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ABSTRACT

The field of image and 3-dimensional (3D) data segmentation is growing fast and
has many uses, like in medicine, and robotics. In this article, we explain how
computers understand and divide images and 3D data. We compare different
ways of doing this in 2D and 3D, and look at the computer methods used. We
also discuss recent work and what they discovered. This article gives a broad
overview of what’s happening in this area of computer science. It explains the
goals of the research, how they do it, and what they’ve found out. It’s a useful
guide for researchers to understand what’s happening now and what challenges
they might face in the future.
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1. INTRODUCTION
Semantic segmentation stands as a pivotal facet within the realm of computer vision and machine

learning, attaining substantial significance across an array of applications. This intricate process involves the
meticulous labeling of individual pixels or voxels within images or volumetric data, thereby facilitating the
discernment of distinct object classes within a specified visual context [1]. The methodological precision
inherent in semantic segmentation empowers computational systems to not only recognize and categorize the
contents of an image but also to assign semantic meaning to each pixel or voxel, thereby enhancing the overall
understanding of the visual information at hand.

The demand for high-performance semantic segmentation has surged significantly, driven by appli-
cations such as autonomous driving [2], indoor navigation [2], environmental monitoring [3], mapping [4],
virtual, and augmented reality systems [5]. The accurate delineation of objects within images or volumetric
data is crucial for enhancing the immersive experience and functionality of these technologies. However, the
field of semantic segmentation faces several challenges that need to be addressed to ensure its effectiveness.
These challenges include achieving accurate and real-time segmentation [6], handling diverse datasets with
varying complexities, and adapting to both 2-dimensional (2D) and 3D contexts. Overcoming these challenges
is essential for the successful deployment of cutting-edge applications [7] relying on semantic segmentation.
This article aims to address these challenges by providing a comprehensive overview of deep learning tech-
niques applied to semantic segmentation. It explores the distinctions between 2D and 3D segmentation [8],
discusses primary datasets and their complexities, and surveys prevalent neural network architectures dedi-
cated to semantic segmentation.
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The motivation behind this research stems from the vital role that accurate semantic segmentation
plays in modern technology. From autonomous vehicles [9] to precise navigation systems and immersive
digital experiences, the successful implementation of these applications heavily relies on advancements in
semantic segmentation. By exploring the latest developments in deep learning, this article aims to empower
researchers and practitioners to address current challenges and propel advancements in computer vision and
machine learning. This comprehensive examination of semantic segmentation techniques not only assesses
their current advantages and limitations but also sets the stage for future investigations. By shedding light on
emerging trends and potential areas for improvement, this article contributes to the continuous evolution of
semantic segmentation, shaping the technological landscape in the years ahead.

2. THE IMPORTANCE OF SEMANTIC SEGMENTATION IN COMPUTER VISION
Semantic segmentation is crucial in computer vision for both 2D and 3D data as it enables the as-

signment of semantic labels to each pixel [10] or voxel [11] in an image or 3D scene. This step is essential
for various applications, including object recognition, autonomous navigation [12], 3D mapping, augmented
reality, medical imaging [13], and many more. In the case of 2D data, semantic segmentation is used to ex-
tract precise information about objects in an image. It allows for the detection of object boundaries, accurate
identification, and precise localization [14]. This can be applied in applications such as traffic surveillance,
pedestrian detection in surveillance videos, object detection in medical images [14], and more. For 3D data,
semantic segmentation is crucial in extracting information about the structure and semantic meaning of the 3D
scene. It is used for object detection, scene understanding, autonomous navigation, 3D mapping, and more.
For example, in autonomous navigation [15], semantic segmentation is used to detect obstacles and plan a
safe trajectory for the vehicle. In 3D mapping, it helps in reconstructing precise 3D models of the scene with
detailed information about the different objects present.

3. KEY CHALLENGES OF SEMANTIC SEGMENTATION
Semantic segmentation encounters challenges in handling diverse object appearances due to variations

in lighting, scale, and pose. The reliance on manually annotated data introduces potential inaccuracies, hinder-
ing precise object labeling. Additionally, the variability in object sizes and the need for adaptability to novel
situations pose further complexities in achieving accurate and robust semantic segmentation.

− Object appearance variability [16]: objects can exhibit significant variations in appearance due to lighting
conditions, viewing angles, scale, and pose. This makes semantic segmentation challenging as it is
difficult to find robust visual features to identify all types of objects.

− Accuracy of annotations: semantic segmentation models are typically trained using manual annotations
[17], which can introduce errors and inaccuracies. Specifically, objects may be mislabeled or have am-
biguous labels, making semantic segmentation challenging.

− Variation in object sizes: objects can vary greatly in size, making it challenging to determine an appro-
priate scale for semantic segmentation. Additionally, some objects may be very small and difficult to
detect [18], while others may be very large and cover a significant portion of the scene.

− Handling large amounts of data: computer vision data is often large and complex , making real-time pro-
cessing challenging. For semantic segmentation, this can pose issues with processing time and memory.

− Adaptability to novel situations: semantic segmentation models need to be able to adapt to new situa-
tions, such as unknown objects, novel scenes [19] or different environmental conditions. This can be
challenging as models are typically trained on specific datasets that may not fully capture the real-world
data variability.

4. DIFFERENCES BETWEEN 2D AND 3D SEGMENTATION
2D segmentation is a process of image processing where a 2D image is segmented into different

regions or objects. This can be achieved using various techniques such as edge detection, pixel classification,
and contour detection. 2D segmentation is often used in fields such as pattern recognition, medical imaging, and
computer vision [20]. On the other hand, 3D segmentation involves segmenting images in three dimensions,
often obtained from medical imaging techniques such as computed tomography (CT) or magnetic resonance
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imaging (MRI). 3D segmentation is commonly used in fields such as medical treatment planning, virtual,
augmented reality, and 3D modeling [21]. 3D segmentation is more complex than 2D segmentation due to
the volumetric nature of 3D images, which contain additional information about depth and object structure.
Techniques for 3D segmentation may include threshold-based segmentation, shape-based segmentation, region-
based segmentation, and deep neural network-based segmentation.

5. DIFFERENCES BETWEEN 2D AND 3D DATASET
This part of the paper is for two types of readers: people who are just starting to learn about the topic

and people who already know a lot and want to know what’s new. Newcomers need to understand which good
datasets to use and some tips for getting the data ready, while experienced researchers might use this section to
review the basics or find new information. Now, when it comes to the data itself, we talk about two kinds: 2D
data and 3D data. 2D data is like regular pictures-it’s flat, with two sides, like a sheet of paper. 3D data, on the
other hand, adds depth, like a small box. This depth helps represent things with more detail and complexity.
Think of it as the difference between a flat picture and a small object you can turn around and look at from
different angles.

5.1. 2D
In the field of image analysis and object recognition, the primary focus has traditionally been on two-

dimensional images. As a result, datasets containing two-dimensional representations, which include grayscale
images and the commonly encountered red green blue (RGB) images, have become the most abundant, and
widely used resources. In this context, ’2D datasets’ refer to collections of these flat images. Understanding
the pivotal role of these 2D datasets in computer vision research is crucial, as they serve as the cornerstone of
numerous studies. Therefore, this section aims to explore the significance of 2D datasets within the broader
context of semantic segmentation.

5.1.1. CamVid
The CamVid database is a pivotal resource for researchers in road/driving scene understanding [22].

It includes four HD video sequences, totaling 22 minutes, and capturing various urban scenarios. What’s
unique is its controlled camera recording, ensuring consistent settings. With 32 annotated semantic classes and
701 frames, CamVid enables comprehensive road environment analysis, essential for advancing autonomous
driving systems and intelligent transportation solutions.

Researchers in computer vision can utilize CamVid’s rich annotations, diverse conditions, and parti-
tioning scheme (367 training, 100 validation, and 233 testing) for algorithm development. This dataset fosters
innovation in road scene analysis, crucial for advancing autonomous driving systems and intelligent transporta-
tion solutions. CamVid’s meticulous recording and camera pose tracking offer unique advantages, making it a
valuable asset for advancing research in this field.

5.1.2. Cityscapes
The cityscapes dataset is a valuable resource designed to advance the field of computer vision, with a

primary focus on semantic understanding of urban environments [23]. This dataset provides semantic, instance-
wise, and dense pixel annotations across 30 classes, enabling a wide range of applications in urban scene
analysis. It encompasses 5,000 high-quality annotated images and an additional 20,000 images with coarse
annotations, covering scenes from 50 different cities. The dataset features rich metadata, including preceding
and trailing video frames, stereo views, GPS coordinates, and vehicle odometry data enhancing its utility for
tasks like optical flow, tracking, and structure-from-motion. Notably, it offers diverse images captured over
several months, varying in weather conditions, and scene complexity. Furthermore, it includes extensions by
other researchers, such as bounding box annotations for people, and images augmented with fog and rain.

The cityscapes dataset holds a crucial position in the field of computer vision, providing not only a
vast collection of urban scene images but also serving as a comprehensive benchmark suite and evaluation
server. Its multifaceted usefulness extends to supporting research in various areas, such as pixel-level semantic
labeling, instance-level semantic labeling, and panoptic semantic labeling. Researchers rely on this dataset
to advance their work and evaluate the performance of algorithms and models across different dimensions of
urban scene understanding.
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5.1.3. Pascal visual object classes
The pascal pascal visual object classes (VOC) challenge 2006 (VOC2006) was a significant milestone

in computer vision [24]. Its primary goal was to recognize objects within realistic scenes across twenty diverse
object classes, including vehicles, animals, and humans. The challenge encompassed various tasks: classifi-
cation, detection, segmentation, and person layout prediction. In the classification task, participants predicted
object presence, and provided confidence scores. The detection task required predicting bounding boxes for
objects and associated confidences. Additionally, participants could tackle pixel-level object segmentation and
person layout, including body parts. The dataset featured 9,963 annotated images across 20 classes, with a
strong emphasis on the “person” category. VOC2006 laid the foundation for advancements in object recogni-
tion, shaping the landscape of computer vision research and competitions.

5.1.4. Sift flow
The sift flow dataset a subset of the LabelMe database, comprises 2,688 fully annotated images, each

measuring 256×256 pixels [25]. These images encapsulate the diversity of 8 distinct outdoor scenes, encom-
passing streets, mountains, fields, beaches, and buildings. Within this dataset, each pixel is meticulously labeled
with one of 33 semantic classes, such as “building”, “grass”, “tree”, and more. Additionally, three geometric
categories, namely “horizontal”, “vertical”, and “sky”, are also incorporated into the labeling scheme. Of the
total images, 2,488 are designated for training, while the remaining 200 are set aside for testing purposes. Pix-
els that are either unlabeled or incorrectly labeled as a different semantic class are considered as unlabeled,
contributing to the dataset’s robustness for scene parsing and segmentation tasks.

5.2. 3D
As we delve into the realm of 3D datasets, we open the door to a world of spatial richness and complex-

ity. These datasets, unlike their two-dimensional counterparts, offer a multidimensional perspective, capturing
depth, and volume that is essential for understanding the intricate structures of the physical world. In the fol-
lowing sections, we will explore and define various types of 3D datasets, each tailored to specific applications
and domains. From medical imaging’s quest for detailed anatomical insights to robotics’ need for precise
spatial awareness, these 3D datasets serve as the building blocks for cutting-edge research and technological
innovation.

5.2.1. ShapeNet
ShapeNet is a high-quality dataset of 3D models that includes over 55 object categories, such as cars,

airplanes, furniture, animals, and more [26]. It was created by researchers from Princeton University and
Stanford University and contains over 51,000 3D models. The models in ShapeNet are represented as meshes,
which are networks of points, edges, and faces that define the shape of the object. Each model is annotated with
semantic information, such as the object category and individual parts of the object. ShapeNet has been used
for various computer vision tasks, including object classification, object detection, semantic segmentation, and
shape generation.

5.2.2. ModelNet
ModelNet is a fundamental dataset in the fields of computer vision, machine learning, and computer

graphics [27]. It is widely used as a large-scale dataset for 3D computer-aided design (CAD) models. Created
and maintained by researchers from Princeton University, this extensive dataset has become a cornerstone for
advancing research in diverse domains. Its availability and comprehensiveness have made it a crucial resource
for developing and evaluating algorithms and models in the aforementioned fields. The models in ModelNet
are represented as meshes, which consist of a set of vertices, edges, and faces that define the shape of the object.
Each model is aligned in a canonical pose, facilitating comparison and analysis of different models. ModelNet
has been utilized for various tasks, such as object recognition, shape retrieval, and 3D shape synthesis. It has
also served as a benchmark dataset for evaluating the performance of different techniques and algorithms in 3D
computer vision and machine learning

5.2.3. Karlsruhe Institute of Technology and Toyota Technological Institute
The Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) vision benchmark

suite is a popular computer vision dataset for vehicle detection, segmentation, and trajectory prediction in
urban environments [28]. It includes diverse sensor data like color images, depth images, point clouds, and
lidar data, collected from sensor-equipped cars in Karlsruhe, Germany. The dataset is annotated with object
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categories, vehicle trajectories, and road signal detections. KITTI is extensively used for training and evaluating
machine learning models in various tasks like object detection, semantic segmentation, and vehicle trajectory
prediction in urban environments. It is also utilized for evaluating algorithms related to visual odometry, vehicle
localization, and road signal detection

5.2.4. ScanNet
ScanNet is a dataset of 3D indoor building scans used for semantic segmentation, 3D reconstruction,

and object recognition [28]. It consists of over 1500 scans of indoor environments like apartments, offices,
schools, and hospitals covering various architectural styles and sizes. Each scan includes depth maps, RGB
images, and annotations for objects such as walls, doors, windows, floors, and ceilings.

The ScanNet dataset has become a fundamental resource in the field of machine learning, offering
a comprehensive and diverse collection of data for training and evaluating models in various essential tasks.
These tasks include semantic segmentation, 3D reconstruction, and object recognition specifically within in-
door building environments. The dataset’s versatility extends beyond the academic realm and has found prac-
tical applications in industries such as robotics, video game development, and architectural design. By lever-
aging the ScanNet dataset, machine learning models can be enhanced and their capabilities expanded to tackle
real-world challenges in these industries [28].

6. NEURAL NETWORK ARCHITECTURES
Let’s embark on a journey through the world of neural network architectures. These are like the brains

of machines, helping them learn, and solve problems. Just as there are many different tools for different jobs,
there are various types of neural networks, each with its own special abilities. In the sections ahead, we’ll
unravel the secrets of these different neural network architectures. From how convolutional networks make
computers understand images to the fascinating world of recurrent networks that handle sequences and time,
you’ll soon grasp the exciting diversity of neural networks.

6.1. Convolutional neural network
A Convolutional neural network (CNN) is a type of neural network architecture specifically designed

for image and video processing tasks [29]. CNNs typically comprise convolutional layers, pooling layers,
and fully connected layers. CNNs have demonstrated remarkable success in various domains, including facial
recognition, object recognition, and semantic image segmentation. They excel at learning and recognizing
intricate patterns and structures in images, making them particularly well-suited for visual tasks. Examples of
popular CNNs:

6.1.1. AlexNet
AlexNet was a groundbreaking milestone in the field of computer vision [30]. Introduced by Alex

Krizhevsky and his team in 2012, this pioneering CNN made a significant impact on the research landscape.
Notably, AlexNet achieved a resounding victory in the 2012 ImageNet large scale visual recognition challenge
(ILSVRC), surpassing traditional methods with an impressive 84.6% TOP-5 accuracy. In contrast, the closest
competitor using conventional approaches achieved only 73.8% accuracy. This achievement showcased the
power of deep learning, specifically CNNs, in revolutionizing image recognition tasks and solidified AlexNet’s
status as a transformative model in the field.

The architecture of AlexNet, depicted in Figure 1, represented a paradigm shift in deep learning. It
consisted of five convolutional layers, max-pooling operations, rectified linear unit (ReLU) non-linearities,
three fully-connected layers, and dropout regularization. This combination of architectural elements played
a crucial role in its success. The use of the ReLU activation function helped alleviate the vanishing gradient
problem and enabled faster convergence during training. Additionally, the incorporation of dropout regular-
ization reduced overfitting and improved the model’s generalization performance. AlexNet’s groundbreaking
design and its utilization of these innovative techniques have had a profound impact on the field of computer
vision. It has served as a source of inspiration for subsequent CNN architectures, influencing the development
of numerous models.

6.1.2. The fully connected layers (also known as dense layers) of neural networks
Fully convolutional networks (FCN) stands for fully convolutional networks, which are neural network

architectures designed for semantic image segmentation [31]. First introduced in 2014, they have become
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one of the mostpopular neural networks for this task. The distinctive feature of FCN is the use of a fully
convolutional architecture, which consists solely of convolutional layers without any fully connected layers.
This architecture allows for the preservation of the spatial geometry of the input image throughout the network,
which is crucial for segmentation. FCN also employs transposed convolutional layers to upsample the network
output, which is essential for semantic segmentation. Finally, the network activations are converted into a
segmented output using a score layer or a sigmoid layer.

Figure 1. The architecture of AlexNet [24]

6.1.3. MobileNet
MobileNet is a CNN architecture designed for mobile devices such as smartphones and tablets [32].

The goal of MobileNet is to provide an efficient CNN architecture in terms of computation and memory that
can be implemented on mobile devices with limited resources. MobileNet uses a technique called “depthwise
separable convolution”, which separates the convolution operations into two distinct parts: the first part is
depthwise convolution as shown in Figure 2, which processes each channel separately, while the second part is
pointwise convolution, which combines the results of the depthwise convolution. This technique significantly
reduces the number of parameters required compared to traditional CNN architectures while maintaining high
performance.

Originally developed by Google, MobileNet has gained significant traction in the realm of mobile
applications. It has been seamlessly integrated into well-known platforms such as Google Photos and Google
Translate. Leveraging its capabilities, MobileNet has demonstrated exceptional performance in diverse areas,
including object recognition, face detection, and semantic image segmentation applications.

Figure 2. Depthwise convolutional filters [33]

6.1.4. VGGNet
VGGNet is a prominent CNN architecture that was introduced in 2022 by a team of researchers from

the University of Oxford [34]. It has made a significant impact in the field of deep learning, particularly in
the area of image recognition. Known for its distinctive characteristics, VGGNet has left a lasting impression
on the landscape of deep learning models. Its architectural design and innovative concepts have contributed to
advancements in image recognition tasks, paving the way for further developments in the field (Figure 3).

VGGNet is also known for its modular implementation, where the convolution and pooling layers are
organized into blocks [34]. This modularity makes VGGNet easy to adapt to other image processing tasks, it
has been widely used in the computer vision community for tasks such as object recognition, semantic image
segmentation, and image generation. Although VGGNet is slower to train compared to other CNN architectures
such as ResNet and InceptionNet due to its large number of layers, it is still considered a benchmark in the field
of image recognition due to its high performance and modularity.
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Figure 3. Architecture of VGGNet

6.1.5. ResNet
ResNet or residual network, is a CNN architecture introduced in 2015 by a group of researchers

from Microsoft Research [35]. ResNet employs a deep-layer architecture with residual blocks to facilitate the
training of very deep networks shown in Figure 4. Residual blocks are designed to address the issue of vanishing
gradients that occurs when training very deep networks [36]. Residual blocks utilize skip connections to add
the activations from the previous layer to the output of the next layer. This enables gradients to propagate more
easily through very deep networks, making the training of such networks easier.

ResNet won the 2015 ILSVRC competition using a very deep CNN architecture with 152 layers. Since
then, ResNet has been widely used in the computer vision community for tasks such as object recognition,
semantic image segmentation, and object detection. ResNet has also inspired many other CNN architectures
that use residual blocks to facilitate the training of very deep networks [37].

Figure 4. Residual block from the ResNet architecture [35]

6.1.6. LeNet-5
LeNet-5 is a CNN architecture introduced in 1998 by Lecun et al. [38] for handwritten digit recogni-

tion. It was one of the earliest CNNs to have a significant impact on the field of character recognition. LeNet-5
utilizes a deep-layer architecture with multiple layers of convolution and pooling, followed by fully connected
layers for the final classification as shown in Figure 5. LeNet-5 also uses non-linear activation functions such
as the sigmoid function and the hyperbolic tangent function, which were popular at the time.

LeNet-5, initially developed for recognizing handwritten digits, has had a profound influence on CNNs
and beyond. While it was designed with a specific task in mind, its impact has extended far beyond that. LeNet-
5’s unique architecture and groundbreaking concepts have sparked a wave of innovation, leading to the creation
of various CNN architectures specifically designed for a wide range of image-related tasks. As a result, LeNet-5
has become a fundamental building block in the advancement of image processing techniques.
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Figure 5. LeNet-5 architecture [38]

6.1.7. Clockwork ConvNets
Clockwork ConvNets are a CNN architecture introduced in 2014 by Shelhamer et al. [39]. This

architecture utilizes a hierarchical approach to solving image and video processing tasks by using clocked
computation modules. In clockwork ConvNets, each layer of the network is divided into multiple computa-
tion modules, each associated with a specific clock. Each clock is responsible for updating a specific part
of the output from the previous layer. Computation modules associated with faster clocks are updated more
frequently than modules associated with slower clocks. This approach significantly reduces the computational
time required to train very deep neural networks as shown in Figure 6.

Clockwork ConvNets have been evaluated on various image and video processing tasks, including
handwritten digit recognition and action recognition in videos. The results have shown that clockwork Con-
vNets can improve recognition performance by using different clocks for different computation modules. How-
ever, this approach is more complex than traditional CNN architectures and requires additional expertise for
network design and training.

Figure 6. Clockwork method [39]

6.1.8. EfficientNet
EfficientNet (EFFNet) is a CNN architecture introduced in 2019 by Tan and Le [40]. EFFNet em-

ploys a size optimization approach to achieve CNN architectures that are efficient in terms of computation and
memory. EFFNet utilizes a technique called ”compound scaling”, which involves simultaneously increasing
the depth, width, and resolution of neural networks. This technique allows for finding an optimal balance be-
tween network complexityand classification accuracy. EFFNet is capable of achieving superior performance
compared to other CNN architectures with significantly fewer parameters. EFFNet has been evaluated on var-
ious image processing tasks, including object recognition, semantic image segmentation, and object detection,
and has achieved state-of-the-art performance on several benchmarks. EFFNet has become highly popular in
the computer vision community and is widely used for image processing tasks that require an efficient CNN
architecture in terms of computation and memory.

6.1.9. Eff-UNet
Eff-UNet is a CNN architecture used for semantic image segmentation. This architecture is based on

EFFNet [40]. Eff-UNet utilizes a UNet-like architecture, which consists of a series of convolutional and pooling
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layers to extract features from the image, followed by a series of deconvolutional layers to reconstruct the seg-
mented image. However, Eff-UNet uses EfficientNet-like convolution blocks instead of standard convolution
blocks to improve network efficiency. Eff-UNet has been evaluated on various semantic image segmentation
tasks, including medical image segmentation, road segmentation in satellite images, and cell segmentation in
microscopic images. The results have shown that Eff-UNet is capable of achieving state-of-the-art performance
with significantly fewer parameters compared to other semantic segmentation architectures. Eff-UNet is, there-
fore, a promising CNN architecture for semantic image segmentation tasks that require efficiency in terms of
computation and memory.

6.1.10. U-Net
U-Net is a CNN architecture introduced by Ronneberger et al. [14] for semantic image segmentation.

The U-Net architecture comprises convolutional and pooling layers for feature extraction and deconvolutional
layers for image reconstruction. Notably, U-Net incorporates residual connections to aid information flow as
demonstrated in Figure 7. U-Net addresses the challenge of limited annotated data in semantic segmentation by
leveraging data augmentation techniques and cropping methods, enabling training with diverse data and fewer
labeled samples.

Figure 7. U-Net method

6.1.11. SegNet
SegNet introduced by Badrinarayanan et al. [41], is a CNN architecture used for semantic image

segmentation. Similar to U-Net, SegNet employs convolutional and pooling layers for feature extraction and
deconvolutional layers for image reconstruction. However, SegNet adopts an encoder-decoder architecture,
where the encoder compresses image information into a latent space, and the decoder reconstructs the seg-
mented image.

A distinguishing feature of SegNet is the use of “max-pooling with unpooling”, which preserves
indices of maximum pixels during max-pooling to reconstruct the segmentation map in the subsequent decon-
volution phase [42]. SegNet’s performance has been evaluated across diverse semantic segmentation tasks,
including medical image, satellite road, and microscopic cell segmentation. The results demonstrate its ability
to achieve state-of-the-art performance even with limited annotated data samples.

Exploration of image and 3D data segmentation methods: an exhaustive survey (Hasnae Briouya)
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6.2. Recurrent neural network
Recurrent neural network (RNN) is a neural network architecture designed for sequential data pro-

cessing [42], [43]. It utilizes feedback loops to maintain a representation of the sequence history, making it
suitable for tasks like text generation, machine translation, and speech recognition. One challenge with RNNs
is the vanishing gradient problem, where gradients for earlier steps become small and hinder weight updates
during training. To overcome this, variants like long short-term memory (LSTM) and gated recurrent unit
(GRU) have been introduced. LSTM and GRU incorporate advanced memory mechanisms to better handle
sequential data.In summary, RNNs and their variants are powerful tools for processing sequential data, offering
applications in various domains.

6.2.1. Long short-term memory
LSTM is a powerful type of RNN architecture for processing sequential data [44]. It overcomes the

vanishing or exploding gradient problem by incorporating an internal memory mechanism with input, output,
and forget gates [33]. LSTMs capture relationships between time steps, making them ideal for tasks like text
generation, machine translation, and speech recognition. They find applications in various fields, including
finance, biology, and social sciences.

6.2.2. Gated recurrent unit
GRU is a type of RNN architecture that was proposed to address certain issues faced by LSTM in

processing sequential data [45]. GRU is similar to LSTM in that it also has an internal memory that allows it
to store long-term information. However, GRU has simpler control gates compared to LSTM, which reduces
the number of parameters in the model and makes it faster to train.

GRU consists of two gates: the update gate and the reset gate. The update gate determines which
information should be stored in the internal memory based on the input and the previous state. The reset gate
decides which information should be forgotten from the internal memory based on the input and the previous
state.

6.3. RELATED WORK
6.3.1. GuessWhat?! game

The proposed method uses a question-answering game between a player and a questioner to guess an
object. The player asks questions using images and receives “yes” or “no” responses. A deep CNN extracts
image features, and a recurrent neural network models the dialogue. Evaluation was done on the GuessWhat?!
dataset, with 155,280 dialogues and 821,889 question/answer pairs. The dataset includes 66,537 unique images
and 134,073 unique objects. Dialogues have an average of 5.2 questions, and there are 2.3 dialogues per
image. The dataset contains 3,986,192 word tokens and 11,465 different words. Success rates vary, with 84.6%
successful, 8.4% unsuccessful, and 7.0% unfinished dialogues. Different subsets are available depending on
inclusion criteria.

6.3.2. Scene labeling with LSTM RNN
In this excerpt, it is explained that the neural networks used for semantic scene segmentation are

composed of three main layers: the input layer, the hidden layer, and the output layer. The hidden layer consists
of a 2D LSTM layer and a feed-forward layer and is stacked as a deep network. The input layer receives fixed-
size image patches and extracts features using a CNN. These features are then fed into the hidden layer, which
consists of a 2D LSTM layer that models the spatial relationships between patches and a feed-forward layer
that processes the LSTM layer’s output features. The output layer assigns a class label to each pixel in the
image using a softmax activation function.

By stacking multiple hidden layers, the authors created deep neural networks capable of modeling
more complex spatial relationships between image patches, which improved the performance of the proposed
method. For testing, they used two fully labeled datasets of outdoor scenes: the Stanford background dataset
and the sift flow dataset. The LSTM networks achieved comparable results to state-of-the-art methods on
the Stanford background and SIFT Flow datasets, with a pixel accuracy of 78.56% for single-scale LSTM
networks. The precision differences between LSTM networks and RCNNs with two or three instances were
below 1% per class on all datasets.
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6.3.3. Segmentation-based urban traffic scene understanding
In their influential paper, the authors presented an innovative two-stage methodology specifically tai-

lored for urban street scene classification. The initial stage of their approach focused on patch-based scene
classification, which involved systematically categorizing the intricate urban landscape into 13 distinct urban
texture classes. This detailed classification not only served as a basis for further analysis but also played a
crucial role in building a comprehensive intermediate feature set.

The effectiveness of the approach was evaluated on two challenging sequences. The results demon-
strated that while a state-of-the-art scene classifier could accurately identify global classes like road types, a
manually designed feature set based on segmentation outperformed it in terms of object classes. The authors
emphasized the potential for further enhancements in the system. For instance, the texture classifier could
benefit from incorporating additional features such as those based on 3D points or optical flow. The authors
concluded by highlighting the promising possibilities this system offers for future research and improvements

6.3.4. Multi-modal medical image retrieval
The main contribution of the article is the generative model-based approach for medical image retrieval

using both visual and textual information, which relies on a novel unsupervised learning method using an
extended probabilistic latent semantic analysis (pLSA) model. The authors plan to adapt more sophisticated
visual analysis techniques to improve the system’s performance, model the spatial layout of local features, and
explore methods to integrate a medical ontology into the proposed multimodal medical image retrieval system.
The system consists of two main components: a learning component to build the model and generate the latent
subject representation for each image, and a retrieval component to retrieve images based on queries. The
system was successfully tested on the ImageCLEF 2009 medical image retrieval challenge dataset, achieving
an average precision of 0.29, which outperformed compared algorithms that only utilized visual or textual
features.

6.3.5. 3D-R2N2
The 3D-R2N2 recurrent neural network based on LSTMs, learns a correspondence between images

and 3D shapes without the need for image annotations or object class labels [46]. The network can reconstruct
objects in situations where traditional 3D methods fail, thanks to its ability to handle self-occlusions of objects
when multiple views are provided to the network. Two different 2D CNN encoders were introduced for the
network: a standard convolutional layer and a deep residual network. The article mentions that the addition
of residual connections improved and expedited the optimization process for very deep neural networks. The
3D-R2N2 network then utilizes 3D convolutional LSTMs based on GRU and operates on a spatial structure of
distributed units in a 3D grid, enabling it to selectively update its prediction of previously occluded parts of
the object. The network was trained on a combination of the ShapeNet and pascal 3D+ datasets to fine-tune
hyperparameters and evaluate performance. The proposed approach outperformed the previous method in all
categories in terms of intersection over union (IoU) of voxels on the pascal VOC dataset. The limitations of
the network were also noted, including its inability to reconstruct as many details as MVS methods and its less
precise reconstructions of high-texture objects.

7. RESULTS AND DISCUSSION
We present a comprehensive evaluation of CNN models in a unified manner, combining information

from a single table that summarizes our investigation. Table 1 contains important details such as the model’s
inception, developer, top-5 error rate, number of training parameters, and corresponding training time. Addi-
tionally, the table includes crucial performance analysis parameters like the number of convolutional layers,
strides, fully connected layers, and total multiply-accumulate (MAC) operations [47], [48]. By consolidating
the results, we provide a cohesive overview of different CNN models, revealing trends and insights into their
relative performance. We further discuss the implications of these findings, exploring factors that contribute
to the effectiveness or limitations of the models. This comprehensive analysis offers a nuanced perspective on
the landscape of CNN models, fostering a deeper understanding of their strengths and weaknesses in various
applications.
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Table 1. An analysis comparing different CNN models [47]
Model Year of

incep-
tion

Developed
by

Top-5
error
rate (%)

Time taken to
train the model

The
popular
model

Convolutional
layers

Fully con-
nected layers

Total
MACs

Total
Weights

LeNet 1998 LeNet
Yann Le-
cun et al.

– – LeNet-
5

2 2 2.3
M

431 k

AlexNet 2012 Alex
Krizhevesky
et al.

15.3 Five to six days
(Two GTX 580
GP)

AlexNet 5 3 724
M

61 M

VGGNet 2014 Simonyan
et al.

7.3 Either Two to
three weeks (4
Nvidia Titan
Black GPUs)

VGG-
16

16 3 15.5
G

138 M

ResNet 2015 Kaiming
he

3.6 Either Two to
three weeks (8
GPU machines)

ResNet-
50

50 1 3.9 G 25.5
M

8. CONCLUSION
In conclusion, this article provided a comprehensive analysis of 3D data semantic segmentation meth-

ods, highlighting the advantages, and limitations of each approach. Various neural network architectures were
examined, along with their performances and applications in various fields such as robotics, augmented reality,
3D printing, and medicine. However, applying 3D data semantic segmentation on mobile phones poses signif-
icant technical challenges due to limited resources in terms of computational power and memory. Despite this,
with advancing technology and improved performance of mobile processors, it is possible that more efficient
and lightweight 3D data semantic segmentation architectures will be developed in the future for mobile phone
usage. In summary, 3D data semantic segmentation is a promising research area with numerous potential ap-
plications in various domains. Future prospects include ongoing improvements in the accuracy and efficiency
of neural network architectures, as well as their adaptation to the limited resources of mobile phones for more
practical and accessible use.
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