorithms 

are saved in different locations for the corresponding stage of the O2NMNT algorithm. As a result, it has shown 

that just a single integrated butterfly structure is enough to implement each of the developed algorithms. 

Therefore, a combined software or hardware module can be used to calculate the ONMNT as well as the 

O2NMNT. Finally, since the NMNT is a special case of the GNMNTs, therefore the similar module can be 

used to cover all applications that involve NMNT or GNMNTs. 
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