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 A novel technique utilizing a convolutional autoencoder (CAE) is introduced 

with the aim of enhancing the spatial resolution of multispectral (MS) images 

while concurrently mitigating spectral distortion. First, an original 

panchromatic (PAN) image is constructed from its spatially degraded version. 

Then, the relationship between the original PAN image and its degraded 

version is utilized to reconstruct the high-resolution MS image; in addition, 

an intensity component of MS image, which is obtained using an adaptive 

intensity-hue-saturation (AIHS), is reconstructed by utilizing the 

aforementioned relationship. Two types of remote sensing datasets are 

adopted, and the effect of the patch size with the overlapping pixel on spectral 

and spatial distortion is considered. After training CAE, the low-resolution 

MS image and its intensity component are given to the trained network as 

input to obtain the MS image and intensity component with better details. 

Eventually, the fused image is obtained by using a component substitution 

(CS) framework. Experimental findings corroborate that the proposed method 

yields superior outcomes compared with several existing approaches, 

demonstrating advantages in both objective metrics and visual fidelity. 
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1. INTRODUCTION 

In remote sensing images, panchromatic (PAN) images have higher spatial resolution than 

multispectral (MS) images. MS images have multiple spectral bands, offering high spectral resolution, and 

their spatial resolution can vary depending on the sensor used, with some MS sensors providing moderate to 

high spatial resolution. Due to the limitation of technology in earth surveillance satellites [1], a high spatial 

resolution multispectral (HRMS) image cannot be given directly by satellites such as QuickBird and GeoEye. 

However, the high spectral resolution simplifies identifying the objects while the high spatial resolution facilitates 

locating them. Pansharpening aims to the acquisition of a HRMS image [2]–[4]. The pansharpening process is 

one branch of image fusion, and image processing is used in many fields, such as image segmentation [5] and 

classification [6], image reconstruction, and medical applications [7], [8]. A wide variety of pansharpening 

studies have been introduced in the literature, which can be grouped into three groups [9]: i) component 

https://creativecommons.org/licenses/by-sa/4.0/
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substitution (CS) [10], [11]; ii) multiresolution analysis (MRA) [12], [13]; and iii) sparse representation (SR) 

[14], [15] based methods. Both CS and MRA-based methods share a common framework in which an extracted 

detail map is incorporated into a resampled MS image, albeit with differing methodologies for detail map 

extraction [16]. In CS-based methods, the extracted detail map is obtained by computing the disparity between 

the PAN image and the linear combination of upsampled MS bands. 

The CS based-methods such as intensity hue saturation (IHS) [17], principle component analysis 

(PCA) [18], gram-schmidt adaptive (GSA) [19], and brovey [20] often suffer from remarkable spatial and 

spectral distortions in the fused images. The MRA based-methods such as indusion [21], wavelet transform 

[22], and generalized Laplacian pyramid (MTF-GLP) approach [23] leverages the detailed map by computing 

the variance between the PAN image and its low-resolution counterpart via PAN image decomposition. 

Nevertheless, these methods are susceptible to spatial distortion issues. The SR-based method generates HRMS 

images by some dictionaries and sparse optimization algorithms, and it has shown effectiveness in 

pansharpening. However, implementation can be challenging as constructing the dictionary requires a 

substantial amount of raw HMS images [14]. Recently, the convolutional neural network (CNN) architecture 

was used for pansharpening in [24]–[26]. Azarang and Ghassemian [24] used the denoising autoencoder (DAE) 

design to enhance fusion results. Rao et al. [25] used the deep residual network (DRN) architecture to achieve a 

pansharpening task. More recently, convolutional autoencoder (CAE) [26] was considered as part of a CS-based 

method where HRMS images were computed by training the CAE from the PAN image and its degraded version. 

The researchers [27], [28], used a deep CAE for pansharpening in which they fixed 8×8 patches with five 

overlapping pixels. Further development of deep learning-based pansharpening has been introduced in [29], [30]. 

In this study, an advanced approach to pansharpening is proposed, leveraging the CAE architecture 

as the cornerstone of the method. The CAE is trained by utilizing the PAN image and its degraded version. 

Then, the low-resolution MS is fed to the trained CAE in order to enhance the MS image. The intensity 

component is also reconstructed using the same trained CAE. The proposed method is applied to both degraded 

and real datasets, following which it is systematically compared against a selection of existing methods. The 

contributions of our method are summarized a: i) a novel deep learning pansharpening method is presented in 

which the CAE architecture is trained to enhance the low-resolution MS image and its intensity component 

and ii) the effect of the patch size with the overlapping pixel on spectral and spatial distortion is studied. It is 

noted that the patch size with the overlapping pixel can be different for different datasets. Thus, the best 

outcomes for each one are listed. 

The paper is organized as: related work for the proposed method is presented in section 2. The 

proposed method is detailed in section 3. The experimental results are presented and discussed in section 4. 

Finally, the conclusion of this work is presented in section 5. 

 

  

2. RELATED WORK 

Image fusion has played a significant role in recent years by enhancing the quality and interpretability 

of multi-source images. The fusion of MS and PAN images has emerged as a crucial challenge in remote 

sensing applications [29], such as land cover categorization, object recognition, and change detection. A range 

of solutions, from traditional methodologies to cutting-edge deep learning strategies, has been proposed to 

address this problem [30]. In this review, we focus on CAEs and discuss the existing literature on MS and PAN 

image fusion. 

Saxena et al. [31] proposed a CNN-based model for pansharpening, aiming to derive the fine grained 

components of the image. Their approach utilized a CNN to extract the PAN detail image, which was then 

suitable for the MRA-based pansharpening scheme. This process helped minimize spatial and spectral 

distortions. The authors conducted qualitative and quantitative analyses using GeoEye-1 and ikonos satellite 

images. Huang et al. [32] presented a deep neural network (DNN)-based pansharpening technique that effectively 

modeled complex relationships between variables through multiple levels of nonlinearity. Li et al. [33] developed 

a method for pansharpening called detail injection-based CAE (DiCAE). Their approach involved injecting MS 

details as PAN details and integrating them using an injection gain. 

Previous studies [26]–[28] utilized the CAE model to explore the spatial and spectral relationships 

between PAN and MS images. Azarang et al. [26] trained a CAE on a set of PAN and MS images to generate 

high-resolution MS images. In another study [27], a combination of the non-subsampled contourlet transform 

(NCCT) and CAE was employed for pansharpening. The NCCT decomposed PAN and MS images into space 

and frequency bands, while the CAE learned how these bands could be combined. Fusion involved integrating 

detail maps from the CAE with low-resolution images from the MS. In contrast, a different approach was taken 

in [28], where CAE and the multi-scale guided filter (MGGF) were used together. The MGGF was utilized to 

smooth out the CAE’s generated detail maps, and the low-resolution MS images were added to the smoothed-out 

detail maps. However, none of these methods extensively investigated the influence of patch size and the number 
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of overlapping pixels on spectral and spatial warping. In our proposed method, we employ a learned CAE to 

enhance low-resolution MS image patches and intensity image patches. Additionally, we investigate the impact 

of patch size and the number of overlapping pixels on spectral and spatial warping, which previous methods 

have not thoroughly explored. 

 

2.1.  Adaptive IHS 

The conventional IHS combination strategy is easy to implement, fast, and has high spatial goals. 

Except it can be applied to just three bands. The IHS formulation is given by: 

 

 𝐼 = ∑𝑛
𝑖=1 𝑤𝑖MS𝑖

̃  (1) 

 

where 𝑤𝑖  denotes the weight of the 𝑖𝑡ℎ MS band, 𝑛 represents the number of MS bands, MS̃, 𝐼 indicate the  

up-sampled MS image and its intensity component, respectively. Therefore, Rahmani et al. [10] proposed an 

adaptive computation method in order to reduce the spectral distortion, which can be (2):  

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑤𝑖

‖𝑃 − ∑𝑛
𝑖=1 𝑤𝑖𝑀𝑆𝑖

̃ ‖
2
 (2) 

 

where 𝑃 represents the PAN image. 

 

2.2.  CAEs 

CAEs are considered unsupervised learning of convolutional filters. Therefore, any input would be 

used to extract features once a CAE has been learned [34]. Then the extracted features are utilized to perform 

many tasks, such as image classification, and image enhancement [35]. The CAE involves two stages named 

the encoding stage and the decoding stage. The encoding stage of constructing the 𝑘𝑡ℎ feature map is given by: 

 

𝑓𝑘 = 𝜎(x ∗ w𝑘 + 𝑏𝑘) (3) 

 

where 𝑓𝑘 represents the feature maps of the input x, 𝑏𝑘 represents the bias, * denotes the 2D convolution, w𝑘 

indicates 𝑘𝑡ℎ convolution filters, and 𝜎 denotes an activation function. To reconstruct the input by decoding 

stage, which can be expressed as (4):  

 

�̃� = 𝜎(𝑓𝑘 ∗ �̃�𝑘 + 𝑐𝑘) (4) 

 

where �̃� is the reconstructed input, 𝑐𝑘 represents the bias, and w̃𝑘 indicates 𝑘𝑡ℎ convolution filters. The mean 

square error (MSE) loss function can be used in order to update the weights during the training of CAE. 

 

ℒ(�̃�, 𝑥) =
1

2
‖�̃� − 𝑥‖2

2 (5) 

  

 

3. METHOD 

The flowchart of our method is illustrated in Figure 1, and the fusion steps are outlined as: 

− The intensity image is first obtained using AIHS by (2). 

− Then, the PAN image and its degraded version are used for training our CAE, the architecture of the CAE 

-based method is illustrated in Figure 2, where the CAE network is utilized to learn the relationship 

between the output original PAN patches 𝑝 × 𝑝 with overlapping pixel 𝜔 and its degraded version patches 

as input. The effect of a patch size with an overlapping pixel will be introduced in the experiments section. 

− After training our CAE, the trained CAE network is used to enhance the low-resolution MS image patches 

and intensity image patches. The low-resolution MS and intensity images are partitioned into patches 

𝑝 × 𝑝 are then fed to the trained CAE in order to reconstruct the high-resolution MS image MS𝑖
̂  and 

enhanced intensity image 𝐼, by utilizing the relationship between the original PAN image and its degraded 

version. 

− The MS image bands have different forms/levels of detail; therefore, to derive more proper injection 

gains, the injection gains are computed using both reconstructed intensity and MS images. Next, these 

injection gains are injected into corresponding MS images. 

− Finally, the high-resolution MS image is constructed by (7). 
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Figure 1. Flowchart of image fusion based on multi CAE 
 

 

 
 

Figure 2. The architecture of the CAE 
 
 

Mathematically, the aforementioned steps can be expressed as (6): 
 

{�̃�𝑖}𝑖=1
𝑝

= 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 (𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 ({�̂�𝑖}𝑖=1

𝑝
)) (6) 

 

where {�̃�𝑖}𝑖=1
𝑝

 indicates the output patches of CAE and {�̂�𝑖}𝑖=1

𝑝
 represents the degraded version PAN image 

patches of the original PAN image patches {𝑃𝑖}𝑖=1
𝑝

. The MSE between {𝑃𝑖}𝑖=1
𝑝

 and {�̃�𝑖}𝑖=1
𝑝

 is used to update the 

weights at each iteration. Thus, the back-propagation algorithm is utilized for training. The fusion process is 

expressed as (7): 
 

HRMS𝑖 = MS𝑖
̂ + g𝑖(P − 𝐼) (7) 

 

where HRMS𝑖, MS𝑖
̂  denote the fused image and the reconstructed MS image in the 𝑖𝑡ℎ band, respectively. P, 𝐼 

denote the PAN image and enhanced intensity image, respectively, and g𝑖 represents the 𝑖𝑡ℎ injection gain of 

the detailed map that is expressed as (8): 
 

g𝑖 =
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(MS�̂�,𝐼)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼)
 (8) 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Datasets 

In our experiment, we utilize datasets acquired by QuickBird and GeoEye satellites to evaluate our 

method. The experiments are carried out on four datasets, including two full-reference datasets with PAN and 

MS image sizes of 256×256 and 64×64, respectively, as well as two no-reference datasets with PAN and MS 

image sizes of 512×512 and 128×128, respectively. 

 

4.2.  Quality assessment of fusion results 

For the degraded evaluation that is based on Wald’s protocol, six well-known indexes are utilized to 

assess the spatial and spectral qualities of the outcomes [36]. These indexes include, the correlation coefficient 

(CC), spectral angle mapper (SAM), root mean square error (RMSE), erreur relative global adimensionnelle 

de synthse (ERGAS), universal image quality index (UIQI), and the relative average spectral error (RASE). 

For the no-reference data sets (real data), the objective evaluation is based on the spectral distortion index 𝐷𝜆, 
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the spatial distortion index 𝐷𝑠, and the quality with no reference QNR. Further, our method is compared with 

some other existing methods, such as band-dependent spatial detail (BDSD), adaptive CS using partial 

replacement (PRACS), and fractional-order differentiation (FDIF). 

 

4.3.  Effect of patch size with overlapping pixels on datasets 

The effect of patch size 𝑝 × 𝑝 with overlapping pixels 𝜔 on the values of quality indexes is analyzed 

in this part. We consider patch sizes 4, 8, and 16 for our experiment. Overlapping pixels should be less than 

the patch size. Tables 1 and 2 exhibit the numerical results of quality indexes concerning the changing patch 

size with overlapping pixels. Overall, the patch size with overlapping pixels 4×4 and 3 has performed better 

than the others for QuickBird. The patch size with overlapping pixels 8×8 and 7 have served better than the 

others for GeoEye. It is worth noting that the patch size with overlapping pixels has a direct correlation with 

the size and quantity of image features. Thus, the value of patch size with overlapping pixels is set according 

to the best-obtained result for each kind of dataset. 

 

 

Table 1. Effect of patch size with overlapping pixels on QuickBird 
p × p ω CC UIQI RMSE RASE SAM ERGAS 

4×4 1 0.96596 0.97393 12.575 8.2965 2.8796 2.1191 

4×4 3 0.96856 0.976 12.082 7.9717 2.6283 2.0379 

8 ×8 1 0.96124 0.96993 13.516 8.9177 3.2526 2.2783 

8 ×8 3 0.95783 0.96738 14.198 9.3677 3.2352 2.4078 

8 × 8 5 0.96459 0.9729 12.895 8.5082 2.8095 2.183 

8 ×8 7 0.96822 0.97569 12.102 7.9845 2.8277 2.0376 

16 ×16 3 0.95377 0.96516 14.544 9.5956 3.4056 2.4638 

16 ×16 5 0.95783  0.96589  14.449  9.5329  3.6864  2.4395  

16 ×16 7 0.95028  0.96156  15.414  10.17  3.6956  2.6171  

16 ×16 9 0.96302  0.97167  13.062  8.6183  3.0555  2.2067  

16 × 16  12 0.96255  0.97077  13.369  8.8209  3.0335  2.2643  

16 ×16  15 0.96843  0.97504  12.259  8.0883  2.8633  2.0655  

 

 

Table 2. Effect of patch size with overlapping pixels on GeoEye 
p × p ω CC UIQI RMSE RASE SAM ERGAS 

4×4 1 0.95306 0.95331 17.992 16.519 6.1715 4.0873 

4 ×4 3 0.94559 0.95216 18.747 17.212 6.2608 4.2798 

8 ×8 1 0.94188 0.94682 19.855 18.23 7.1187 4.4835 

8 ×8 3 0.95216 0.9582 17.779 16.323 6.1369 4.0488 

8 × 8 5 0.95541 0.96106 17.289 15.874 5.8811 3.9407 

8×8 7 0.95674 0.962 16.849 15.469 5.5989 3.8974 

16 ×16 3 0.93113 0.93661 21.636 19.864 8.0888 4.8854 

16 ×16 5 0.93306 0.93776 21.096 19.369 7.9247 4.7848 

16 ×16 7 0.92062 0.90749 24.265 22.278 8.972 5.4696 

16 ×16 9 0.92885 0.91784 22.95 21.071 8.3703 5.1767 

16 ×16 12 0.95365 0.95948 17.755 16.301 6.087 4.048 

16 ×16 15 0.95029 0.95702 17.724 16.273 6.1695 4.1015 

  

 

4.4.  Fusion results 

Figures 3(a)-(l) depicts the fusion results for the degraded QuickBird-1 datasets, alongside the 

objective comparison in Table 3. Our proposed technique (Figure 3(l)) outperformed alternatives (Figure 3(c) 

to Figure 3(k)) by preserving the reference image’s (Figure 3(a)) hues and incorporating superior spatial details 

from the PAN image (Figure 3(b)). This observation is consistent with the objective comparison presented in 

Table 3, where our method achieved the highest quality indexes throughout. 

Figures 4(a)-(l) presents the fusion outcomes for the degraded QuickBird-2 datasets, accompanied by 

an objective comparison in Table 4. The reference-MS image (Figure 4(a)) was used as the true-image, in order 

to compare it with the fusion result (Figure 4(b)). While FDIF and CAE methods (Figures 4(j) and (k)) achieved 

relatively favorable results compared to others (Figures 4(c)-(i)), our proposed method (Figure 4(l)) produced 

a higher resolution image and achieved superior outcomes according to quality measures in Table 4. 

Figures 5(a)-(l) showcase the fusion outcomes of the real QuickBird dataset. Figures 5(a) and 5(b) 

display the up-sampled MS image and PAN image, respectively. While most methods enhance spectral resolution, 

some introduce spatial artifacts (e.g., indusion (Figure 5(h)), GSA (Figure 5(e)), and PRACS (Figure 5(g)). The 

BDSD method (Figure 5(f)) suffers from particularly significant spatial and spectral distortions. Although the 

CAE method (Figure 5(k)) achieves good results, the proposed method (Figure 5(l)) excels in preserving both 

spatial and spectral details. This superiority is further confirmed by the objective comparison metrics in Table 5. 
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Figure 3. Fusion outcomes of the degraded QickBird-1 dataset; (a) reference image, (b) PAN image, (c) PCA, 

(d) AIHS, (e) GSA, (f) BDSD, (g) PRACS, (h) indusion, (i) MTF-GLP, (j) FDIF, (k) CAE, and (l) proposed 

 

 

Table 3. Objective comparison of proposed method vs. other methods for degraded QuickBird-1 dataset 
Method ERGAS SAM RASE RMSE UIQI CC 

Proposed 2.4239 3.55 9.1642 13.385 0.96865 0.95104 

AIHS [10] 2.7063 3.7497 10.301 15.045 0.95778 0.93518 

PCA [18] 2.9025 3.6063 11.234 16.408 0.94871 0.93743 
GSA [19] 3.1952 3.6982 12.476 18.221 0.93744 0.92289 

Indusion [21] 3.1483 3.5524 12.302 17.967 0.93911 0.91806 

MTF-GLP [23] 3.2217 3.6399 12.534 18.306 0.93984 0.91144 
CAE [26] 4.1479 3.3501 16.402 23.955 0.95735 0.94467 

BDSD [37] 2.9444 3.7728 11.253 16.435 0.95204 0.92229 

PRACS [38] 2.7466 3.8317 10.265 14.992 0.95991 0.93038 
FDIF [39] 2.5878 3.5933 9.8041 14.319 0.96123 0.94303 
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Figure 4. Fusion outcomes of the degraded QickBird-2 dataset: (a) reference image, (b) PAN image, (c) PCA, 

(d) AIHS, (e) GSA, (f) BDSD, (g) PRACS, (h) indusion, (i) MTF-GLP, (j) FDIF, (k) CAE, and (l) proposed 
 

 

Table 4. Objective comparison of proposed method vs other methods for degraded QuickBird-2 dataset 
Method ERGAS SAM RASE RMSE UIQI CC 

Proposed 2.0379 2.6283 7.9717 12.082 0.976 0.96856 
AIHS [10] 2.2727 2.8699 8.8843 13.465 0.96837 0.96171 

PCA [18] 2.557 2.9418 10.066 15.256 0.95906 0.95507 

GSA [19] 2.6728 2.9789 10.538 15.972 0.95527 0.95062 
Indusion [21] 2.9657 2.9083 11.714 17.754 0.94457 0.93623 

MTF-GLP [23] 2.9018 2.9938 11.42 17.309 0.94967 0.93661 

CAE [26] 2.2271 2.7686 8.7657 13.286 0.97157 0.96366 
BDSD [37] 2.7548 3.0727 10.828 16.412 0.9547 0.9425 

PRACS [38] 2.2505 3.0473 8.7685 13.29 0.97082 0.96067 

FDIF [39] 2.2135 2.9248 8.6698 13.14 0.96982 0.96515 
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Figure 5. Fusion outcomes of the real QickBird dataset; (a) upsampled MS, (b) PAN image, (c) PCA, (d) 

AIHS, (e) GSA, (f) BDSD, (g) PRACS, (h) indusion, (i) MTF-GLP, (j) FDIF, (k) CAE, and (l) proposed 

 

 

Table 5. Objective comparison of proposed method vs other methods for real QuickBird dataset 
Method 𝐷𝑠 𝐷𝜆 QNR 

Proposed 0.032745 0.014321 0.98529 
AIHS [10] 0.052273 0.027263 0.97038 

PCA [18] 0.080653 0.034207 0.97399 

GSA [19] 0.080168 0.033785 0.97399 
Indusion [21] 0.048852 0.028099 0.9752 

MTF-GLP [23] 0.045615 0.035905 0.97937 

CAE [26] 0.057 0.04463 0.98467 
BDSD [37] 0.10022 0.1104 0.9471 

PRACS [38] 0.047739 0.022022 0.98394 

FDIF [39] 0.59769 0.025623 0.90076 

 

 

Figures 6(a)-(l) illustrates the fusion outcomes of the real GeoEye dataset, showcasing notable 

enhancements in spatial details across all methods (Figures 6(c)-(l)). Figures 6(a) and (b) show the up-sampled 

MS image and PAN image, respectively. Nevertheless, the PCA and AIHS methods exhibit spectral distortion, 

as shown in Figures 6(c) and 6(d). The BDSD fusion method (Figure 6(f)) shows significant distortions. The 

fusion result of the proposed method (Figure 6(l)) demonstrates superior performance compared to the other 

methods (Figures 6(c)-(k)). For an objective evaluation, the proposed method exhibits superior performance in 

terms of quality indices, as detailed in Table 6. Additionally, Table 7 presents a comparative analysis of the 

computational time required for the proposed method vs other techniques. It is noteworthy that the proposed 

method necessitates more time for pansharpening image acquisition compared to others, attributable to the 

utilization of deep multi-CAE. 
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Figure 6. Fusion outcomes of the real GeoEye dataset: (a) upsampled MS, (b) PAN image, (c) PCA, (d) 

AIHS, (e) GSA, (f) BDSD, (g) PRACS, (h) indusion, (i) MTF-GLP, (j) FDIF, (k) CAE, and (l) proposed 
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Table 6. Objective comparison of proposed method 

vs other methods for real GeoEye dataset 
Method Ds Dλ QNR 

Proposed 0.0602 0.013907 0.9775 

AIHS [10] 0.1259 0.0449 0.9604 
PCA [18] 0.1597 0.0592 0.9512 

GSA [19] 0.1342 0.0411 0.9588 

Indusion [21] 0.081795 0.065 0.9607 
MTF-GLP [23] 0.1274 0.1158 0.9483 

CAE [26] 0.11723 0.054282 0.9737 

BDSD [37] 0.1487 0.1496 0.9341 
PRACS [38] 0.0833 0.0257 0.9756 

FDIF [39] 0.7555 0.048 0.7213 
 

Table 7. Comparison of processing times for 

pansharpening methods 
Method Time (sec) 

Proposed 13.28 
AIHS [10] 0.17 

PCA [18] 0.06 

GSA [19] 0.57 
Indusion [21] 0.07 

MTF-GLP [23] 0.22 

CAE [26] 11.59 
BDSD [37] 0.20 

PRACS [38] 0.19 

FDIF [39] 1.90 
 

 

 

5. CONCLUSION  

Amidst the ongoing evolution of remote sensing image fusion techniques, pansharpening technology 

has emerged as a prevalent methodology employed across remote sensing satellite platforms. Since the remote 

sensing satellites collect a PAN image with high spatial resolution and MS image with a high spectral 

resolution, therefore, in this paper, we developed a pansharpening method using a CS framework and  

multi-CAE. The high-resolution MS and intensity images were estimated after obtaining the relationship 

between the PAN image and its degraded version using a CAE. The patch size with overlapping pixels differs 

for each remote-sensing satellite. The experimental findings obtained from both degraded and authentic 

datasets demonstrated that our proposed method exhibited superior fusion quality when juxtaposed with other 

relevant methodologies. Future research will investigate whether the proposed technique can be scaled to other 

forms of image fusion. A further important implication is to improve the injected semantic detail map for 

superior outcomes. 
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