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 Transportation activities require substantial costs: drivers, fuel, vehicle 

maintenance, vehicle and equipment procurement capital, and administrative 

activities. In the vehicle routing problem (VRP), all vehicles have the same 

load capacity. But in reality, the company has vehicles with different 

abilities. The heterogeneous vehicle routing problem (HVRP) is a variant of 

VRP. Transportation is a source of pollution. Therefore, electric vehicles are 

starting to replace fossil fuel vehicles. However, a few electric vehicle 

recharging stations remain, especially in Indonesia. Consequently, the 

authors build a heterogeneous vehicle routing problem model by considering 

the filling station using mixed integer programming. This research aims to 

create a model by determining distribution routes with minimum costs from 

several capacities of electric-powered freight fleets with different 

capabilities by considering refilling stations. Research contributions realize 

the transition towards sustainable energy, one of the priority issues in 

Indonesia’s G20 presidency. 
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1. INTRODUCTION 

In an industrial company’s distribution chain operation, transportation is crucial [1]. Transport is 

becoming more dynamic along with customer demand or company growth [2]. The vehicle routing problem 

(VRP), which aims to reduce the overall cost of transportation to visit a group of clients via multiple routes 

starting and finishing at the depot, is typically used to model the distribution task of a logistics organization [3]. 

One of the uses of VRP is to reduce environmental pollution [4]. VRP is a well-known and well-studied field. 

This research was first introduced by Dantzig and Ramser in 1959 [5]. VRP is a development of the traveling 

salesman problem (TSP) method where delivery is carried out by only 1 vehicle [6]. The most common 

problem encountered in logistics activities related to transportation is the determination of vehicle routes.  

VRP is a problem in finding ways by considering the minimum cost and minimum time starting 

from the depot to distribution points that can only be served by one vehicle with many different requests that 

are scattered and end up returning to the depot. Still, the number of requests in one route can be, at most, the 

vehicle’s capacity. In VRP, each vehicle has the same capacity. In reality, the cars owned by the company do 

not have the same power, so VRP is inappropriate for solving heterogeneous vehicle problems. In addition, 

due to the geographical location of customers, companies need to have various types of vehicles with 

multiple capacities to serve commodities to customers [7].  

https://creativecommons.org/licenses/by-sa/4.0/
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Therefore, a variant of the VRP was born to solve the VRP problem for heterogeneous vehicle capacities. 

The heterogeneous vehicle routing problem (HVRP), a variation of VRP, was first presented in 1984 by Golden, 

Assad, Levy, and Gheysens. HVRP is a VRP problem that adds different types of vehicles in capacity. HVRP aims 

to determine an effective fleet structure and routing strategy to reduce overall costs [8]. HVRP is more realistic 

since it takes into account situations where different types of vehicles or heterogeneous fleets may be used. 

Long-distance logistics transportation in cities has been significantly challenged by the e-commerce and express 

delivery sectors’ explosive growth, which has also resulted in serious environmental issues like greenhouse gas 

emissions and pollutant emissions [9]. The transportation sector generates the largest share of greenhouse gas 

emissions [10]. Greenhouse gas emissions from transportation primarily come from burning fossil fuel for our cars, 

trucks, ships, trains, and planes [10]. The increasing number of private vehicles must be watched out for regarding 

environmental problems because 34 million liters per day are produced by private cars [10]. Data from the 

European commission [11] shows that the transport system is one of the main drivers of greenhouse gas emissions, 

accounting for 25% of CO2 emissions. The ratio is expected to double by 2050. 

Among alternative fuel vehicles, electric vehicle options remain the most attractive [12]. Electric 

vehicles (EV) are a way to reduce emissions from mobility [13]. A NASA study in Ou et al. [14] shows that 

using electric vehicles requires the following benefits: electric vehicles emit fewer carbon emissions, 

significantly improve air quality, and electric vehicles need lower operating and maintenance costs. Electric 

vehicles can offer faster acceleration fast, are It is smoother and quieter, and it can be utilized extensively in 

noisy urban locations. The Indonesian Ministry of Environment and Forestry requires all new gasoline vehicles 

meet Euro 4 emission standards starting in September 2018 and all new diesel vehicles to meet Euro 4/IV 

emission standards starting in April 2021, replacing the current Euro 2/II emission standard requirements [15]. 

However, there are some disadvantages to electric vehicles. Users require greater autonomy, more 

frequent and lengthier recharges, and a lack of charging infrastructure despite the expensive purchase price [16]. 

The number of charges at stations is constrained in practice, thus they might not be accessible when a car arrives. 

Because of this, it could need to wait in line before being recharged, and routing decisions must take this waiting 

time into account [17]. An automobile with an internal combustion engine can be charged on average in 3 minutes, 

while an electric vehicle can be charged in 15 to 6 hours. Charging speed varies depending on vehicle type and 

battery technology [18]. This, of course, results in increased travel time for a travel route. There is also a range of 

anxiety syndromes, namely the user’s fear that the battery will run out before completing a trip or arriving at a 

charging station [19]. 

The Indonesian government must support the smooth running of the electrification vehicle 

ecosystem, such as infrastructure, namely charging stations. Thus, between manufacturers who are improving 

the transition of production of diesel-fueled freight transport fleets to electric-powered freight transport fleets 

and the government preparing the infrastructure for electric vehicle ecosystems, this will result in an 

accelerated conversion from diesel to electric fleets. To replace conventional vehicles, electric vehicles must 

provide the same level of comfort on long-distance trips through adequate charging infrastructure. In Indonesia 

itself, charging stations still need to be improved. To increase the vehicle’s electricity usage, charging stations 

should be installed, and the following costs should be considered. These replenishment visits should be regarded 

as in route planning to prevent lengthy detours and inefficient vehicle routing, especially if there are few nearby 

filling stations. The strength of the selected charging station and the amount of energy charged at each station 

determine the optimal route and speed to travel. Also, the route chosen affects the number of charging stations 

and the quantity of energy to charge, thus these variables interact with one another [20].  

As of Nov. 17, 2022, Indonesia had 439 charging stations in 328 locations and 961 battery swap stations 

in 961 locations spread across the country, most of them are located in Java, Energy and Mineral Resources 

Ministry data show [21]. The number of public electric vehicle charging stations (SPKLU) available in Indonesia 

is increasing. Based on PLN data, as of the end of 2022, it has installed 570 SPKLUs across Indonesia [22]. 

The charging stations offer three types of charging services, namely, medium charging, fast charging, and ultra-fast 

charging [22]. PLN is intensively constructing SPKLUs to ensure the availability of EV charging infrastructure so 

that the Indonesian people do not hesitate to shift to EVs, which are more environmentally friendly [22]. 

This research builds on the classic VRP involving electric vehicles and recharging operations. In the 

literature review, electric vehicle routing problem (EVRP) has been expanded by considering several 

features, such as types of charging stations, minimization of total energy consumed, depots, the uncertainty 

of energy consumption, heterogeneous electric vehicles, time window, and charging with nonlinear functions. 

The objective of this problem is to minimize the total travel distance. Based on the problems above, 

the authors develop a model of heterogeneous vehicle routing problems by considering that there are few and 

limited charging stations. Research contributions realize the transition towards sustainable energy, one of the 

priority issues in Indonesia’s G20 Presidency. 
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2. METHOD 

2.1.  Research framework 

Explaining the research framework is a conceptual structure that presents the framework, theory, and 

methods used in this research. The research framework assists researchers in planning, carrying out, and 

analyzing research in a structured and systematic way. Figure 1 the following is the framework of the research. 

 

 

 
 

Figure 1. Research work framework 

 

 

The following is an explanation of the research stages according to Figure 1: 

a. Collection of study materials: this stage involves gathering information, references, literature, and other 

resources relevant to the research topic. This study material is used to understand the issues studied and 

develop a theoretical framework. 

b. Research data collection: at this stage, the researcher collects the data needed to answer research 

questions or test the hypotheses that have been formulated. Data collection methods such as observation, 

interviews, questionnaires, or document analysis can vary. 

c. Formulate the model function: after the data is collected, the next step is formulating the model function. 

This means developing approaches or concepts that will be used to analyze or explain the data that has 

been collected. Model functions can be mathematical formulas, theories, or conceptual frameworks that 

describe the relationships between variables or constructs in research. 

d. Formulate constraints: this stage involves identifying and formulating obstacles that may arise in the 

research process. These constraints can be in the form of limited data, resources, time, or methodological 

problems. Defining conditions helps in devising an effective research strategy and foreseeing potential 

obstacles that may be encountered. 

e. Model building: after formulating the function of the model and identifying the constraints, the next step 

is building the model. This involves developing a structure or framework that systematically applies 

model functions to research data. Modelling also consists in selecting a technique or method of analysis 

appropriate to the research objective. 

f. Model testing and simulation: the model is tested and simulated using the relevant data at this stage. 

Testing and simulation aim to validate whether the model can produce accurate results by research 

objectives. The model can be revised or adjusted if the results do not match. 

g. Model validation: the model validation stage involves more comprehensive and in-depth testing to ensure 

that the model created can produce consistent and reliable results. Validation involves statistical analysis, 

comparison with previous research, and assessing the model’s suitability with existing data. 

h. Proposed models: the final stage is to develop the proposed model based on research results and model 

validation. The proposed model is the final result of the research and reflects the research contribution to 

the field under study. This model can include policy recommendations, new frameworks, or solutions 

based on findings. 
 

2.2.  Related research 

Zhang et al. [23] investigates the problem of capacitated green vehicle route, a particular instance of 

the EVRP that does not take recharging time into account. The author suggests two techniques to solving the 

problem, including two levels of heuristics and metaheuristics constructed using the ant colony system. 

In the first two heuristic steps, the delivery path is found using a greedy neighborhood approach to solve the 

traveling salesman problem (TSP). In order to develop a workable solution, filling stations and depots are 
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inserted in the TSP line in accordance with the leftover fuel and product residue. The implementation of the 

ant colony system performed 38.27% better than the two heuristic stages, according to the results. 

G-Echeverri et al. [24] analyzes EVRP offers services to two different customer groups. Customers 

who require a specific product transported are included in the first group, while customers who want to send 

a specific product to the depot are included in the second group. Also, in order to solve this issue, the first 

group of customers must be visited before the second. 

Felipe et al. [25] EVRP was presented with a variety of technologies and partial recharging. 

In contrast to the conventional EVRP, this article takes into account different kinds of charging stations and 

provides electricity at the stations. The pace and price per filling unit are regulated for each type of station. 

The overall replenishment cost, which includes both fixed and variable costs, is what this article tries to 

reduce. The battery charge divided by the anticipated maximum number of recharges yields the fixed cost of 

each recharge procedure. The variable cost of replenishing measures varies according to the type of charging 

station and is proportionate to the amount of electricity being recharged. Three different heuristics are used 

by the authors of this work to solve difficulties. The first kind is a constructive heuristic, which works fast to 

find a workable solution. The second type is the variable neighborhood search (VNS) heuristic, which makes 

use of the relocation reloads, 2 opt, and reinsertion neighborhood search operators. The simulated annealing 

(SA) algorithm is the last type. 

Lin et al. [26] authored a paper on basic EVRP that attempts to reduce the overall cost, which 

includes travel time, battery charging waiting time, and battery charging prices. Also, the delivery and 

collection of products are affected by this issue. The vehicle load and travel speed are also taken into account 

when calculating costs. While vehicle load fluctuates along the route, each arc’s travel speed is taken to be 

constant. With the use of case studies, the authors further emphasize the need for the routing plan to take load 

impacts into account. 

Shao et al. [27] explains research on EVRP that aims to reduce the total of fuel expenses, trip costs, 

and vehicle fixed costs. This analysis makes the assumptions that a full charge policy is in place and that the 

charging time is consistent. The authors use a hybrid genetic algorithm that combines local search with GA to 

get around this issue. Zhang et al. [28] EVRP, which aims to reduce the overall energy consumed by electric 

vehicles, was started. Many variables, including the distance traveled, the weight of the vehicle, the speed, 

and the engine efficiency, affect how much power is used. This problem also establishes a complete charge 

policy without taking charging time into account. As a result, each charging station has zero service time. 

The study suggests an algorithm for ant colonies and an adaptive extensive neighborhood search (ALNS) 

heuristic [29] as they get closer to a solution. The researches also carried out trials based on a collection of 

self-generated situations and discovered that the ant colony method performed better than the ALNS heuristic 

in terms of explanation and computation time for large problems and might produce a near-optimal solution 

for lesser cases, [30] outlined the four goals of the multi-depot EVRP: maximization of revenue, 

minimization of expenditures, reduction of journey time, and reduction of CO2 emissions. The enhanced ant 

colony optimization algorithm is used to overcome this issue. 

The actual amount of energy used is uncertain because of the weather, the state of the roads,  

the actions of the drivers, and a number of other difficult-to-predict factors. To resolve this issue,  

Pelletier et al. [31] provides EVRP with a comprehensive optimization framework to deal with the 

uncertainty of energy usage. Because each arc is assumed to have an expected rate of energy usage when the 

vehicle is empty (kWh) and an expected rate of energy use when the vehicle is complete (kWh/kg), this 

problem differs from the deterministic EVRP. The actual amount of energy utilized differs from what is 

anticipated because of the unpredictable environment. To reduce the overall fixed cost of electric vehicles, 

the worst-case energy cost, the overall maintenance cost based on the total number of miles driven, the 

authors transformed the uncertainty problem into a deterministic mixed integer programming (MIP) model. 

To create the best possible solutions for small instances of the problem, we start by using a cutting plane 

algorithm. To discover the best answer for important scenarios, a two-phase heuristic method based on 

extended neighborhood search (LNS) was created. 

Boudallaa et al. [32] proposes the speed control of an asynchronous motor (AM) using the H∞ 

Antiwindup design. The collected practical speed is used as a speed reference for conventional vector 

control. The H∞/Antiwindup controller of the direct rotor flow-oriented control is used to improve the 

performance of conventional vector control and optimize the energy consumption of the drive train. 

The effectiveness of the proposed control scheme is verified by numerical simulation. The results of the 

numerical validation of the proposed scheme showed good performance compared to conventional vector 

control. The speed control systems are analyzed for different operating conditions. The simulation results of 

the improved vector control of the AM are used to validate this optimization approach in the dynamic regime, 

followed by a comparative analysis to evaluate the performance and effectiveness of the proposed approach. 
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A practical model based on a TMS320F28379D embedded board and its reduced voltage inverter (24 V) is 

used to implement the proposed method and verify the simulation results. 

Gorbunova and Anisimov [33] aims to examine the operation of the existing charging infrastructure. 

This will provide an opportunity to develop approaches to the energy supply of charging infrastructure and 

city grids from renewable energy sources. The article analyses the number of charging sessions yearly, 

monthly and daily. This data allowed us to construct a charging session number curve and suggest ways to 

carry out the next stage of this research. 

Kapeller et al. [34] aims to improve and cover the requirements for electric vehicles (EV) by using 

heating, ventilation, and AC (HVAC) modeling. The researchers wanted to hide the impact the HVAC 

system had on EV performance and energy consumption. This study uses a modeling approach to simulate 

the behavior of the HVAC system in an EV. This involves developing a mathematical model that takes into 

account various factors such as vehicle size, thermal properties, environmental conditions, and HVAC 

settings. The model is then used to evaluate the different HVAC configuration configurations and their effect 

on the energy consumption of all EVs. The research findings, presented in the form of analysis and results, 

provide insight into the impact of HVAC systems on energy efficiency and EV coverage. This study applies 

the importance of modifying the HVAC configuration to achieve a balance between occupant comfort and 

energy consumption in electric vehicles. 

 

 

3. RESULTS AND DISCUSSION 

The electric vehicle routing problem (EVRP), which involves electric vehicles and charging 

procedures, is a development of the traditional VRP. The EVRP has been expanded in the literature review 

by taking into account a number of features, including different charging station types, minimizing the 

overall energy consumed, depots, the uncertainty of energy consumption, heterogeneous electric vehicles, 

time window, and charging with nonlinear functions. Previous research found two primary studies regarding 

EVRP with a time window [3] and filling with a nonlinear function [35]. 

The model proposed by the author is that vehicle fleets have different (heterogeneous) capacities, 

each customer will only be visited once, the depot only consists of one, and each transport fleet will start 

from the depot and end at the depot. This model uses a MIP approach. This model minimizes the total travel 

distance. And ensure that each customer must be served precisely once. The authors transform the uncertainty 

problem into a deterministic MIP model to reduce the total fixed cost of electric vehicles; the total maintenance 

cost proportional to the total distance travelled, and the worst-case energy cost. First, we use a cutting plane 

algorithm to generate optimal solutions for small instances of the problem. Then, a two-phase heuristic method 

based on extensive neighbourhood search (LNS) was developed to find the optimal solution for significant cases.  

So far, research investigating standard EVRP has been minimal. Most of the literature review has 

focused on extensions and variants of the standard EVRP. Pelletier et al. [31] presented EVRP with multiple 

technologies and partial recharge. Unlike the standard EVRP, this paper considers various types of charging 

stations and provides electricity at the charging stations. Each type of station has a predetermined speed and 

cost per filling unit. This paper aims to minimize the total replenishment cost, which consists of fixed and 

variable costs. The fixed price of each recharge action is determined by the charge of the battery divided by 

the estimated maximum number of recharges. The variable cost of renewing measures is proportional to the 

amount of electricity being recharged and also depends on the type of charging station. Researchers in this 

paper apply three types of heuristics to solve problems. The first type is the constructive heuristic which aims to 

produce a feasible solution quickly. The second type is the variable neighbourhood search (VNS) heuristic, 

which uses three neighbourhood search operators: relocation reloads, two opt, and reinsertion. The last type is 

the SA algorithm. In reality, energy use is unknown due to weather and road conditions, driver behaviour, and 

several other parameters that are difficult to determine precisely. To overcome this problem, Pelletier et al. [31] 

proposes an EVRP with uncertainty in energy consumption and a robust optimization framework to overcome this 

uncertainty. This problem is different from the deterministic EVRP; this problem assumes that each arc (𝑖, 𝑗) has 

an expected energy usage rate when the vehicle is empty, 𝑎𝑖,𝑗 (kWh), and an expected energy usage rate when the 

vehicle is complete, 𝑏𝑖,𝑗 (kWh/kg). Due to the uncertain environment, the actual amount of energy used differs 

from what is expected. The authors turned the uncertainty problem into a deterministic MIP model to 

minimize the total fixed cost of electric vehicles, the total maintenance cost proportional to the total distance 

travelled, and the worst-case energy cost. First, we use a cutting plane algorithm to generate optimal 

solutions for small instances of the problem. Then, a two-phase heuristic method based on extensive 

neighbourhood search (LNS) was developed to find the optimal solution for significant cases. 

The novelty of this research is a model that determines distribution routes with minimum costs from 

several capacities of electric-powered freight transport fleets with different capabilities by considering 

recharging stations. The mixed integer programming (MIP) model of the EVRP standard is presented. Suppose 
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𝑉′ the collection of vertices with 𝑉′ = 𝑉 ∪ 𝐹′, where 𝑉 = {1, … , 𝑛} denoted 𝑛 as the set of customers and 𝐹’ as 

the set of dummy vertices associated with set 𝐹 of the filling station. Vertex 0 and 𝑁 + 1 represents the exit 

and entry of the depot, and each route must start at vertex 0 and end at vertex 𝑁 + 1. In addition, it is defined 

as well 𝐹0
′ = 𝐹′ ∪ {0}, 𝑉0

′ = 𝑉′ ∪ {0}, and 𝑉0,𝑛+1
′ = 𝑉′ ∪ {0, 𝑛 + 1}. EVRP is defined on a complete and 

directed graph 𝐺 = 𝑉0,𝑛+1
′ , 𝐸 with a set of arcs 𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉0,𝑛+1

′ , 𝑖 ≠ 𝑗. Each arc has a distance 𝑑𝑖,𝑗, 

traveling time 𝑡𝑖,𝑗, and constant battery consumption rate ℎ (per unit distance), in other words, crossing this 

arc consumes ℎ𝑑𝑖,𝑗 battery power. 𝐶 fleet of identical electric vehicles with charge capacity a and battery 

capacity 𝑄 are placed at the depot. When leaving the depot, the electric vehicle has a full battery charge. Each 

vertex 𝑖 ∈ 𝑉0,𝑛+1
′  has a positive value request 𝑞𝑖, which is 0 if 𝑖 ∉ 𝑉, and service time 𝑠𝑖(𝑠0 = 𝑠𝑛+1 = 0). 

At each charging station, the difference between the current battery level and 𝑄 is the charging rate 𝑔 

(assumed to be on a full charge policy). Each customer must be visited by exactly one vehicle (separate 

shipments are not allowed). Decision variable 𝜏𝑖 is the arrival time, decision variable 𝑢𝑖 is the remaining 

cargo, and decision variable 𝑦𝑖  is the remaining battery power upon arrival at vertex 𝑖 ∈ 𝑉0,𝑛+1
′  assume 

𝑥𝑖,𝑗(𝑖 ∈ 𝑉0
′, 𝑗 ∈ 𝑉𝑛+1

′ , 𝑖 ≠ 𝑗 is a binary decision variable equal to 1 if arc (𝑖, 𝑗) traversed, or 0 if not. The goal of 

this challenge is to reduce the overall journey distance. The following is a description of the EVRP MIP model: 
 

𝑚𝑖𝑛 ∑ 𝑑𝑖,𝑗𝑥𝑖,𝑗𝑖∈𝑉0
′,𝑗∈𝑉𝑛+1

′ ,𝑖≠𝑗  (1) 

 

With constraints: 
 

∑ 𝑥𝑖,𝑗 = 1, ∀𝑖 ∈ 𝑉𝑗∈𝑉𝑛+1
′ ,𝑖≠𝑗  (2) 

 

∑ 𝑥𝑖,𝑗 ≤ 1, ∀𝑖 ∈ 𝐹′
𝑗∈𝑉𝑛+1

′ ,𝑖≠𝑗  (3) 

 

∑ 𝑥𝑗,𝑖𝑗∈𝑉𝑛+1
′ ,𝑖≠𝑗 − ∑ 𝑥𝑖,𝑗 = 0, ∀𝑗 ∈ 𝑉′

𝑖∈𝑉0
′,𝑖≠𝑗  (4)  

 

𝜏𝑖 + (𝑡𝑖,𝑗 + 𝑠𝑖)𝑥𝑖,𝑗 − 𝑀(1 − 𝑥𝑖,𝑗) ≤ 𝜏𝑗,∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ≠ 𝑗 (5) 

 

𝜏𝑖 + 𝑡𝑖,𝑗𝑥𝑖,𝑗 + 𝑔(𝑄 − 𝑦𝑖) − (𝑀 + 𝑔𝑄)(1 − 𝑥𝑖,𝑗) ≤ 𝜏𝑗 , ∀𝑖 ∈ 𝐹′, 𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ≠ 𝑗 (6) 

 

0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑞𝑖𝑥𝑖,𝑗 + 𝐶(1 − 𝑥𝑖,𝑗), ∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ≠ 𝑗 (7) 

 

0 ≤ 𝑢0 ≤ 𝐶 (8) 
 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − ℎ𝑑𝑖,𝑗𝑥𝑖,𝑗 + 𝑄(1 − 𝑥𝑖,𝑗), ∀𝑗 ∈ 𝑉𝑛+1
′ , 𝑖 ∈ 𝑉, 𝑖 ≠ 𝑗 (9) 

 

0 ≤ 𝑦𝑗 ≤ 𝑄 − ℎ𝑑𝑖,𝑗𝑥𝑖,𝑗 , ∀𝑖 ∈ 𝐹0
′, 𝑗 ∈ 𝑉𝑛+1

′ , 𝑖 ≠ 𝑗 (10) 
 

𝑥𝑖,𝑗 ∈ {0,1}, 𝑖 ∈ 𝑉0
′, 𝑗 ∈ 𝑉𝑛+1

′ , 𝑖 ≠ 𝑗 (11) 
 

where: 𝑑 is distance between customers;𝑥 is visit; 𝑉 is Vertex set; 𝐹 is recharging station; 𝑡 is travel time 37; 

𝑠 is service time; 𝑀 is number of vehicles; 𝑔 is filling rate; 𝑄 is battery capacity; 𝑦 is remaining battery 

power; 𝑔𝑄 is full charge; 𝐶 is load capacity; ℎ𝑑 is battery power consumption; 

This is a comparatively large positive value in the model mentioned above. The overall travel 

distance is minimized using objective function (1). The second constraint ensures that each client must be 

served exactly once (2). Each dummy filling station must only be used once, according to constraint (3). In 

order to maintain the travel flow, constraint (4) represents a flow conservation restriction. The relationship 

between and, which are connected by two vertices and are visited in order, is defined by constraints (5) and 

(6). Limitations (7) and (8) meet each customer’s need. Last but not least, restrictions (9) and (10) specify 

that the battery charge level cannot go to zero. Furthermore, the above model is tested for optimization. 
 

3.1.  Description of the method of completion 

Provide an example of a constraint-based optimization issue and its viable or solution region. The set 

𝑥: 𝑔(𝑥) = 𝑏, a constant, is referred to as the feasible region or the solution if 𝑔(𝑥) is a constraint function of the 

optimization problem with 𝑔 = 𝑅𝑛 → 𝑅 region of the optimization problem. The definition of the function 

𝑔(𝑥) for combinatorial optimization is the mapping 𝑔: {0,1}, 𝑛 {0,1}. To obtain a feasible area, most methods 

for solving combinatorial optimization problems propose a feasible region, that is, an area bounded by 

problem constraints after relaxing the count or binary terms of the variables. For example, the branch and 

bound and field slice methods. Metaheuristic methods created by other researchers, such as genetic algorithms, 
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simulated annealing, tabu search, and plant propagation, typically suggest a starting point for a problem rather 

than a feasible solution. A feasible region was previously identified as the set 𝑥: 𝑔(𝑥) = 𝑏. A feasible settlement 

point is one where the set 𝑆 = 𝑥: 𝑔(𝑥) = 𝑏 contains the point 𝑥. Assume that the combinatorial optimization 

issue can be expressed in the following general form: 

Maximize: 𝑍 = 𝑓(𝑥) (𝑃) 

Constraint: 𝑔𝑖(𝑥) = 𝑏𝑖 , 𝑖 = 1, 2, . . . , 𝑛; 𝑥 ∈ {0,1} 

If 𝑓(𝑥) and 𝑔𝑖(𝑥) = 𝑏𝑖 , (𝑖 = 1, 2, . . . , 𝑛) is a linear function then the problem (𝑃) can be expressed in the 

following form:  

Maximize: 𝑍 = 𝐶𝑇𝑋 

Constraint: 𝐴𝑥 = 𝑏 (𝑃𝑂) 

𝑥 ∈ {0,1} 

binary conditions relax then (𝑂𝑃) can be written:  

Maximize: 𝑍 = 𝐶𝑇𝑋 

Constraint: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 (𝑃1) 

It is possible to divide a constraint matrix 𝐴 of size 𝑚 × 𝑛 (𝑚 rows, 𝑛 columns) into a basic matrix (𝐵) of 

size 𝑚 × 𝑛 and an unbasic matrix (𝑁) of size 𝑚 × (𝑛 − 𝑚) in order to write: 
 

𝐴 = (𝐵𝑁) (12) 
 

It is possible to divide the analog for the vector variable 𝑥 in accordance with the vector 𝑋𝐵  as the basis 

variable and 𝑋𝑁 non-base variable. Now expressions 𝐴𝑥 = 𝑏 become:  
 

(𝐵𝑁) (
𝑋𝐵

𝑋𝑁
) = 𝑏 (13) 

 

Multiply, 
 

𝐵𝑋𝐵 + 𝑁𝑋𝑁 = 𝑏 𝑎𝑡𝑎𝑢 𝐵𝑋𝐵 = 𝑏 − 𝑁𝑋𝑁   (14) 
 

This matrix has an inverse element since matrix 𝐵 is a fundamental matrix (𝐵−1). Multiply from equation’s 

left side (14) by 𝐵−1  there is: 
 

𝐵−1𝐵𝑋𝐵 = 𝐵−1𝑏 − 𝐵−1𝑁𝑋𝑁
 (15) 

 

𝐼𝑋𝐵 − 𝐵−1𝑏 − 𝐵−1𝑁𝑋𝑁 with 𝐼 unit matrix. So, 
 

𝑋𝐵 = 𝐵−1𝑏 − 𝐵−1𝑁𝑋𝑁 (16) 
 

Value 𝑋𝑛 is 0, from the non-negative condition 𝑥 ≤ 0, obtaining a workable settlement point for (PL): 
 

𝑋𝑏 = 𝛽 𝑤𝑖𝑡ℎ 𝛽 − 𝐵−1𝑏 (17) 
 

3.2.  Optimization testing 

After the feasible point has been obtained from the 𝑋𝑏 = 𝛽 𝑤𝑖𝑡ℎ 𝛽 − 𝐵−1𝑏 this point needs to be 

tested whether it is optimal for the problem (𝑃𝐿). From the point of view of the objective function (𝑃𝐿): 

𝑍 = 𝐶𝑇𝑋. Vector 𝐶 and 𝑥 partitioned according to the matrix base (𝐵) and no base (𝑁): 
 

𝑆𝑜𝑍 = (𝐶𝐵 𝐶𝑁)
𝑋𝐵

𝑋𝑁
 (18) 

Constraint, obtained: 
 

𝑍 = 𝐶𝐵𝑋𝐵 + 𝐶𝑁𝑋𝑁 (19) 

 

Substitute (16) for 𝑋𝐵, obtained produce maximum resolution. However, if 𝑍𝑗 –  𝐶𝑖 ≥  0 , then vector 𝑋𝑁. 𝑋𝑁 

is increased from the limit of 0 which will result in the 𝑍 value decreasing (shrink) or staying the same, 

meaning that the 𝑋𝐵 point that has been obtained is already the maximum point, therefore the maximum 

condition for the problem (𝑃𝐿) has been obtained, namely:  
 

𝑍𝑗 − 𝐶𝑗 ≥ 0∀𝑗 (𝑛𝑜𝑛 𝑏𝑎𝑠𝑖𝑠) (20) 
 

Point worth to 𝐶𝑂. 
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Z =  𝐶𝐵 ( 𝐵−1 b − 𝐵−1 N 𝑋𝑁 )  + 𝐶𝑁 𝑋𝑁 (21) 
 

Z =  𝐶𝐵 𝐵−1 b − 𝐶𝐵𝐵−1 N 𝑋𝑁  + 𝐶𝑁 𝑋𝑁 (22) 
 

Z =  𝐶𝐵 𝐵−1 b − (𝐶𝐵𝐵−1 N − 𝐶𝑁 )  + 𝑋𝑁 (23) 
 

Supposing: 
 

Zj =  𝐶𝐵𝐵−1N, ∀𝑗 ∈ (24) 
 

So, 𝑍𝑗 − 𝐶𝑗 = 𝐶𝐵𝐵−1𝑁 − 𝐶𝑁, ∀𝑗 ∈. If 𝑍𝑗– 𝐶𝑗 < 0 (negative) and the set of vectors 𝑋𝑁 is increased from the 

limit of 0, it turns out that 𝑍 will rise for the problem (𝑃𝐿), which implies that the objective function’s value 

can still increase. So, in other words that point 𝑋𝐵  which has been obtained yet note that point values are 

feasible 𝑋𝐵 stated by (17) is for the problem (𝑃𝐿). Now look at the problem (𝑃𝑂) constraint 𝑥 ∈ {0,1} can be 

stated in the form of 𝑥 ≥ 0; 𝑥 ≤ 1, So the problem (𝑃𝑂) can be written as: 

Maximum Z =  𝐶𝑇 X  

Constrain 𝐴𝑥 = 𝑏, 𝑥 ≥ 0; 𝑥 ≤ 1  

Looks like a problem (𝑃𝐿), the possible point value is also expressed as an (6), namely:  
 

𝑋𝐵 = 𝐵−1𝑏 − 𝐵−1𝑁𝑋𝑁  

𝑋𝐵 = 𝛽 − 𝛼𝑋𝑁 (25) 
 

With 𝛽 = 𝐵−1𝑏 𝑎𝑛𝑑 𝛼 = 𝐵−1𝑁𝑋𝑁. 

If the problem (𝑃𝐿) 𝑋𝑁 is worth 0 because 𝑥 ≥ 0. Alternatively, the worth of the largest variable 𝑋𝑁 

is at its boundary point which is 0. In combinatorial problems (𝑃𝑂𝐿) there are 𝑥 ≥ 0; 𝑥 ≤ 1. So in this case 

the value of the baseless variable 𝑋𝑁 is either 0 or 1 , consider the equation again. 
 

𝐵−1𝐵𝑋𝐵 = 𝐵−1𝑏 − 𝐵−1𝑁𝑋𝑁  

𝐼𝑋𝐵 − 𝐵−1𝑁𝑋𝑁 (26) 
 

It can be seen that the value of the variable base 𝑋𝑁 has a value of 0 or 1, meaning that the binary is 𝑋𝑁’s value. 

A plausible solution to the problem (PO) has been found if all of the vector’s components have values of 0 or 1. 

The absence of a workable solution to the issue (PO) is indicated by components of the vector that are not 0 or 1 

obtained. The following steps are taken in order to obtain binary values: 

a. Isolate a list of fundamental variables I1 be a set I2, the variable is a basis that is in its constraints 0 or 1 

and the set 𝐼1 in the set 𝐼2, 𝐼3, 𝐼3  . 

b. Perform a search by using the goal function to apply the non-basic variable that was kept 𝐼1  and only 

discrete modifications to the set’s variables’ values 𝐼2. 

c. At the settlement obtained in step 2, check the value 𝑍𝑗– 𝐶𝑗 from the (23) to the variables in the set 𝐼1. 

If something is moveable from its constraints, add it to the set 𝐼2, repeat from step by step if not stop. 

As a result of the aforementioned process, every element of the vector β has a binary value, allowing for 

the creation of a binary viable solution (𝑃𝑂). 

Based on the discussion, this research produces a model for optimizing the transportation routes of 

heterogeneous electric-fueled freight fleets. Determining and determining transportation routes based on 

refuelling stations using the heterogeneous vehicle routing problem model on transport fleets can produce 

dynamic new models. This electric heterogeneous vehicle routing problem (EHVRP) model is used to 

minimize the total travel distance. When the total travel distance decreases, the transportation costs will also 

decrease. So that will have an impact on the price of goods. 

 

 

4. CONCLUSION 

Based on the results of the study it can be concluded that researchers have produced a model to 

optimize transportation routes for heterogeneous electric freight fleets. Determining and determining 

transportation routes based on refueling stations using the HVRP model in the transport fleet can produce a 

dynamic new model. This HVRP model is used to minimize the total travel distance. When the total travel 

distance decreases, transportation costs will also decrease, impacting the price of goods. 

This study suggests that the geographical conditions used are still using flat road geographical 

conditions. On flat road geographical conditions, battery consumption is more stable. In the future, the model 

can be developed by adding other variables according to the geographical conditions of the road, such as the 

geography of upland roads and congested road conditions. In this research, the charging scenario is applied by 
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replacing the battery at the charging station. In the future, the model can be developed with a direct recharging 

method at the charging station by paying attention to the charging queue and electric charging times. The model 

in this study can be produced by applying artificial intelligence, for example, by implementing a genetic 

algorithm that develops artificial intelligence. An algorithm can be derived and implemented from the resulting 

model with a programming language such as Python. 
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