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 An important facet of disaster mitigation is discovering regions based on 

their lack of preparedness for combating disaster. Accordingly, organizations 

can lay down appropriate risk management strategies and guidelines to 

minimize loss due to disaster. “Technique for order of preference by 

similarity to ideal solution (TOPSIS)” is a popular multi-criteria decision-

making (MCDM) method that is deployed for ranking alternatives based on 

multiple pre-specified criteria. However, the method’s efficiency in ranking 

region as per multiple criteria for disaster management is far from the 

ground truth. The authors propose a novel intelligent method HCF-TOPSIS, 

an extension of traditional TOPSIS, to deliver an efficient ranking 

mechanism for regional safety assessment of disaster affected regions. HCF-

TOPSIS capitalizes on entropy (H), closeness (C), and farness (F) metrics to 

obtain efficient ranking scores of the disaster affected regions. Extensive 

experimentation validates the claim and proves the superiority of HCF-

TOPSIS over existing TOPSIS variants. The proposed research presents 

many benefits, especially to governments and stakeholders, intending to take 

appropriate actions to contain disasters. 
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1. INTRODUCTION 

Natural and man-made disasters pose a significant threat to communities around the world. Their 

unpredictability adds to the challenge, often leaving affected areas overwhelmed by the scale of the 

consequences. This can lead to devastating losses in terms of human life, property and environment [1]. 

Recently, the world was caught unaware of the calamitous COVID-19 pandemic [2]-[4]. The pandemic was 

termed a disaster as it caused facility closures resulting in shortage of food supplies and jobs; far-reaching 

physical and mental health issues, and adverse long-term socioeconomic effects [5]-[8]. Governments had to 

strictly implement containment measures like social distancing and lock-down to avoid the contagion and 

provide emergency medical aid before a vaccine could be developed to fight the disease [6], [9]. 

The resulting severe human and economic loss necessitate a strategic planning for combating similar 

disasters. The intial task is to compute the level of preparedness for all regions by analyzing multiple criteria 

(possibly conflicting) such as ‘emergency preparedness’, ‘healthcare readiness’, ‘surveillance capabilities’, 

and so on. Researchers have relied on multiple-criteria decision-making (MCDM) techniques for analysis and 

strategic decision-making [10], [11]. These techniques rank the regions (alternatives) based on multiple 

criteria [12], [13], calculate the criteria weights that govern the safety measures [14], [15] and help develop 

prevention strategies for mitigating the effects of a disaster. Among these, technique for order of preference 

https://creativecommons.org/licenses/by-sa/4.0/
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by similarity to ideal solution (TOPSIS) [12], [16] is commonly used and realistic compensatory method due 

to its simplicity, comprehensibility, and ease of computation. The method ranks the regions to be monitored 

by distinguishing between desirable criteria (positive or benefit attributes) and non-desirable criteria 

(negative or cost attributes) [17], [18]. Between the positive and negative attributes, smaller values are 

preferred for the negative attributes in comparison to positive attributes. Thus, TOPSIS aims to balance 

favorable and unfavorable outcomes across multiple criteria. It evaluates alternatives as per the nearness to 

the ideal solution (maximizing closeness to the best-performing alternative) and farthest distance from the 

worst solution (minimizing similarity to the worst-performing alternative). This methodology helps identify 

the most desirable region by considering positive and negative aspects across different criteria [19]-[21]. 

Effective implementation of TOPSIS is challenging as it depends upon assignment of appropriate 

weights to the criteria/sub-criteria and use of correct normalization methods. The method also suffers from 

the rank reversal problem (RRP), which refers to a change in the previously defined ordering among 

alternatives after inclusion or exclusion of additional alternatives or criteria [22]. As a result, several 

extensions of TOPSIS have been proposed for aiding strategic decision planning during disaster management 

[23], [24]. Interested readers can refer to Shih [20] for a comprehensive review of TOPSIS extensions.  

TOPSIS extensions have recently been shown to be effective for assessing the impact of COVID-19 

and utilizing this information for mitigation of same. These are used for determination of nation-wise 

regional safety levels and ranking countries using interventional strategies [3], [4], [13], [25], [26]. Recently, 

Hezer et al. [13] applied TOPSIS and other MCDM techniques to rank regions and evaluated the results by 

comparison with the ground truth findings of the COVID-19 data knowledge group (DKG) report [27]. Even 

though results were satisfactory, they suggested MCDM-based alternatives leveraging different sub-criteria 

for better ranking and disaster readiness. The authors introduce “a novel intelligent TOPSIS method, named 

HCF-TOPSIS”, motivated by these issues. This not only overcomes the limitations of traditional TOPSIS by 

leveraging entropy (H), closeness (C), and farness (F) metrics but also delivers efficient ranking score for the 

areas when used for assessment of disaster affected regions. The major contributions of this paper are:  

− Novel intelligent method HCF-TOPSIS, an extension of traditional TOPSIS, to rank regions according to 

their disaster readiness. 

− Performance comparison of HCF-TOPSIS with a competitive TOPSIS method and the validation of the 

output ranking using the ground truth available in [27] (subsection 3.2). 

− Demonstration of diminishing RRP by HCF-TOPSIS in contrast to a competitive TOPSIS method –  

H-TOPSIS (subsection 3.3). 

− Extensive experimentation to evaluate the efficacy of HCF-TOPSIS considering additional sub-criteria 

for identifying regions that require special attention (subsection 3.4). 

Organization of the paper: section 2 explains the steps of HCF-TOPSIS that ensembles efficient 

metrics like entropy (H), closeness (C), and farness (F) for ranking regions as per their preparedness to tackle 

disaster. Section 3 describes the dataset, discusses the results of the experimentation, followed by future 

scope. Lastly, the conclusion is given in section 4. 

 

 

2. METHOD 

The proposed novel intelligent TOPSIS variant, named as HCF-TOPSIS leverages region ranks to 

depict performance of a region during disaster. It needs weighted sub-criteria as input along with the decision 

matrix [𝑀] as shown in (1). It depicts ‘m’ competitive alternatives (𝐴1, 𝐴2, … … , 𝐴𝑚) as rows and ‘n’ chosen 

sub-criteria (𝑆𝐶1, 𝑆𝐶2, … … , 𝑆𝐶𝑛) as columns. 
 

𝑆𝐶1 ⋯ ⋯ ⋯ ⋯ 𝑆𝐶𝑛  

𝑀 =
A1.

⋮..
Am

[

𝑀11 … . . 𝑀1𝑛

… . 𝑀𝑖𝑗 … . .

𝑀𝑚1 … … . 𝑀𝑚𝑛

] (1) 

 

Where 𝑀𝑖𝑗 denotes performance value of 𝑗𝑡ℎsub-criterion for 𝑖𝑡ℎ alternative. Each sub-criterion 

takes either monotonically increasing or monotonically decreasing performance value. If higher performance 

value is desirable then the 𝑗𝑡ℎ  sub-criterion is benefit/positive criterion. If lower performance value is 

desirable, then it is cost/negative sub-criterion. Taking into account the past conduct of regions during 

disasters, HCF-TOPSIS is used for ranking the regions. Subsection 2.1 details on calculation of weights of 

sub-criteria, followed by the explanation of the three steps of HCF-TOPSIS (listed below) in subsection 2.2.  

− Step I: creation of weighted normalized decision matrix 

− Step II: creation of separation vectors 

− Step III: ranking of regions 
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2.1.  Obtaining the weights of sub-criteria 

Performance of TOPSIS based methods depends on the weights (importance) assigned to  

sub-criteria. The importance of sub-criteria W= (W_1, W_2, ……, W_n) serve as one of the key factors in 

ranking the alternatives. Many techniques like equal weights, normalized weights and entropy-based weights 

have been elaborated in literature to calculate the weights [28]. Literature survey shows that entropy-based 

weights are superior to equal and normalized weights used in original TOPSIS as they help in extracting 

information about importance of the sub-criteria [28] and diminish RRP [22]. Therefore, by using entropy 

metric (H), authors compute weight of sub-criterion 𝑗 using (2a) to capture its distortion over 𝑚 regions using 

(2b). Note that 𝐻𝑗  and 𝑊𝑗 illustrates the disaster's vulnerability and resilience across all regions depending on 

sub-criterion 𝑗. 

 

𝐻𝑗 = −𝐾 ∑
𝑀𝑖𝑗

∑ 𝑀𝑖𝑗
𝑚
𝑖=1

𝑙𝑜𝑔
𝑀𝑖𝑗

∑ 𝑀𝑖𝑗
𝑚
𝑖=1

𝑚
𝑖=1  (2a) 

 

𝑊𝑗 =
1−𝐻𝑗

∑ (1−𝐻𝑗)𝑛
𝑗=1

 (2b) 

 

Where, 𝐾 =
1

𝑙𝑜𝑔 𝑚
, 0 ≤ 𝐻𝑗 ≤ 1, ∑ 𝑊𝑗 = 1𝑛

𝑗=1 . 

 

2.2.  Computing ranks for the disaster afflicted areas 

For enhanced mitigation of calamity in future, each afflicted area is allocated a rank as per its past 

performance. The region obtaining higher rank (region with weak performance during past disaster) may be 

advised to follow the mitigation strategies of region with lower rank (region with good performance during 

disaster), so as to improve weak region performance in future disaster situation, if any. The ranks are 

calculated by HCF-TOPSIS using two metrics viz. Closeness (C) and farness (F) which make sure that the 

rank score (absolute) of the area is nearest to the ideal reference point and farthest from negative ideal 

reference point respectively. After creation of a weighted normalized decision matrix in step I, separation 

vectors are obtained in step II. Using absolute distance of closeness to an optimized ideal point (closest to 

positive ideal solution and farthest from negative ideal solution), step III ranks the regions. Region with the 

lowest rank is considered as the best region that is least affected by disaster. The details of each step are as 

follows. 

 

2.2.1. Step I (creation of weighted normalized decision matrix) 

Traditional TOPSIS makes use of vector normalization to map each criterion into an equivalent unit 

for fair comparison. However, researchers have shown that vector normalization aggravates RRP due to 

dependency among alternatives and use of a fixed ideal solution [22]. Extensive methods have been proposed 

in literature for normalizing the decision matrix [𝑀] (Table 1). It has been proved that the max method 

effectively reduces RRP by increasing the range of values of the criteria [22]. Using (3), we apply max-linear 

normalization on decision matrix [𝑀] to construct normalized decision matrix [𝐷] using user-specified 

benefit (𝐽+) and cost (𝐽−) criteria. In order to capture performance of each area compared to the total 

performance of the system considering user specified criteria categorization, weighted standardized decision 

matrix [𝑉] is computed using (4) by multiplying resilience and the performance of each region (𝑖) on  

sub-criterion ( 𝑗). 
 

𝑖𝑓 𝑗 𝜖 𝐽+𝑡ℎ𝑒𝑛 𝐷𝑖𝑗 =
𝑀𝑖𝑗

𝑀𝑗
𝑚𝑎𝑥  𝑒𝑙𝑠𝑒 𝐷𝑖𝑗 = 1 −

𝑀𝑖𝑗

𝑀𝑗
𝑚𝑎𝑥 (3) 

 

𝑉𝑖𝑗 = 𝑊𝑗 ∗ 𝐷𝑖𝑗 (4) 

 

2.2.2. Step II (creation of separation vectors) 

HCF-TOPSIS method leverages two sets namely hypothetically best (𝑃+) and worst (𝑃−) solution 

set [29] to find the optimal solution which is not only nearest to the best solution, but also the farthest from 

the worst solution [10]. Observe that 𝑃+is a supposed solution having the values of sub-criteria that 

correspond to positive ideal (best) criteria values in [𝑉]. In order to get hypothetical best solution 𝑃+, using 

(5a), we use the maximum value for the benefit criterion 𝑉𝑗
+ and minimum value for the cost criterion 𝑉𝑗

+ 

from 𝑚 alternatives (regions) under study. Similarly, the hypothetical worst solution 𝑃− corresponds to 

negative ideal (worst) criteria values in [𝑉] where benefit criteria, 𝑉𝑗
− takes the minimum value of the 

criterion while the cost criteria, 𝑉𝑗
− takes the maximum value of the criterion. 𝑃− for each sub-criterion 𝑗 is 

obtained using (5b). Once positive (𝑃+) and negative (𝑃−) ideal solutions are in place, separation measures 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 3, June 2024: 587-597 

590 

𝑃𝑖
+ and 𝑃𝑖

− of each region 𝑖 are computed using (5c) and (5d) respectively. Euclidean distance has been used 

for finding separation measures owing to its prevalent use in contrast to rest of the distance measures 

mentioned in Table 1 [30], [31]. 

 

𝑃+ = {𝑉1
+, … … , 𝑉𝑛

+ } (5a) 

 

where,  𝑖𝑓 𝑗 𝜖 𝐽+𝑡ℎ𝑒𝑛  𝑉𝑗
+ =  𝑚𝑎𝑥 (𝑉𝑖𝑗) 𝑒𝑙𝑠𝑒 𝑉𝑗

+ = 𝑚𝑖𝑛 (𝑉𝑖𝑗) 

 

𝑃− = {𝑉1
−, … … , 𝑉𝑛

− } (5b) 

 

where, 𝑖𝑓 𝑗 𝜖 𝐽+𝑡ℎ𝑒𝑛  𝑉𝑗
− =  𝑚𝑖𝑛 (𝑉𝑖𝑗)  𝑒𝑙𝑠𝑒  𝑉𝑗

− = 𝑚𝑎𝑥 (𝑉𝑖𝑗) 

  

𝑃𝑖
+ =  ∑ √∑(𝑉𝑖𝑗 − 𝑉𝑗

+)
2

𝑗  (5c) 

 

𝑃𝑖
− =  ∑ √∑(𝑉𝑖𝑗 − 𝑉𝑗

−)
2

𝑗  (5d) 

 

 

Table 1. Normalization procedures and distance measures used in TOPSIS and its extensions 
Normalization 

procedure/distance 

measure 

Formula 

Vector normalization 𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 ,Fiug 𝑖 = 1,2,3,4 … . . 𝑚;  𝑗 = 1,2,3,4 … . . 𝑛 

Max linear normalization 𝑟𝑖𝑗 =
𝑥𝑖𝑗

𝑥𝑗
∗  , 𝑖 = 1 … 𝑚; 𝑗 = 1 … 𝑛 ; 𝑥𝑗

∗ = 𝑚𝑎𝑥𝑖{𝑥𝑖𝑗} for benefit criterion; 𝑟𝑖𝑗 =
𝑥𝑗

~

𝑥𝑖𝑗
 , 𝑖 = 1 … 𝑚;  𝑗 = 1 … 𝑛 ; 

𝑥𝑗
~ = 𝑚𝑖𝑛𝑖{𝑥𝑖𝑗} for cost criterion or 𝑟𝑖𝑗 = 1 −

𝑥𝑖𝑗

𝑥𝑗
∗  , 𝑖 = 1 … 𝑚;  𝑗 = 1 … 𝑛 ; 𝑥𝑗

∗ = 𝑚𝑎𝑥𝑖{𝑥𝑖𝑗} for cost 

attributes 

Max-min linear 

Normalization 
𝑟𝑖𝑗 =

𝑥𝑖𝑗− 𝑥𝑗
~

𝑥𝑗
∗− 𝑥𝑗

~  for benefit attributes and 𝑟𝑖𝑗 =
𝑥𝑗

∗− 𝑥𝑖𝑗

𝑥𝑗
∗− 𝑥𝑗

~ for cost attributes 

Sum linear normalization 𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 , 𝑖 = 1,2,3,4 … . . 𝑚;  𝑗 = 1,2,3,4 … . . 𝑛 

Minkowski’s metric 𝐿𝑝(𝑥, 𝑦) = {∑ |𝑥𝑗 − 𝑦𝑗|
𝑝

}𝑛
𝑗=1

1/𝑝
, where 𝑃 ≥ 1 and with 𝑛 dimensions 

(i) Manhattan (city block) distance 𝑝 = 1; (ii) Euclidean distance 𝑝 = 2; (iii) Tchebycheff distance 𝑝 = ∞ 

Weighted metric 𝐿𝑝(𝑥, 𝑦) = {(𝑤𝑗 ∑ |𝑥𝑗 − 𝑦𝑗|)𝑝}𝑛
𝑗=1

1/𝑝
, where 𝑃 𝜖 {1,2,3, … } Ս {∞}; 𝑤𝑗 is the weight on the 𝑗𝑡ℎ dimension 

or direction. The distance names are defined in the same way as above (𝑖)– (𝑖𝑖𝑖). 

 

 

2.2.3. Step III (ranking of regions) 

Traditional TOPSIS calculates the relative closeness coefficient to positive ideal solution set by 

choosing the region that has the closest distance value from the positive-ideal solution and the farthest 

distance from the negative-ideal solution to get ranks [22]. Subsequently, regions are sorted in descending 

order on the rank scores to report alternatives with higher scores as more effective in combating disaster in 

comparison to the other regions. Relative distance measure is a popular method to find an ideal solution [32]. 

However, using it leads to changing of ideal points when alternatives are either added or removed resulting in 

RRP. Use of absolute distance measures keeps RRP under control [32]. Using relative distance measure, 

computations of positive and negative ideal solutions result in non-uniformities in rankings given by TOPSIS 

[29]. Normalization procedure which uses absolute terms reduces RRP as it allows the alternatives to remain 

independent to some extent Talukdar and Dutta [29]. tackles RRP by considering the TOPSIS value of 

alternatives based on absolute closeness to positive and negative ideal solution [33]. 

Instead of calculating relative closeness to positive ideal solution, an ideal reference point is used in 

HCF-TOPSIS to get absolute closeness to positive ideal solution (𝐶𝑖
+) and absolute farness from negative 

ideal solution (𝐹𝑖
−) for each region 𝑖 using (6a) and (6b) respectively. Let 𝑂(𝐶𝑃,, 𝐹𝑁) be an optimized ideal 

reference point where 𝐶𝑃 = min (𝑃+) and 𝐹𝑁 = max (𝑃−). Simply stated the reference point is closest to the 

positive ideal solution and farthest from the negative ideal solution. Here, the closeness (C) metric is used to 

calculate absolute closeness to positive ideal solution and farness (F) metric is used to calculate absolute 

farness from negative ideal solution for each region. HCF-TOPSIS calculates absolute Euclidean distance 

between each region 𝑖 and an ideal reference point to get its score 𝑆𝑖 using (6c). The Euclidean distance 

ensures absolute HCF-TOPSIS score (𝑆𝑖) instead of relative score in traditional TOPSIS. Lesser the score 𝑆𝑖 
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given by TOPSIS, closer is 𝐶𝑖
+ to point 𝑂 and farther is 𝐹𝑖

− to point 𝑂. Thus, it ranks the regions as per the 

increasing order of 𝑆𝑖. In case two or more regions get the same score, then only closeness to positive ideal 

solution is considered for ranking giving weightage to benefit criteria. 

 

𝐶𝑖
+ =  𝑃𝑖

+ − 𝐶𝑃 (6a) 

 

𝐹𝑖
− =  𝑃𝑖

− − 𝐹𝑁 (6b) 

 

𝑆𝑖 = √[𝐶𝑖
+]2 + [𝐹𝑖

−2] (6c) 

 

 

3. RESULTS AND DISCUSSION 

This section strives to establish the efficacy of the novel HCF-TOPSIS method in ranking  

COVID-19 affected regions as per their safety and preparedness. Code written using Python 3 is executed on 

Intel(R) Core (TM) i7, CPU @1.80 GHz having 16 GB RAM. We have utilized the datasets and the ranks 

available in the report [27] for the experimentation. We have used entropy-based variation of TOPSIS  

(H-TOPSIS) as a competitive method in the experiments as it is more efficient over traditional TOPSIS for 

ranking COVID-19 affected regions [4], [25], [28]. 

 

3.1.  Data description 

In 2020, data analysis of about 200 regions for COVID-19 safety ranking and risk assessment was 

performed to provide a framework [21], [27]. It grouped 200 countries into four levels with level 1 countries 

having the highest safety score and level 4 having the lowest safety score. The ranking was obtained using 

six benefit-oriented criteria (Table 2), which in turn comprises of a total of 34 sub-criteria. The report 

emphasizes on close monitoring of all the six criteria to analyze regions influenced by disaster to control its 

severity. We have used regional DKG scores as ground truth for result comparison [27]. 

 

 

Table 2. Standard benefit criteria used in DKG report [27] 
Criteria Sub-criteria 

Quarantine efficiency Scale and timeline of quarantine, criminal penalties for violating quarantine, economic support for 

quarantined citizens, economic and supply chain freezing, travel restrictions 
Government efficiency 

of risk management 

Level of security and defense advancement, rapid emergency mobilization, efficiency of 

government structure, economic sustainability, legislative efficiency, political stability 

Monitoring and detection Monitoring systems, disaster management, scope of diagnostic methods, testing efficiency, AI for 
diagnostics and prognostics, govt surveillance tech for monitoring, reliability of data 

Emergency preparedness Societal emergency resilience, emergency military mobilization exp., surveillance capabilities, 

previous national emergency experience 
Healthcare readiness COVID equipment availability, mobilization of healthcare resources, quantity and quality of 

medical staff, healthcare progressiveness and tech advancement, epidemiology system level of 

development 
Regional resilience Infection spread risk, culture specifics and societal discipline, level of modern sanitization 

methods, demography, chronic diseases, societal risks 

 

 

3.2.  Validating performance of HCF-TOPSIS using six standard criteria 

Using the proposed HCF-TOPSIS and H-TOPSIS method, region scores have been calculated for 

level 1, 2 and 3 using six standard positive criteria from the report [27]. Normalized scores obtained by two 

methods along with DKG region scores are shown in Figures 1(a) to (c) for three different levels 

respectively. It is evident that in almost all the regions, HCF-TOPSIS score is closer to DKG score values in 

contrast to those given by H-TOPSIS for all three levels. This means the HCF-TOPSIS method is better than 

H-TOPSIS. To establish the soundness of HCF-TOPSIS, Spearman’s rank correlation coefficients is 

computed for which scores are ranked from 1 to N starting from highest value where N signifies number of 

regions observed for safety preparedness. Table 3 shows the Spearman’s rank correlation coefficient between 

DKG ranks and that obtained from HCF-TOPSIS and H-TOPSIS methods respectively for all levels (1, 2, 3). 

The values confirm that HCF-TOPSIS scores are closer to the ranks depicted in DKG report than those 

generated by the H-TOPSIS method. Computation of means absolute error (MAE) and Root Mean Squared 

error (RMSE) is done to find the errors in scores calculated by HCF-TOPSIS and H-TOPSIS methods in 

order to compare with the DKG scores. 

For the three levels, Figures 2(a) to (c) compare the MAE and RMSE of the two methods. Lesser 

error values for HCF-TOPSIS compared to H-TOPSIS at all levels demonstrate the ability of HCF-TOPSIS 
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in producing scores near to DKG scores. Thus, the hybrid HCF-TOPSIS is a superior version of TOPSIS to 

rank the regions influenced by disaster.  

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 1. Comparison of HCF-TOPSIS, H-TOPSIS and DKG report using normalized scores for regions at 

various levels: (a) regions at level 1, (b) regions at level 2, and (c) regions at level 3 

 

 

Table 3. Spearman’s rank correlation of DKG ranks at 3 levels 
Level H-TOPSIS HCF-TOPSIS 

Level 1 0.831579 0.866165 

Level 2 0.545865 0.563759 

Level 3 0.625674 0.644837 

 

 

   
(a) (b) (c) 

  

Figure 2. Efficacy comparision of HCF-TOPSIS and H-TOPSIS using means absolute error and root mean 

square error for regions at various levels: (a) regions at level 1, (b) regions at level 2, and (c) regions at  

level 3 
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3.3.  RRP mitigation evaluation using HCF-TOPSIS 

We also observed the capability of HCF-TOPSIS method to tackle the rank reversal problem (RRP). 

In earlier studies, it is reported that RRP is more affected by changing the number of alternatives [31], [32]. 

Hence, we initially considered top-10 regions of level 1 and computed the MAE for comparative evaluation 

of HCF-TOPSIS and H-TOPSIS with respect to DKG scores. Then, we considered top 15 regions and 

recomputed the MAE. The results shown in Table 4 shows a considerable reduction in MAE in the case of 

HCF-TOPSIS with the addition of alternatives whereas there was little change in case of H-TOPSIS. This 

shows the efficiency of HCF-TOPSIS in mitigating the RRP. 

 

 

Table 4. MAE reported by H-TOPSIS and HCF-TOPSIS with varying alternatives at level 1 
# Alternatives (at level 1) H-TOPSIS HCF-TOPSIS 

Top-10 0.17 0.15 

Top-15 0.18 0.11 

 

 

3.4.  Performance evaluation of HCF-TOPSIS using sub-criteria 

A recent paper by Hezer et al. [13] suggests that ranks can be refined for the regions by including 

sub-criteria from the report [27]. Close monitoring of criteria of areas influenced by disaster enables 

governments to prepare judicious plans to contain severity of disasters. Considering this, we select 34  

sub-criteria for level 1 regions only as done in DKG report. We also differentiate between benefit and cost 

sub-criteria instead of considering all as positive criteria as used by Hezer et al. [13]. Out of 34 sub-criteria, 

19 were considered as benefit and rest 15 were taken as cost according to their semantics discussed below. 

Here, (+) symbol signifies that the authors have considered the sub-criterion as benefit, whereas (−) symbol 

signifies cost sub-criterion.  

Countries measure geopolitical vulnerabilities (+) by checking their political strength keeping in 

mind military stoutness, they also measure economic sustainability (+) based on growth rate of its debt and 

capability to be financially stable and sustainable in post pandemic era. Both these sub-criteria directly 

impact the way in which risk knowledge is gained. The sub-criterion previous national emergency experience 

(+) takes into account the policies made and relief efforts undertaken by government in the past. Societal 

emergency resilience (+) also considers past history and judge’s attitudes, preparedness and resilience of the 

population. Together these two helps in identifying existing/new risk factors. Further, the sub-criterion 

chronic diseases (−) assesses geographic risk by identifying highly populated regions within the country, 

number of bordering regions and infection-prone areas in vicinity of the country. Infection spread risk (−) 

determines what part of population is medically or otherwise unfit and is likely to catch infection. Level of 

modern sanitization methods (+) used and COVID-19 equipment availability (+) determine the readiness of 

the country to face any pandemic. Epidemiology system level of development (+) performs medical research 

on spread, distribution and control of disease. All these criteria help in identifying high risk factors. 

Government’s legislative efficiency (+) for deploying emergency response legislation in response to 

any hazard/pandemic and its rapid emergency mobilization (−), that is, its capability to organize emergency 

response, play a significant part in warning the communities ahead of the impending danger. Emergency 

military mobilization experience (−) takes into account past exposure of preparing military for national 

emergencies and uses it to effectively combat current pandemic by disseminating information about it to 

general public. Further, efficiency of government structure (+) and sophistication of surveillance capabilities 

(+) play major part in identifying risk-prone regions and warning such regions at the earliest.  

The sub-criteria monitoring systems and disaster management (+) and government surveillance 

technology for monitoring (+) assess the diverseness and level of sophistication and widespread use of 

monitoring and surveillance technologies in a country. Later also keeps track of infection rate and adherence 

to social spacing and quarantine norms. After monitoring comes diagnostics which is affected by sub-criteria: 

reliability and transparency of data (+) which takes into account reliability of country’s reported statistics 

related to infection, hospitalization and mortality; scope of diagnostic methods (+) determines diversity of 

specific diagnostic techniques used in a country and their effectiveness; AI for diagnostics and prognostics 

(+) helps in analyzing COVID results via artificial intelligence methods thereby reducing the need for 

manpower to do the same work. To decide quarantine measures for a country scale of quarantine (−) 

determines whether lockdown is required or social distancing will achieve the purpose of controlling the 

spread of disease. Quarantine timeline (−) determines when to initiate quarantine measures. 

The first response of a government towards controlling the spread of a pandemic is economic and 

supply chain freezing (−) via lockdown and strictly implementing travel restrictions (−). Economic support 

for quarantine citizens (−) from the government is also of paramount importance which would support them 

through the crisis. Further, criminal penalties for violating quarantine (−) dictates the existence and extremity 
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of criminal punishments for breaching the quarantine rules of a region. Mobilization of new healthcare 

resources (−) which includes readiness to organize extra healthcare resources of a region, helps communities 

respond to the pandemic in a better way. Response is also governed by quantity and quality of medical staff 

(−), level of healthcare progressiveness (+), level of technological advancement (+), that is, 

sophistication/modernization/efficacy of healthcare network and testing efficiency (−) determined by testing 

schedule, accessibility of laboratory staff. Culture specifics and societal discipline (−) also makes a huge 

difference to response capability as it determines whether cultural practices are focused not only on 

sanitization but also on health. Demography (−) sub-criteria points towards vulnerable demographics in any 

regions of a country. These vulnerable categories of people may not respond. And last important  

sub-criterion is Level of security and defense advancement (+) to counterbalance outside threats. It does 

contribute towards response capability as security only allows governments to use other response measure 

mentioned above during pandemic. 

We compare performance of HCF-TOPSIS and H-TOPSIS considering all sub-criteria with DKG 

scores of level 1 regions (Figure 3(a)). The graph demonstrates that HCF-TOPSIS scores are analogous to 

DKG scores in comparison to H-TOPSIS scores. It establishes confidence in using refined sub-criteria for the 

safety evaluation of regions and validating the efficacy of the HCF-TOPSIS method for the same. Further, we 

also calculate errors (RMSE, MAE) for the computed ranks for the regions at level 1 (Figure 3(b)). Low 

errors by HCF-TOPSIS compared to H-TOPSIS proves its usability in ranking regions on safety sub-criteria. 

Also, errors have reduced by including refined criteria for level 1 compared to errors reported using six 

standard criteria (Figure 1(a)) for both methods. Thus, using refined sub-criteria improves the ranking of 

regions for managing natural disasters and their preparedness. Authors report results for the regions of level 1 

only, as the sub-criteria values were missing in the DKG report for the regions at level 2 and level 3. Further, 

on comparing HCF-TOPSIS for ranking the regions of level 1 using 6 standard benefit criteria with that using 

19 benefit and 15 cost sub-criteria, we observe better ranks for the latter case (see Table 5). Hence, we 

conclude that novel intelligent HCF-TOPSIS delivers better ranking of regions influenced by disaster when 

run on sub-criteria instead of criteria. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Comparison of HCF-TOPSIS, H-TOPSIS and DKG report using sub-criteria for regions at level 1: 

(a) normalised scores and (b) error values (average mae and average rmse) 
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Table 5. Errors reported by HCF-TOPSIS for regions at level 1 
Technique Average MAE Average RMSE 

HCF-TOPSIS on 6 Benefit Criteria 0.154 0.107 
HCF-TOPSIS on 34 Sub-Criteria  0.065 0.019 

 

 

3.5.  Future scope 

Machine learning (ML) is a branch of AI that helps the systems to learn and improve from 

experience with minimal human intervention and helps make better decisions [33]. MCDM using ML is 

important because of presence of large number of conflicting criteria and multiple alternatives. Also, it is 

challenging to work with multiple alternatives as the complexity of assigning numbers (importance) to the 

criteria according to their preference increases. In future, the authors intend to apply different ML algorithms 

(viz. supervised, unsupervised, semi-supervised, and reinforcement learning algorithms) on available data to 

build the decision matrix that is a pre-requisite for applying the TOPSIS method. 

 

 

4. CONCLUSION 

COVID-19 brought the entire world population to its knees in 2020. To better equip the stakeholders 

to fight such disasters, it is crucial to identify regions that exhibited lower levels of readiness in the past. The 

authors have proposed HCF-TOPSIS, a novel intelligent MCDM technique with the intention of ranking the 

affected areas depending on their performance in combating disasters. It makes use of sub-criteria weights 

using entropy (H). The aim is to identify regions that are both closest (C) to the positive ideal solution and 

farthest (F) from the negative ideal solution. Experiments conducted have shown that HCF-TOPSIS is more 

effective than H-TOPSIS, a variant of traditional TOPSIS. This ranking system can help policymakers 

develop more effective strategic plans to combat future pandemics. The authors intend to use machine 

learning algorithms in future to extract decision matrices from COVID-19 data, construct groups of  

sub-criteria and apply intelligent HCF-TOPSIS to get realistic rankings of the regions. This will assist the 

government organizations in making more informed decisions. 
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