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 Diabetic retinopathy (DR) is the leading cause of blindness among adults 

and has no visible symptoms. Early detection is the key to prevent vision 

loss. Computer-aided deep learning using convolutional neural networks 

(CNN) have recently gained momentum for DR diagnosis as the cost can be 

significantly reduced while making the diagnosis more accessible. In this 

work, we present a fully automated framework DR network (DRNET) that 

fuses both image texture features and deep learning features to train the 

CNN model. The framework aggregates predictions from three CNN models 

using ensemble learning for more precise and accurate DR diagnosis when 

compared to standalone CNN. To strengthen the confidence of medical 

practitioners in acceptance of automated DR diagnosis, we extend the 

DRNET framework by producing model uncertainty scores and 

explainability maps along with the classification results. 
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1. INTRODUCTION 

Diabetic retinopathy (DR) is a serious condition that can potentially cause vision loss. People with 

diabetes are susceptible to this condition which makes it the number one cause of blindness among adults and 

diabetes is projected to affect around 600 million people worldwide by 2040 [1]. However, DR does not have 

any noticeable symptoms, and thus detecting it early is very important to prevent vision impairment [2]. DR 

is detected by the appearance of different types of lesions on a retina image. These lesions are micro 

aneurysms (MA), haemorrhages (HM), and soft and hard exudates (EX) out of which MA is the earliest sign 

of DR that appears as small red round dots on the retina caused by the weakness of the vessel’s walls. 

Detection of these abnormalities requires the intervention of skilled ophthalmologists or trained clinicians to 

manually examine retinal images and offer diagnosis. Given the fact that medical diagnosis is usually 

expensive and requires costly equipment, there is a dire need for a cheap and viable solution [1]. Recently, 

DR detection using convolutional neural networks (CNN) has gained momentum [2]–[6]. A CNN [7], [8] is a 

type of neural network that assigns weight and biases to different objects in a particular input image. With the 

use of appropriate filters, CNNs can capture spatial and temporal connections in an image. CNN architectures 

generally fit better to image datasets as image data usually has a large number of less-important features. 

CNNs are composed of one input and output layer with multiple hidden layers. These hidden layers are made 

of convolutional layers. Three popular CNN-ResNet [9], AlexNet [10], GoogleNet [11] have demonstrated 

https://creativecommons.org/licenses/by-sa/4.0/
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decent accuracy (≈78%) for DR detection [1]. However, we identify three gaps hindering the implementation 

and real-world deployment of CNN models for DR diagnosis. We enumerate these: 

− Accuracy provided by CNN based DR diagnosis is much less than that acceptable for medical diagnosis. 

Therefore, medical practitioners are reluctant to believe such diagnosis because of the serious 

implications of incorrect model predictions. 

− In high risk areas, such as medical imaging tasks, it is important to know not only the accuracy of the 

model’s prediction but also how certain the prediction is. If a prediction comes with a high uncertainty, 

the end user can take that into account while making the diagnosis. 

− End-user’s confidence and trust in the automated CNNs based prediction is not high. In that context, 

interpretability and explainability of the model’s outcome are crucial. If the model can tell the user which 

regions of the image impacted the model’s prediction, the trust of the medical practioners in the model’s 

prediction will be considerably improved. 

In light of the above mentioned gaps in using deep learning strategies for DR diagnosis, we propose a CNN 

based ensemble framework, named DR  network (DRNET), to detect DR that attempts to bridge the gaps for 

enabling translation of automated DR diagnosis to real-life clinical work. 

 

 

2. MATERIALS AND METHODS 

The proposed framework DRNET for multiclass DR classification provides high accuracy firstly, by 

combining image texture features with deep learning features and secondly, by constructing best ensemble 

models from three CNN-ResNet50, AlexNet, and GoogleNet. Further, the pipeline incorporates both uncertainty 

estimation and explainability maps. A misdiagnosis is flagged when the uncertainty score is high and/or the 

explainability map is unsatisfactory. To the best of our knowledge, this is the first attempt to fuse image texture and 

deep learning features and to include uncertainity scores and explainability maps for DR diagnostics. 

 

2.1.  Datasets used 

The APTOS 2019 blindness detection dataset [12] is used for the training experiments. The dataset is a 

part of the Kaggle competition, it has 35126 retinal images. The images have been graded by medical 

practitioners into 5 classes of DR, namely, No-DR, Mild-DR, Moderate-DR, Severe-DR, and Proliferative-DR. 

 

2.2.  Proposed method 

This section describes the proposed fully automated deep learning framework called DRNET to 

diagnose DR. A summary of the method: 

− The first step of the DRNET pipeline begins with improving accuracy of standalone CNN models by 

preprocessing (pp) the images and applying contrast enhancement algorithms to accentuate the lesions on 

the images [13]. Subsequently, feature extraction is carried out to determine image texture features (using 

GCLM) and deep learning features (using transfer learning). Three CNN models are trained after 

determining the best hyperparameters (batch size, learning rate, and the optimizer) for the CNN models 

using algorithms proposed in [14], [15]. Cosine annealing is further deployed to improve model 

performance by tweaking the learning rate. The resultant probabilities from three CNN for the five DR 

classes are combined using ensembling techniques. 

− Considering the severity of DR, there is a need to minimise the number of false positives the model 

produces. For this purpose, DRNET exploits “uncertainty” to measure the uncertainty of the predictions 

[16]. Predictions paired with uncertainty scores would permit diagnostics with a high degree of 

confidence and trust. If the model is not sure i.e the degree of confidence is quite low for a prediction, 

flagging the prediction as ‘not sure’ is more responsible and safer compared to an incorrect prediction. 

− We incorporate explainability in the framework so that users can understand the prediction of the frame-

work better. The explainability maps produced by the DRNET framework will enable users to figure out 

which regions of the input images are given more importance than others by different architectures and 

make appropriate decision. Figure 1 shows the DRNET framework with the steps explained in detail in 

the following subsections. 

 

2.3.  Image preprocessing 

As a first step of image preprocessing, the images are trimmed to remove the uninformative backspace. For 

this row of pixels in which a specified fraction of pixels are above a threshold are removed. This results in mainly 

eliminating the black/dark segments around the eye. The images are then resized into 227×227 while maintaining 

the aspect ratio so as to reduce the training overhead of the deployed model. Gaussian filtering is used for noise 

reduction by convolving the two dimension Gaussian distribution function given below [17] with the image: 
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where σ is the standard deviation of the distribution. 

 

 

 
 

Figure 1. Block diagram of the proposed DRNET framework 

 

 

Medical images such as retinal fundus images and x-rays generally have a low-contrast, this makes 

it difficult for CNNs to identify the features properly in order to classify an image. We use the contrast 

limited adaptive histogram equalization (CLAHE) algorithm to enhance the retinal images and use the 

enhanced images to train our baseline models. CLAHE was proposed to enhance the contrast of images and 

has proven to be a good preprocessing technique for medical images. The image is partitioned into contextual 

regions, then histogram equalization is applied on the each region by the CLAHE algorithm [13]. 

 

2.4.  Feature extraction 

Two types of features are extracted from the processed images. 

− Texture features encapsulate the spatial variation of pixel values within the image. Gray level co-

occurrence matrix (GLCM) method [18] is used for extracting second order statistical texture features of 

the image. A GLCM matrix (G) is a nXn matrix where n is the number of gray levels in an image. The gij 

element of G is the relative frequency with which a pair of pixels, separated by a specified spatial 

relationship, occur within a given neighbourhood, one with value ’i’ and the other with value ’j’. Four 

statistical texture features, namely, uniformity, entropy, contrast, inverse difference moment, and 

correlation as identified in [19] are computed from the GCLM. 

− Deep learning features are extracted using transfer learning from the convolution layer of pre-trained 

CNN models-AlexNet, GoogleNet, and ResNet. This process takes the models trained on a very large 

dataset (ImageNet [20]) and transfers the learnings to the smaller dataset (DR APTOS dataset). 

 

2.5.  Multiclass classification using CNN 

The texture and deep learning features are fused and fed into the fully connected layers of the CNN 

to obtain the predicted probabilities of the five DR classes using techniques given in [21]. For training the 

CNN, optimal model hyperparameters and learning rate were identified as explained: 

− Hyperparameter tuning: to train any deep learning model there are a number of hyperparameters that have 

to be set beforehand, but trying out all combinations of hyperparameters to find the best set can be 

compute-intensive as it requires training a lot of deep learning models. In this work, we use the 

asynchronous successive halving algorithm (ASHA) [15] to perform hyperparameter tuning. ASHA is 

designed to exploit asynchrony and maximize the parallelism on the successive halving algorithm (SHA) 

[15]. SHA starts with allocating a uniform budget to all the candidate hyperparameter configurations, i.e 

if learning rate and momentum are to be picked from the following sets 1e-1,1e-2 and 0.7,0.9 

respectively, then there are a total of 4 initial candidate hyperparameter configurations. The model 

performance is evaluated on all the candidate configurations. Each round of promotion is called a rung. 
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Later the top half candidate configurations will be promoted to the next rung for further evaluation and 

their budget is doubled, this process is repeated until one configuration remains. In SHA the model must 

be evaluated on the entire set of configurations to select the next half. ASHA removes this bottleneck [15] 

by assigning configurations to workers, when a worker finishes a job instead of waiting for all the 

workers to finish. The algorithm identifies the configurations in the top half of each rung that can be 

promoted to the next one, else a configuration from the lowest rung is added to the worker [15]. 

− Cosine annealing: since cosine annealing [14] is known to work well with SGD optimisers, to further 

enhance the performance of our model, we have used cosine annealing learning rate scheduler. This 

scheduler constantly varies the learning rate such that it starts with a large learning rate and then reduces 

it to a certain minimum value before rapidly increasing it again. 

 

2.6.  Ensemble learning for prediction 

The actual application in a clinical setting depends on the ability of the model to predict with high 

accuracy, which decides whether the framework is effective. By combining several individual models, it is 

possible to obtain much more precise performance [22], [23] as it enables us to yield the individual 

advantages of all the models. In this work we experimented with various ensembling methods-bagging, 

boosting and stacking. Best results were obtained by bagging models. We bag models in two ways, through 

hard-voting, and soft-voting. In hard voting, we select the predicted class as the class predicted by maximum 

number of models. On the other hand, in soft voting, we sum the probabilities (i.e the output of the last layer 

of each model just before the argmax), and choose the class that has the highest probability. 

 

2.7.  Incorporating explainability 

In this work, we have used gradcam [24] to find the salient regions which impacted a model’s 

decision. It is important for us to not treat any deep learning model as a black box and understand the 

functioning of our model. Gradcam, short for “gradient-weighted class activation mapping”, is a tool that 

produces visual explanations of the decision model of any CNN-based architectures [24]. Gradcam allows us 

to see what the model considers as important regions in an input image that is used for prediction. In the 

context of our problem, we use gradcam to identify what our CNN networks consider as the important 

features in the image [24]. Since our input images are fundus retinal images, gradcam allows us to visually 

understand which part of the retina the model focuses more on. It gives clear reasoning for the model’s 

decision hence making the model more dependable for diagnosis. 

 

2.8.  Uncertainty estimation 

Bayesian neural networks are commonly used to measure the uncertainty of the prediction. In 

bayesian neural networks weights are not just numbers, they are probability distributions, and which aid in 

throwing some light on model uncertainty. However, bayesian neural networks are compute-intensive. An 

alternative method to estimate the uncertainty score of the prediction is to add dropouts to a model [25]. Then 

during the testing phase, an image is passed multiple times through the network, and the dropouts which are 

activated during the testing phase drop different neurons randomly and the model’s predictions variations are 

observed [25]. This is mathematically equivalent to measuring the uncertainty using bayesian neural 

networks [25]. Passing the image multiple times is called monte carlo simulation. The shannon entropy 

equation defined below is used to measure uncertainty. 

 

𝐸 = −∑(𝑝(𝑖) × 𝑙𝑜𝑔2(𝑝(𝑖))) (2) 

 

 

3. RESULTS AND DISCUSSION 

We perform our experiments with the three baseline models viz. AlexNet, GoogleNet, and ResNet 

and an optimised ensemble of the three models. In the following subsections, we report the results. 

 

3.1.  Data preprocessing using CLAHE and hyperparameter tuning 

We apply CLAHE as pre-processing techniques to the training dataset (APTOS) as described in 

section 2.3. Table 1 depicts the difference between test accuracies of models trained with and without CLAHE 

preprocessing, it is clear that the preprocessing played a key role in improving the model performance. As 

described earlier in section 2.5., we start the experiments by hyperparameter tuning on our individual 

baseline models on the test dataset. For hyperparameter tuning, we used grid search to find the best set of 

hyperparameters-batch size, learning rate and the optimizer-for all 3 architectures (AlexNet, ResNet, and 

GoogleNet). Table 2 contains the best set of hyperparameters selected by the ASHA algorithm. 
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Table 1. Model test accuracies without and with pp 
Model Test accuracy (without pp) (%) Test accuracy (with pp) (%) 

AlexNet 71.48 77.48 
GoogleNet 74.89 73.48 

ResNet50 76.39 78.17 

 

 

Table 2. Best hyperparameters selected by the ASHA algorithm 
Model Learning rate Batch size Optimizer 

AlexNet 2.63994e-05 128 Adam 

GoogleNet 0.0008695 64 Adagrad 

ResNet50 0.011097376 32 Adam 

 

 

3.2.  Model accuracy with standalone CNN and ensemble model 

Using the best set of hyperparameters for each architecture, and enhancing images using CLAHE, 

each model was trained further for 200 epochs. The ROC curve graphs in Figure 2 shows the performance of 

tested CNN models. The area under the ROC curve measures the performance across all classification 

threshholds and the values for each DR class as well as micro and macro averages are mentioned in the 

figure. Figure 2(a) shows the performance of the AlexNet model. Figure 2(b) shows the performance of the 

GoogleNet model and Figure 2(c) shows the performance of the ResNet50 model. While comparing baseline 

single models, it’s clear that ResNet50 has superior performance compared to the other two models. The 

models were combined using ensemble techniques (boosting, bagging, and stacking) as described in section 

2.6. The results are displayed in Table 3. We obtained significant improvement in accuracy by using 

ensembles. Most effective prediction was achieved using bagging. 
 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 2. Receiver operating characteristic (ROC) curves for each model; (a) AlexNet, (b) GoogleNet, and 

(c) ResNet50 
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Table 3. Accuracy of ensemble of CNN models 
Ensemble of CNN models Accuracy (%) 

Boosting ensemble 90.2 
Stacking ensemble 88.1 

Bagging ensemble 97.3 

 

 

3.3.  Generation of explainable images 

We generate images using gradcam and show one image from each of the classification class in 

Figure 3 for our best single model which is ResNet50. The red areas in these figures represent the salient 

regions. In case of the No-DR retinal image (Figure 3(a)), the key area indicating the absence of DR is almost 

the entire image. For the Mild-DR (Figure 3(b)) and Moderate-DR images (Figure 3(c)), the salient regions 

that enabled the classification are present the image edges. However, as we can see that in two of the images 

(Figure 3(d) and Figure 3(e) specifically), the salient regions are outside the retinas which makes the model’s 

prediction more untrustworthy. Evidently, through the gradcam images, the model’s behaviour becomes 

clearer as it demarcates parts of the image the prediction is focusing more on and thus bolster confidence in 

the results. 

  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. Gradcam images for all classes for the ResNet50 models, the red areas are the salient regions for 

the models; (a) No-DR, (b) Mild-DR, (c) Moderate-DR, (d) Severe-DR, and (e) Proliferative-DR 

 

 

3.4.  Uncertainty computation using entropy 

Shannon entropy is used to measure the uncertainty of the models. Figures 4(a) and 4(b) depict the 

uncertainty distribution of both the top models, namely, AlexNet, and ResNet50 respectively where the x-

axis indicates the entropy and the y-axis is the number of images. From the figures, it is clear that the images 

classified by AlexNet are more uncertain compared with those classified ResNet50 and we conclude that 

ResNet50 is the more certain model. We also show in Table 4 the uncertainty measure of 3 test images, it can 

be observed that wrong predictions have higher uncertainty compared to the correct predictions. Hence when 

a model’s prediction has higher uncertainty measure then there is a higher chance that it is a incorrect 

prediction and is flagged as such by DRNET. 

 

 

 
(a) 

 
(b) 

  

Figure 4. Uncertainty distribution for; (a) AlexNet and (b) ResNet50 
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Table 4. Uncertainty measure of 3 test images 
Image Entropy Prediction Ground truth 

Test image A 1.51 0 1 
Test image B 0.81 2 2 

Test image C 1.47 1 0 

 

 

4. CONCLUSION 

In this work we provide an end to end solution for DR diagnosis, along with uncertainty estimation 

and explainability. We have studied the affect of preprocessing and hypermarameter tuning on the model 

performance and conclude that models trained on images preprocessed with CLAHE perform better. We 

demonstrate significant improvement in accuracy of DR classification by using ensembles of the three 

baseline models with the bagging technique turning out to be the ideal solution to build the ensemble. Then 

we have used shannon entropy to measure the uncertainty of the test set, our observations show that images 

which were wrongly predicted have higher uncertainty compared to the ones which were rightly predicted. 

The gradcam maps were used to highlight the salient regions of the images, these give insight about the 

regions of the image with impacted the model’s decision. We conclude that automated CNN can be deployed 

in real life settings if explainability maps and uncertainity scores are incorporated in the pipeline. 
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