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 This empirical investigation delves into the influence of machine learning 

(ML) algorithms in the realm of cross-project defect prediction, employing 

the AEEEEM dataset as a foundation. The primary objective is to discern the 

nuanced influences of various algorithms on predictive performance, with a 

specific focus on the F1 score metric as evaluation criterion. Four ML 

algorithms have been carefully assessed in this study: random forest (RF), 

support vector machines (SVM), k-nearest neighbors (KNN), and logistic 

regression (LR). The choice of these algorithms reflects their prevalence in 

software defect prediction literature and their diversity. Through rigorous 

experimentation and analysis, the investigation unveils compelling evidence 

affirming the superiority of RF over its counterparts. The F1 score utilized as 

evaluation metric, capturing the delicate balance between precision and recall, 

essential in defect prediction scenarios. The nuanced examination of 

algorithmic efficacy provides practical insights for developers and 

practitioners navigating the challenges of cross-project defect prediction. By 

leveraging the rich and diverse AEEEEM dataset, this study ensures a 

comprehensive exploration of algorithmic influences across varied software 

projects. The findings not only contribute to the academic discourse on defect 

prediction but also offer practical guidance for real-world application, 

emphasizing the pivotal role of RF as a tool in enhancing predictive accuracy 

and reliability. 
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1. INTRODUCTION  

Ensuring the reliability and quality of software products has become a top priority in the ever-

changing world of software development. Among the myriad challenges faced by software engineers, the 

prediction and prevention of defects stand out as pivotal tasks in the pursuit of robust and resilient software 

systems. Early identification and mitigation of potential defects can translate into substantial cost savings, 

improved product quality, and enhanced user satisfaction. In recent times, the infusion of machine learning (ML) 
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algorithms into the realm of software defect prediction has offered promising avenues for addressing these 

challenges [1]-[6]. Cross-project defect prediction, a subdomain of defect prediction, involves the transfer of 

knowledge gained from one software project (source) to predict defects in another (target), as shown in Figure 1. 

Traditional defect prediction models often struggle with the characteristics of different project contexts, making 

cross-project prediction a compelling approach for leveraging existing data and knowledge [7]-[12].  

ML algorithms, with their capacity to discern patterns and relationships within data, have emerged as 

powerful tools for enhancing the accuracy of defect prediction models [13], [14]. The predetermined set of 

training data is fed into a ML algorithm. The algorithm then learns from the training dataset (source) and 

generates rules for class label prediction for a fresh set of data (target) [15]-[20]. During the learning phases, 

mathematical procedures are used to create and improve the prediction function. The training data that was 

used in this method has a predetermined output value and an attribute input value. The result that is frequently 

known is compared to the expected ML algorithm quality. Until the optimal prediction accuracy is attained or 

the maximum number of loops is reached, this is repeated using training data. 

However, the impact of these algorithms on cross-project prediction performance remains an area of 

active exploration. The motivation behind this empirical investigation stems from the recognition that while 

ML algorithms offer promise in defect prediction, their efficacy can vary significantly across different project 

environments. Factors such as project size, complexity, and development methodologies introduce variability 

that may influence algorithm performance. Empirical investigation will identify which algorithms are more 

effective in this context. This helps in understanding the practical applicability of different algorithms and their 

ability to generalize across diverse projects. By analyzing empirical results, researchers and practitioners can 

make informed decisions about selecting the most suitable ML algorithms for cross-project defect prediction, 

improving the overall reliability and effectiveness of software quality assurance processes. In this work, we 

empirically investigated the influence of four difference ML algorithms random forest (RF), support vector 

machines (SVM), k-nearest neighbors (KNN), and logistic regression (LR) on predictive performance of cross-

project defect prediction. 
 

 

 
 

Figure 1. Cross project defect prediction (CPDP) process 

 

 

2. METHOD  

The goals of this study are to investigate the impact of different ML algorithms on the performance 

of cross-project defect prediction and to identify algorithms that exhibit superior cross-project generalization 

and enhance overall defect prediction performance. To achieve these goals, the following research questions 

were addressed: 

− RQ1: how does a choice of ML algorithm affect the overall prediction performance of cross-project defect 

prediction? 

− RQ2: which ML algorithms demonstrate the highest prediction performance in cross-project defect 

prediction scenarios? 

− RQ3: how does the diversity of training datasets impact the performance of ML algorithms in cross-

project defect prediction? 

We started by grouping the datasets in to source and target for training and testing, respectively. The 

KNN, RF, SVM and LR are trained on source project and tested on target project. Their performance was 

measure using F1_score in Figure 2. 
 

2.1.  Machine learning algorithm 

The investigation of ML’s influence encompasses evaluating various algorithms such as RF, SVM, 

KNN, and LR. These algorithms are integral to predictive analytics, each offering unique strengths in handling 

different types of data and patterns. The diverse set of algorithms aims to capture the breadth of approaches 

employed in defect prediction and their adaptability to cross-project scenarios. 
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Figure 2. Research framework 

 

 

2.1.1. K-nearest neighbor  

The KNN algorithm is a simple, non-parametric, and lazy learning algorithm used for classification 

and regression tasks. It works by identifying the k nearest data points to a given input and making predictions 

based on the majority class (for classification) or the average value (for regression) of these neighbors. KNN’s 

performance highly depends on the choice of k and the distance metric used, making it sensitive to noisy and 

irrelevant features. The object among the neighbors whose correct classification is known and selected [21], [22] 

in their study reported that KNN performed better than the compared classification models. 

 

2.1.2. Random forests 

RF is one of the effective ML classification algorithms which combines multiple classification trees [23]. 

During the classification process, each tree in RF makes a classification of each sample, then the final 

classification is obtained by voting [24]. In their study reported RF as the most effective classification.  

 

2.1.3. Support vector machine 

SVM is one of the most effective supervised ML algorithms used for both regression and 

classification. The SVM work on the principle that two groups can be separated by drawing decision boundaries 

between two classes of data point in a hyperplane and subsequently finding the optimal hyperplane [25], [26] 

investigated the predictive performance of SVM against eight statistical and ML algorithms on software defect 

datasets obtained from NASA. Results indicated that the SVM performed better. 

 

2.1.4. Logistic regression  

LR is one of the ML algorithms in which the relationship between features and labels is modeled as a 

probability distribution P(y|x), where y is a label that can be either 0 for non-defective or 1 for defective and x 

refers to the data point represented as a set of features [27], in their study, used LR as a meter classifier and 

reported better results. 

 

2.2.  Datasets 

We collected open-source projects (datasets) with varying sizes, domains, and characteristics from 

AEEEM repository to ensure diversity. Several open-source datasets are frequently utilized in software defect 

prediction (SDP) investigations, and these are some of them [28]. Table 1 shows that there are five software 

projects (datasets) in AEEEM, each with 71 features. 

 

 

Table 1. Datasets 
Project #Modules #Features #Defect Defect ratio 

Equinox (EQ) 325 71 129 40% 

Eclipse JTD core (JDT) 997 71 206 21% 

Mylyn (ML) 1862 71 245 13% 
Partial differential equation (PDE) 

Lucene (LC) 

1492 

399 

71 

71 

209 

64 

14% 

9% 

 

 



TELKOMNIKA Telecommun Comput El Control   

 

The influence of machine learning on the predictive performance of … (Yahaya Zakariyau Bala) 

833 

2.3.  Evaluation metrics 

Recall, precision, and F1_score were the three evaluation metrics or measurements that were 

employed to assess each model. A commonly used metric in software defect prediction research is the F1_score 

[29]. This is the precision and recall represented harmonically, as determined by (3). Precision: evaluate the 

model’s ability to correctly identify non-defective modules. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (1) 

 

Recall: evaluate the model’s ability to correctly identify defective modules. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2) 

 

F1_score: defined the precision and recall hamonic representation. The performance is better the higher the 

F-measure. 
 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
(2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  (3) 

 

Where, 𝑇𝑃 refers to the number of predicted non-defective module as non-defective, 𝐹𝑃 refers to number of 

predicting defective module as non-defective and 𝐹𝑁 refers to number of predicting non-defective module as 

defective. 

 

2.4.  Experiment design 

We divided the datasets into training (source) and test sets (target) for each algorithm evaluation. To 

be in conformity with the previous studies in SDP, we arrange all the datasets in pairs. For instance, when EQ 

was used as a source, each of the other projects was used as a target i.e., EQ ⇒ JDT, ML, PDE, LC. Consistent 

experimental conditions were ensured to isolate the impact of the ML algorithms. All the experiments were 

conducted using Jupiter notebook python. 

 

2.5.  Statistical evaluation 

To determine which ML algorithm is better, we first examine whether the performance difference 

between any two predictors is cause by chance. We employed a non-parametric statistical tool (wilcoxon 

signed-rank test) to compare pairs of predictors. The results were presented in the form of the win/draw/loss 

i.e., the number of datasets upon which one predictor is better, equal, or lower than another predictor. To 

determine the practical size of the difference, we used cliff delta test based on the criteria specified in Table 2. 
 

 

Table 2. Cliff’s 𝛿 effectiveness levels 
Cliff’s δ Effectiveness levels 

|𝛿| < 0.147 Negligible (N) 

0.147 ≤ |𝛿| < 0.33 Small (S) 

0.33 ≤ |𝛿| < 0.474 Medium (M) 

|𝛿| ≥ 0.474 Large (L) 

 

 

3. RESULTS AND DISCUSSION  

This section presents the findings from our investigation into the influence of various ML algorithms 

on the prediction performance of cross-project defect prediction, guided by three key research questions. First, 

we examine which algorithm performs best in terms of predictive accuracy and robustness across different 

projects. Second, we analyze how each algorithm's performance metrics such as F1-score, highlighting their 

strengths and weaknesses. Finally, we discuss the practical implications of our findings for choosing 

appropriate algorithms in real-world defect prediction scenarios. 

 

3.1.  RQ1: how does a choice of machine learning algorithm affect the overall prediction performance of 

cross-project defect prediction? 

Results in Table 3 indicate notable variations in predictive performance of cross-project defect 

prediction across algorithms. CPDP built using KNN (CPDP_KNN) achieved average F1-score of 0.54, CPDP 

built using RF (CPDP_RF) achieved average F1-score of 0.60, CPDP built using SVM (CPDP_SVM) achieved 

average F1-score of 0.58, and CPDP built using LR (CPDP_LR) achieved average F1-score of 052. Varying 

performance of cross-project defect prediction across difference learning algorithms emphasized the impact of 

algorithm choice on prediction performance of cross-project defect prediction. Understanding how different 
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algorithms respond to the challenges posed by diverse projects is crucial for developing effective and reliable 

defect prediction models in real-world software development environments. 

 

3.2.  RQ2: which machine learning algorithms demonstrate the highest prediction performance in 

cross-project defect prediction scenarios? 

Results in Table 3 indicate notable variations in performance across algorithms. RF achieved the 

highest F1-score most of the cross-project scenarios, demonstrating its effectiveness in handling cross-project 

defect prediction tasks. However, to further confirm the superiority of RF, we analyze its performance against 

each algorithms using statistical test. 

 

3.2.1. RF verses KNN 

To further confirm whether the performance achievement of RF over KNN is not by chance. We 

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on 

95% significant level i.e., p=0.05. Prior to the test, we established the following hypothesis. 

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the KNN. 

− Alternative hypothesis (𝐻1𝐴): RF achieved better prediction performance compared to the KNN.  

As shown in the table, the test result obtained for RF against KNN is 0.001. Since the result is less 

than 0.05. This simply means that, the difference between the performance of RF and KNN is statistically 

significant. Therefore, the alternative hypothesis is supported, and the null hypothesis is rejected. In addition, 

RF won against the KNN in 19 out of 20 datasets. Furthermore, to examine the size of effectiveness level. We 

used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible effectiveness on three 

datasets against KNN. Therefore, we can conclude that RF is more effective than KNN when selected for 

building CPDP model using AEEEM datasets as source projects. 

 

3.2.2. FR verses SVM 

To further confirm whether the performance achievement of RF over SVM is not by chance. We 

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on 

95% significant level i.e., 𝑝 = 0.05. Prior to the test, we established the following hypothesis. 

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the SVM.  

− Alternative hypothesis (𝐻1𝐴): RF can achieve better prediction performance compared to the SVM.  

As shown in the table, the test result obtained for RF against SVM is 0.248. Since the result is not less 

than 0.05. this simply means that, the difference between the performance of RF and SVM is not statistically 

significant. Therefore, the null hypothesis is supported, and the alternative hypothesis is rejected. However, 

RF won against the KNN in 12 out of 20 datasets and loss 6 to SVM. Furthermore, to examine the size of 

effectiveness level. We used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible 

effectiveness on only one dataset against SVM. Therefore, although, RF outperformed SVM in 12 out of 20 

datasets yet we can conclude that the difference between RF and SVM when it comes to building CPDP model 

using AEEEM datasets as source projects is not statistically significant. 

 

3.2.3. FR verses LR 

To further confirm whether the performance achievement of RF over LR is not by chance. We 

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on 

95% significant level i.e., 𝑝 = 0.05. Prior to the test, we established the following hypothesis.  

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the LR.  

− Alternative hypothesis (𝐻1𝐴): RF can achieve better prediction performance compared to the LR.  

 As shown in the table, the test result obtained for RF against LR is 0.005. Since the result is less than 

0.05. This simply means that, the difference between the performance of RF and LR is statistically significant. 

Therefore, the alternative hypothesis is supported, and the null hypothesis is rejected. In addition, RF won 

against the LR in 17 out of 20 datasets and loss only 2 to LR. Furthermore, to examine the size of effectiveness 

level. We used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible effectiveness 

on five datasets against LR. Therefore, we can conclude that RF is more effective than LR if selected for 

building CPDP model using AEEEM datasets as source projects. 

 

3.3.  RQ3: how does the diversity of training datasets impact the performance of ML algorithms in cross-

project defect prediction? 

Table 5 show significant differences in each ML algorithm’s predictive performance across different 

training datasets (source). For example, KNN achieved an average F1-score of 0.52 when using EQ as training 

datasets; an average F1-score of 0.58 when using JDT; an average F1-score of 0.55 when using LC; an average 
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F1-score of 0.54 when using ML; and an average F1-score of 0.52 when using PDE. Likewise with regard to 

every other algorithm. The varying performance of different ML algorithms across diverse training datasets 

implies that algorithm effectiveness is context-dependent. Each algorithm reacts differently to changes in the 

characteristics of the training data, such as project size, domain diversity, and temporal variations. This 

suggests that there is no one-size-fits-all solution in cross-project defect prediction; the choice of algorithm 

should be carefully considered based on the specific attributes of the training dataset. 
 
 

Table 3. F1_score on AEEEM dataset 
Source→target CPDP_KNN CPDP_RF CPDP_SVM CPDP_LR 
EQ→JDT 0.58 0.66 0.55 0.36 
EQ→LC 0.47 0.53 0.53 0.49 
EQ→ML 0.48 0.5 0.57 0.47 
EQ→PDE 0.54 0.59 0.53 0.43 
JDT→EQ 0.64 0.67 0.54 0.59 
JDT→LC 0.51 0.59 0.55 0.55 

JDT→ML 0.57 0.61 0.58 0.53 

JDT→PDE 0.6 0.61 0.58 0.6 
LC→EQ 0.61 0.46 0.63 0.67 

LC→JDT 0.51 0.66 0.54 0.57 

LC→ML 0.55 0.61 0.6 0.3 
LC→PDE 0.52 0.59 0.6 0.41 

ML→EQ 0.53 0.6 0.66 0.59 
ML→JDT 0.57 0.65 0.55 0.5 

ML→LC 0.48 0.57 0.51 0.54 

ML→PDE 0.58 0.6 0.6 0.57 
PDE→EQ 0.44 0.65 0.64 0.7 

PDE→JDT 0.61 0.66 0.69 0.66 

PDE→LC 0.51 0.63 0.56 0.5 
PDE→ML 0.51 0.52 0.62 0.46 

Mean 0.54 0.60 0.58 0.52 

 

 

Table 4. Statistical test and effect size results 
Test RF and KNN RF and SVM RF and LR 

Wilcoxon 0.001 0.248 0.005 
W/D/L 19/0/1 12/2/6 17/1/2 
Cliff’s δ (N/S/M/L) 17/3/0/0 19/1/0/0 15/5/0/0 

 

 

Table 5. F1_score on different source projects 
Source CPDP_KNN CPDP_RF CPDP_SVM CPDP_LR 
EQ 0.52 0.57 0.55 0.44 
JDT 0.58 0.62 0.56 0.57 
LC 0.55 0.58 0.59 0.49 
ML 0.54 0.61 0.58 0.55 
PDE 0.52 0.62 0.63 0.58 

 

 

4. CONCLUSION  

This empirical investigation has provided valuable insights into the influence of ML algorithms on 

the prediction performance of cross-project defect prediction. The study addressed three key research 

questions, elucidating the nuanced dynamics associated with algorithm selection in cross-project defect 

prediction context. The results demonstrated varying performance of cross-project defect prediction on 

different ML algorithms. This suggests that the choice of algorithm significantly influences the success of 

defect prediction across diverse software projects. 

The results also unequivocally demonstrated the superiority of RF in cross-project defect prediction. 

RF consistently outperformed KNN, SVM, and LR across various cross-project scenarios based on F1_score 

evaluation metric. RF exhibited the highest F1-score, indicating its robustness in capturing true positives while 

minimizing false positives and negatives. This underscores RF’s effectiveness in providing a balanced and 

accurate prediction of defects across diverse projects. The findings provide practical guidelines for practitioners 

in selecting ML algorithms for cross-project defect prediction. RF emerges as a reliable choice, particularly 

when faced with varied project characteristics. 

The robustness of RF across different project types suggests its applicability in real-world software 

development settings. This could lead to more reliable defect prediction models, aiding software teams in 

proactively addressing potential issues. As the field of ML continues to evolve, the lessons learned from this 
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investigation contribute to a more informed and effective approach to algorithm selection in the realm of cross-

project defect prediction.  

Future research could delve into fine-tuning strategies for RF to optimize its performance further. 

Exploring hyperparameter adjustments and ensemble configurations may unlock additional potential in 

enhancing defect prediction accuracy. In addition, investigating RF’s performance in dynamic project 

environments, where codebases evolve over time, could provide valuable insights into the algorithm’s 

adaptability and resilience in scenarios of continuous development. 
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