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 This paper presents the design of model predictive control (MPC) combined 

reinforcement learning (RL) applied in an intelligent transportation system 

(ITS). The car is to follow the reference path by the MPC control, and its parks 

in the parking by RL has been trained. The MPC controller constantly moves 

the vehicle along the reference path while the MPC algorithm searches for an 

empty parking spot. Meanwhile, the reinforcement learning-proximal policy 

optimization (RL-PPO) control will perform parking on demand if the MPC 

finds a parking position. This hybrid controller can quickly implement 

programming on MATLAB software by writing code. Furthermore, this 

hybrid controller simultaneously performs precise detection and avoidance of 

obstacles in tight parking spaces. The correctness of the theory is 

demonstrated through MATLAB/Simulink. 
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1. INTRODUCTION  

The automatic parking system is one of the modern driver support services in the intelligent traffic 

system. The role of this system is to assist the driver in safely and quickly parking the vehicle [1], [2]. 

Therefore, this system can reduce the skill requirements of the driver and human-caused accidents such as car 

collisions. Modern driver assistance system technologies typically perform three base steps: object detection 

(obstacle), decision-making, and control [3]–[5]. The automatic parking system consists of three parts: parking 

environment recognition, route planning [6]–[8], and track tracking [9]–[11]. The parking system controller 

automatically obtains information about parking positions and obstacles through various sensors, such as 

ultrasonic sensors, cameras, wheel speed sensors, and angle sensors driving [12]–[15]. Sensors measure the 

vehicle’s distance from obstacles, real-time visual data, current vehicle speed, and steering angle. Finally, the 

controller decides whether the autonomous vehicle should stop or continue from the information through the 

multifunction sensor [16], [17]. Path planning, control, and monitoring constantly interact in the automatic car 

parking system. In particular, the path monitoring control algorithm is one of the critical technologies of the 

automated parking system. This supervisory control algorithm must ensure the accuracy of road monitoring, 

driving comfort when the vehicle changes direction and the driving position and orientation at the end of the 

parking operation. Therefore, this automated parking technology attracts many scientists to research and 

propose related control algorithms in theory and experiment. 

https://creativecommons.org/licenses/by-sa/4.0/
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The document [18] proposed an automatic parking line control method that considers time delay, 

solving the problem of the control model of the traditional automated parking system that is not related to the 

parking system vehicle control delay. Another study [19] has proposed a semi-automatic parking assistance 

system based on the driver navigation area, which can recognize the environment information in real-time 

through the sensor to sense the environment and optimize the parking space. Optimize parking routes to avoid 

collisions. In another study [20], a fuzzy controller that supports automatic parking without a model was 

proposed to monitor the parking path. In addition, the improved research [21], [22] combines fuzzy control 

with neurons. This controller only needs to know the parking configuration. The vehicle will monitor the path 

and assist in correct parking. The algorithms can control and monitor the vehicle’s automatic path and parking 

on demand. However, these controllers cannot coordinate the vehicle speed and steering wheel control with 

the change of parking path during the vehicle’s movement.  

Therefore, the control solutions are still limited to the accuracy of the control and monitoring path. 

Thus, the article will propose a solution to apply a model predictive controller (MPC) using a vehicle dynamics 

model to predict how the vehicle will react to a particular control action within the expected range. This 

behavior is similar to the fact that a driver understands and predicts the behavior of a driver’s vehicle. To 

perform optimal control motion computation, this MPC controller needs to consider all input and output 

constraints on the system, such as speed limit, safe distance after, physical limit of vehicle, maximum steering 

angle, and obstacles for the controller to avoid [23]–[26]. This paper will present a controller design that 

combines MPC for cars to follow the reference path in the parking lot with the reinforcement learning method 

(RL) trained to perform the parking maneuver. The MPC controller moves the vehicle constantly along the 

reference path while the MPC algorithm searches for an empty parking spot. Once the MPC control algorithm 

has found the location, the RL controller will perform the parking request. This hybrid controller performs 

simultaneous obstacle detection and avoidance in tight parking spaces without human intervention. This system 

uses an adaptive model predictive controller that updates both the predictive model and the mixed input and 

output constraints at each control interval. The correctness of the theory is proven through MATLAB 

simulation. 

The article is expressed in five parts. The first part introduces the study of automatic parking vehicle 

control. In the next part, the mathematical model of the car is given. Based on this mathematical model, an 

MPC controller combined with RL for vehicle movement and obstacle avoidance in section 3. The correctness 

of the control solution is shown through the proof. MATLAB simulation in section 4. Finally, the paper makes 

conclusions about the main features of the automatic parking solution and future research directions. 

 

 

2. MATHEMATICAL MODEL OF CAR  

In Figure 1, the article employs a rectangular automobile model with dimensions of 5 meters in length 

and 2 meters in breadth. The vehicle can assist in overcoming obstacles using a Lidar sensor. This sensor 

calculates how far the car is from any obstacles in its lane and in front of it. Blocks might be stationary, like a 

giant pit, or moving, like a slowly driving car. The most frequent driver behavior is briefly switching lanes, 

crossing an obstruction, and retracing their steps. 

In Figure 1, it is noticed that the car coordinate model has four state variables such as x, y is the central 

position of the x, y-axis of the car; 𝑣 is the speed of the vehicle; 𝜃 is the tilt angle of the car (value 0 when 

turning to the east, counterclockwise in the positive direction). Two variables interact such as 𝑇 is the throttle 

(positive value when accelerating, negative when decelerating), and 𝛿 is the steering angle (value 0 when aligned 

with the car, positive counterclockwise); 𝐶𝐿 is the length of the vehicle. The paper uses a simple non-linear model 

to describe car dynamics as (1): 

 

 

 
 

Figure 1. Coordinate model of cars 
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�̇� = cos(𝜃) 𝑣 

 

 �̇� = sin(𝜃) 𝑣 (1) 

 

 �̇� = (𝑡𝑎 𝑛(𝛿) 𝐶𝐿 ). 𝑣 

 

�̇� = 0.5𝑇  

 

According to Jacobian about the nonlinear state model used to build the linear predictive model at the operating 

point, the (2) is created: 

 

 �̇� = −𝑣 𝑠𝑖𝑛(𝜃) . 𝜃 + 𝑐𝑜𝑠(𝜃) . 𝑣 

 

 �̇� = 𝑣. 𝑐𝑜𝑠(𝜃). 𝜃 + 𝑠𝑖𝑛(𝜃) 𝑣 (2) 

 

�̇� = (𝑡𝑎 𝑛(𝛿) 𝐶𝐿 ). 𝑣 + (𝑣(𝑡𝑎𝑛(𝛿2) + 1)(𝑡𝑎 𝑛(𝛿) 𝐶𝐿 ) 

 

 �̇� = 0.5𝑇 

 

 

3. MPC CONTROLLER DESIGN AND RL-PPO ADVANCED LEARNING  

3.1.  MPC model predictive controller 

Model prediction controller uses object models, input and output noise to predict and estimate the 

state. The model structure used in the MPC controller is shown in Figure 2. The model prediction controller 

calculates the optimal control input by minimizing a cost function that penalizes deviations from the desired 

state trajectory. The predicted state is then used to update the control input in real time, allowing the controller 

to track the desired course accurately. 

 

 

 
 

Figure 2. The MPC controller architecture 

 

 

3.1.1. Object model 

The car state model is written as the (3): 
 

𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑆𝑖𝑢𝑝(𝑘) (3) 
 

 𝑦𝑝(𝑘) = 𝑆0
−1𝐶𝑥𝑝(𝑘) + 𝑆0

−1𝐷𝑆𝑖𝑢𝑝(𝑘) 
 

Where: 𝑥𝑝, 𝑦𝑝 is the input and output variable of the object; 𝐴𝑝, 𝐵, 𝐶 are state space matrices with constant zero 

delay; 𝑆𝑖 is the input diagonal matrix; 𝑆0 is the output diagonal matrix; diagonal matrix of output scale factors; 

𝑥𝑝 is the state vector that includes all delay states; 𝑢𝑝 is a vector of input variables consisting of manipulated 

variables, measured noise, and unmeasured input noise; 𝑦𝑝 is a vector of output variables. State model (3) does 

not include input and output noise. So the car state model is rewritten as the (4): 
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𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑝𝑢(𝑘) + 𝐵𝑝𝑣 (𝑘) + 𝐵𝑝𝑑(𝑘) 
 

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘)𝐷𝑝𝑢(𝑘) + 𝐷𝑝𝑣 (𝑘) + 𝐷𝑝𝑑(𝑘) (4) 

 

Where: 𝐶𝑝 =  𝑆0
−1𝐶, 𝐵𝑝𝑢 , 𝐵𝑝𝑣 , 𝐵𝑝𝑑 is a parameter of 𝐵𝑆𝑖; 𝐷𝑝𝑢 , 𝐷𝑝𝑣 , 𝐷𝑝𝑑is a parameter of 𝑆0

−1𝐷𝑆𝑖; (𝑘), 𝑣(𝑘), 𝑑(𝑘) 

are the measured and unmeasured input noises. 

The MPC controller is limited so 𝐷𝑝𝑢 = 0 , means that the MPC controller does not allow direct 

transmission from any controlled variable to any output of the control object. Matrix 𝐴, 𝐵, 𝐶 and 𝐷 is determined 

as follows: 

 

𝐴 = [

𝐴𝑝 𝐵𝑝𝑑𝐶𝑖𝑑 0 0

0 𝐴𝑖𝑑 0 0
0 0 𝐴𝑜𝑑 0
0 0 0 𝐴𝑛

];𝐵 = [

𝐵𝑝𝑢 𝐵𝑝𝑣 𝐵𝑝𝑑𝐷𝑖𝑑 0 0

0 0 𝐵𝑖𝑑 0 0
0 0 0 𝐵0𝑑 0
0 0 0 0 𝐵𝑛

] 

 

𝐶 = 𝐶𝑝 𝐷𝑝𝑑𝐶𝑖𝑑 𝐶0𝑑 [
𝐶𝑛

0
]; D=0 𝐷𝑝𝑣 𝐷𝑝𝑑𝐷𝑖𝑑 𝐷0𝑑  [

𝐷𝑛

0
] 

 

3.1.2. Input noise model 

The input noise model is determined by the (5): 

 

 𝑥𝑖𝑑(𝑘 + 1) = 𝐴𝑖𝑑𝑥𝑖𝑑(𝑘 + 1) + 𝐵𝑖𝑑𝑤𝑖𝑑(𝑘 + 1) (5) 

 

𝑑(𝑘) = 𝐶𝑖𝑑𝑥𝑖𝑑(𝑘) + 𝐷𝑖𝑑𝑤𝑖𝑑(𝑘) (6) 

 

In there: 𝐴𝑖𝑑 , 𝐵𝑖𝑑 , 𝐶𝑖𝑑  are constant state matrices; 𝑥𝑖𝑑(𝑘) is the vector of the measured input noise when  

𝑛𝑥𝑖𝑑 ≥ 0 ; 𝑑𝑘(𝑘) is the vector of input noise 𝑛𝑑 can’t measure; 𝑤𝑖𝑑  is the input noise vector whose mean value 

is 0, when 𝑛𝑖𝑑 ≥ 1.  

  

3.1.3. Output noise model 

The output noise model is determined by the (7): 

 

𝑥0𝑑(𝑘 + 1) = 𝐴0𝑑𝑥0𝑑(𝑘 + 1) + 𝐵0𝑑𝑤𝑑0(𝑘 + 1) (7) 

 𝑦0𝑑(𝑘) = 𝐶0𝑑𝑥0𝑑(𝑘) + 𝐷0𝑑𝑤0𝑑(𝑘)  
 

In there: 𝐴0𝑑, 𝐵0𝑑 , 𝐶0𝑑, 𝐷0𝑑 are constant state matrices; 𝑥0𝑑(𝑘) is the vector of the measured output noise when 

𝑛𝑥0𝑑 ≥ 0; 𝑑𝑘(𝑘) is the vector of the output noise 𝑛𝑦 can’t measure; 𝑤0𝑑 is the vector of input noise whose 

mean value is 0, when 𝑛0𝑑 ≥ 1. 

 

3.1.4. Measured noise pattern 

The measured noise pattern is determined by the (7): 

 

 𝑥𝑛(𝑘 + 1) = 𝐴𝑛𝑥𝑛(𝑘 + 1) + 𝐵𝑛𝑤𝑛(𝑘 + 1) (8) 

 

Where: 𝐴𝑛, 𝐵𝑛 , 𝐶0𝑑 are constant state matrices; 𝑥𝑛(𝑘) is the vector of the measured noise when 𝑛𝑥𝑛 ≥ 0 ; 𝑦𝑛 (𝑘) 

is the output noise vector 𝑛𝑦𝑚; 𝑤𝑛(𝑘) is the input noise vector whose mean value is 0, when 𝑛𝑛 ≥ 1. 

 

3.2.  Reinforcement learning  

The structural principle of the reinforcement learning strategy is depicted in Figure 3. Machine 

learning’s RL area investigates how an agent in a given environment should decide what behaviors to perform 

to maximize a particular reward over the long term. The RL algorithms seek a policy connecting the world’s 

states to the actions the agent should do in each state. The RL algorithms used in this context are closely related 

to dynamic programming methods since the environment is often represented as a limited set of conditions. 

Unlike supervised learning, RL lacks good input/output pairings and does not explicitly assess near-optimal 

behaviors as true or false. Additionally, the action in question involves the pursuit of a balance between 

discovery (an untried condition) and exploitation (a known form). A set of “rewards” with no value is used to 

educate agents to execute a set of actions in a group of environmental conditions in the RL paradigm. The 

reward evaluates how well the last series of steps achieved the task goal. The agent has two parts, including a 

training algorithm and a policy. 
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Figure 3. Structure of RL 

 

 

3.2.1. Automated parking design 

The parking space for training is 22.5 m long and 20 m wide, with the target at the horizontal center. 

Shaft fault observation position 𝑋𝑒 , 𝑌𝑒 of the car with the desired vehicle position. Value 𝑐𝑜𝑠,  𝑠𝑖𝑛𝑒 true to the 

actual tilt angle θ of the vehicle and the lidar sensor. To determine the distance of the ego vehicle from other 

cars in the environment. The lidar sensor is modeled using geometric relationships. The length of the Lidar 

sensor is measured along 12 radial lines from the center of the self-driving vehicle. When a line crosses an 

obstacle, Lidar shows the size of the block to the car. The space that can be measured along any road segment 

is 6 m. 

Parking speed is 2 m/s. The driving angle is limited from ±45° to ±15°. A vehicle is considered parked 

if the required position and posture errors are within the specified tolerances of +/-0.75 m (location) and +/-10 

degrees (direction). The process of stopping the training if the vehicle goes out of the bounds of the training parking 

area or collides with an obstacle, or is successfully parked. The reward at each time 𝑡 is determined by (7): 
 

𝑟𝑡 = 2𝑒−(0.05𝑋𝑒
2+0.04𝑌𝑒

2) + 0.5𝑒−40𝜃𝑒
2

− 0.05𝛿2 + 100𝑓𝑡 − 50𝑔𝑡 (9) 
 

where: 𝑋𝑒 , 𝑌𝑒 , 𝜃𝑒  and the errors in the position and angle of the car’s inclination determined from the required 

position; 𝛿 is the steering angle; 𝑓𝑡 (0 and 1) indicates whether the vehicle is parked or not at the time 𝑡; 𝑔𝑡 (0 and 1) 

indicates whether the vehicle collides with an obstacle at time 𝑡. 

Coordinate transformations when observing vehicle positions (𝑋, 𝑌, 𝜃) of different parking spot 

locations are determined as follows: 

− Coordinates 1-14: no conversion 

− Coordinates 15-22: �̅� =  𝑌, �̅� =  𝑋, �̅� =  𝜃 − 𝜋/2 

− Coordinates 23-36: �̅� = 100 − 𝑋, �̅� =  60 − 𝑌, �̅� =  𝜃 − 𝜋 

− Coordinates 37-40: �̅� = 60 − 𝑋, �̅� =  𝑋, �̅� =  𝜃 −
3𝜋

4
 

− Coordinates 41-52: �̅� = 100 − 𝑋, �̅� =  30 − 𝑌, �̅� =  𝜃 + 𝜋  

− Coordinates 53-64: �̅� = 𝑋, �̅� =  𝑌 − 28, �̅� =  𝜃 

 

3.2.2. Augmented agent design 

The article proposes to design RL agents based on asymptotic proximal policy optimization (PPO). 

This is an online, model-free, gradient training method. This algorithm is a kind of policy gradient training that 

alternates between sampling the data through the environment interaction and optimizing the objective function 

using a random gradient function. The PPO RL agent is created by a neural network consisting of an input 

layer that receives information from the observer and an output layer. This neural network is trained empirically 

as agent training. The number of iterations steps is set to 200, and the number of training episodes is 150. The 

learning rate parameter of 0.2 improves the stability of the training. And a discount factor of 0.997 to maximize 

demand. The loss factor is 0.01. Calculate the output variance using the GAE advantage estimation method of 

0.95. Conduct PPO training as follows: train up to 10000 episodes, each lasting up to 200-time steps. Movement 

stops when maxing out the target average of 80 episodes or more. 
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4. RESULTS OF SIMULATION AND ASSESSMENT 

Automatic parking based on an MPC controller combined with RL-PPO is modeled according to the 

structure shown in Figure 4. They simulated the MPC controller with sampling time 𝑇𝑠 = 0.1. Output weight 

(2, 2, 3). The control variable constraints are [min là -5; max +5]. The obstacle in this paper is the assumption 

of an immobile object in the middle of the center lane of the same size car. The MPC controller matrices have 

the following values: 

 

𝐴𝑑 = [
1 0 0
0 1 0
0 0 1

] ; 𝐵𝑑 = [
0.1 0
0 0
0 0

] ;
 

 𝐶𝑑
= [

1 0 0
0 1 0
0 0 1

] ; 𝐷𝑑 = [
0 0
0 0
0 0

] 

 

 

 
 

Figure 4. MATLAB simulation structure of automatic parking based on the MPC controller combined with 

RL-PPO 

 

 

The RL results are shown in Figure 5 and the automatic parking design results are in Figure 6. Figure 5 

shows that the average number of steps achieved through each episode of 80 random executions, the training time 

is 3551.2 seconds. Observation Figure 5 shows that in the first 200 episodes, the car only went under 20 steps. 

From the 200th to the 900th episode, the vehicle’s object avoidance continuously improved and increased step 

count. While the step maximum is reached starting with the 900th episode, this maximum is not always come 

in subsequent episodes. This level becomes more and more likely to go as the episode increases. The reasons 

for the results are: in the first episodes, the car did not know how to avoid static and dynamic obstacles, so it 

caused a very early collision. The show will stop the attack if a crash occurs and the vehicle speed is constant 

at 2 m/s. Therefore, the low step count corresponding to Figure 5 indicates that the vehicle is not responding 

well to obstacle avoidance. The more you train, that is, for more extensive episodes, the number of steps 

increases over time. This means that even though the vehicle moves continuously in an environment with static 

and dynamic obstacles, it can regulate the knowledge it has learned and make increasingly accurate decisions, 

avoiding the obstacles. Body. The step value reaches saturation at 1000 with increasing probability showing that 

the vehicle can operate well in a complex environment and achieve the maximum number of steps in future 

training times. This result proves that the algorithm has been installed successfully. With the Q-learning RL 

algorithm, the vehicle was able to train itself to achieve the skill of avoiding static and moving objects. 

Figure 6 shows the advantage of an RL controller the vehicle has moved along the path and is in the 

correct parking position. The elapsed time of the car is 10.8 s. However, the part of the parked car is still wrong 

on the Y axis (meaning the parked car is slanted). 

The response of the x and y positions and the tilt angle of the vehicle are shown in Figure 7. Through 

simulation results, the required location is (50.125; 4.9 -1.5709). Thus, the car reaches the target position within 

the allowable error of +/-0.75 m (site) and +/-10 degrees (direction) valid request. The assist feature helps the 

ego to stop after 10.8 seconds. The response of the driving angle is shown in Figure 8. From this simulation 

result, the steering angle shows that the controller reaches a steady state after about 4.2 seconds with a vehicle 

speed of 2 m/s by the requirements. 
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Figure 5. Training process of RL-PPO 
 

 

 
 

Figure 6. Automated parking lot model 
 
 

 
 

Figure 7. 𝑥, 𝑦 axis response and vehicle tilt angle 
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Figure 8. Driving angle response 

 

 

5. CONCLUSION 

This paper presents a successful controller design that combines the MPC model predictive control 

and RL method RL-PPO. This integrated controller has made the vehicle move to avoid obstacles and park the 

car as required with fast calculation time. The success of this research work has partly contributed to intelligent 

traffic systems, improving driver support services and traffic system management and administration agencies. 

However, to increase the convincingness and reliability of this smart control solution, the research work needs 

to be compared with other control methods such as deep learning RL (Q-deep learning), adaptive fuzzy tree 

(fuzzy tree), and the research results will be tested experimentally in the future. Furthermore, the comparison 

with other control methods will provide a comprehensive understanding of the strengths and weaknesses of the 

proposed integrated controller. Additionally, experimental testing in real-world scenarios will offer valuable 

insights into its practical applicability and performance under diverse conditions. This holistic approach will 

enhance the robustness and relevance of the intelligent control solution, thereby contributing to the 

advancement of intelligent transportation systems and autonomous vehicle technology. 
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