
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 4, August 2024, pp. 830~837

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i4.25916 830

Journal homepage: http://telkomnika.uad.ac.id

The influence of machine learning on the predictive

performance of cross-project defect prediction: empirical

analysis

Yahaya Zakariyau Bala1,4, Pathiah Abdul Samat1, Khaironi Yatim Sharif3, Noridayu Manshor2

1Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti

Putra Malaysia, Selangor, Malaysia
2Departmentof Computer System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor,

Malaysia
3Department of Computer and Information Science, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

4Department of Computer Science, Faculty of Science, Federal University of Kashere, Gombe, Nigeria

Article Info ABSTRACT

Article history:

Received Dec 12, 2023

Revised Mar 26, 2024

Accepted Mar 29, 2024

 This empirical investigation delves into the influence of machine learning

(ML) algorithms in the realm of cross-project defect prediction, employing

the AEEEEM dataset as a foundation. The primary objective is to discern the

nuanced influences of various algorithms on predictive performance, with a

specific focus on the F1 score metric as evaluation criterion. Four ML

algorithms have been carefully assessed in this study: random forest (RF),

support vector machines (SVM), k-nearest neighbors (KNN), and logistic

regression (LR). The choice of these algorithms reflects their prevalence in

software defect prediction literature and their diversity. Through rigorous

experimentation and analysis, the investigation unveils compelling evidence

affirming the superiority of RF over its counterparts. The F1 score utilized as

evaluation metric, capturing the delicate balance between precision and recall,

essential in defect prediction scenarios. The nuanced examination of

algorithmic efficacy provides practical insights for developers and

practitioners navigating the challenges of cross-project defect prediction. By

leveraging the rich and diverse AEEEEM dataset, this study ensures a

comprehensive exploration of algorithmic influences across varied software

projects. The findings not only contribute to the academic discourse on defect

prediction but also offer practical guidance for real-world application,

emphasizing the pivotal role of RF as a tool in enhancing predictive accuracy

and reliability.

Keywords:

Cross-project

Defect prediction

Machine learning

Random forest

Software defect

This is an open access article under the CC BY-SA license.

Corresponding Author:

Pathiah Abdul Samat

Department of Software Engineering and Information System

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia

43400, Selangor, Malaysia

Email: pathiah@upm.edu.my

1. INTRODUCTION

Ensuring the reliability and quality of software products has become a top priority in the ever-

changing world of software development. Among the myriad challenges faced by software engineers, the

prediction and prevention of defects stand out as pivotal tasks in the pursuit of robust and resilient software

systems. Early identification and mitigation of potential defects can translate into substantial cost savings,

improved product quality, and enhanced user satisfaction. In recent times, the infusion of machine learning (ML)

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control

The influence of machine learning on the predictive performance of … (Yahaya Zakariyau Bala)

831

algorithms into the realm of software defect prediction has offered promising avenues for addressing these

challenges [1]-[6]. Cross-project defect prediction, a subdomain of defect prediction, involves the transfer of

knowledge gained from one software project (source) to predict defects in another (target), as shown in Figure 1.

Traditional defect prediction models often struggle with the characteristics of different project contexts, making

cross-project prediction a compelling approach for leveraging existing data and knowledge [7]-[12].

ML algorithms, with their capacity to discern patterns and relationships within data, have emerged as

powerful tools for enhancing the accuracy of defect prediction models [13], [14]. The predetermined set of

training data is fed into a ML algorithm. The algorithm then learns from the training dataset (source) and

generates rules for class label prediction for a fresh set of data (target) [15]-[20]. During the learning phases,

mathematical procedures are used to create and improve the prediction function. The training data that was

used in this method has a predetermined output value and an attribute input value. The result that is frequently

known is compared to the expected ML algorithm quality. Until the optimal prediction accuracy is attained or

the maximum number of loops is reached, this is repeated using training data.

However, the impact of these algorithms on cross-project prediction performance remains an area of

active exploration. The motivation behind this empirical investigation stems from the recognition that while

ML algorithms offer promise in defect prediction, their efficacy can vary significantly across different project

environments. Factors such as project size, complexity, and development methodologies introduce variability

that may influence algorithm performance. Empirical investigation will identify which algorithms are more

effective in this context. This helps in understanding the practical applicability of different algorithms and their

ability to generalize across diverse projects. By analyzing empirical results, researchers and practitioners can

make informed decisions about selecting the most suitable ML algorithms for cross-project defect prediction,

improving the overall reliability and effectiveness of software quality assurance processes. In this work, we

empirically investigated the influence of four difference ML algorithms random forest (RF), support vector

machines (SVM), k-nearest neighbors (KNN), and logistic regression (LR) on predictive performance of cross-

project defect prediction.

Figure 1. Cross project defect prediction (CPDP) process

2. METHOD

The goals of this study are to investigate the impact of different ML algorithms on the performance

of cross-project defect prediction and to identify algorithms that exhibit superior cross-project generalization

and enhance overall defect prediction performance. To achieve these goals, the following research questions

were addressed:

− RQ1: how does a choice of ML algorithm affect the overall prediction performance of cross-project defect

prediction?

− RQ2: which ML algorithms demonstrate the highest prediction performance in cross-project defect

prediction scenarios?

− RQ3: how does the diversity of training datasets impact the performance of ML algorithms in cross-

project defect prediction?

We started by grouping the datasets in to source and target for training and testing, respectively. The

KNN, RF, SVM and LR are trained on source project and tested on target project. Their performance was

measure using F1_score in Figure 2.

2.1. Machine learning algorithm

The investigation of ML’s influence encompasses evaluating various algorithms such as RF, SVM,

KNN, and LR. These algorithms are integral to predictive analytics, each offering unique strengths in handling

different types of data and patterns. The diverse set of algorithms aims to capture the breadth of approaches

employed in defect prediction and their adaptability to cross-project scenarios.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 830-837

832

Figure 2. Research framework

2.1.1. K-nearest neighbor

The KNN algorithm is a simple, non-parametric, and lazy learning algorithm used for classification

and regression tasks. It works by identifying the k nearest data points to a given input and making predictions

based on the majority class (for classification) or the average value (for regression) of these neighbors. KNN’s

performance highly depends on the choice of k and the distance metric used, making it sensitive to noisy and

irrelevant features. The object among the neighbors whose correct classification is known and selected [21], [22]

in their study reported that KNN performed better than the compared classification models.

2.1.2. Random forests

RF is one of the effective ML classification algorithms which combines multiple classification trees [23].

During the classification process, each tree in RF makes a classification of each sample, then the final

classification is obtained by voting [24]. In their study reported RF as the most effective classification.

2.1.3. Support vector machine

SVM is one of the most effective supervised ML algorithms used for both regression and

classification. The SVM work on the principle that two groups can be separated by drawing decision boundaries

between two classes of data point in a hyperplane and subsequently finding the optimal hyperplane [25], [26]

investigated the predictive performance of SVM against eight statistical and ML algorithms on software defect

datasets obtained from NASA. Results indicated that the SVM performed better.

2.1.4. Logistic regression

LR is one of the ML algorithms in which the relationship between features and labels is modeled as a

probability distribution P(y|x), where y is a label that can be either 0 for non-defective or 1 for defective and x

refers to the data point represented as a set of features [27], in their study, used LR as a meter classifier and

reported better results.

2.2. Datasets

We collected open-source projects (datasets) with varying sizes, domains, and characteristics from

AEEEM repository to ensure diversity. Several open-source datasets are frequently utilized in software defect

prediction (SDP) investigations, and these are some of them [28]. Table 1 shows that there are five software

projects (datasets) in AEEEM, each with 71 features.

Table 1. Datasets
Project #Modules #Features #Defect Defect ratio

Equinox (EQ) 325 71 129 40%

Eclipse JTD core (JDT) 997 71 206 21%

Mylyn (ML) 1862 71 245 13%
Partial differential equation (PDE)

Lucene (LC)

1492

399

71

71

209

64

14%

9%

TELKOMNIKA Telecommun Comput El Control

The influence of machine learning on the predictive performance of … (Yahaya Zakariyau Bala)

833

2.3. Evaluation metrics

Recall, precision, and F1_score were the three evaluation metrics or measurements that were

employed to assess each model. A commonly used metric in software defect prediction research is the F1_score

[29]. This is the precision and recall represented harmonically, as determined by (3). Precision: evaluate the

model’s ability to correctly identify non-defective modules.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (1)

Recall: evaluate the model’s ability to correctly identify defective modules.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2)

F1_score: defined the precision and recall hamonic representation. The performance is better the higher the

F-measure.

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
(2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (3)

Where, 𝑇𝑃 refers to the number of predicted non-defective module as non-defective, 𝐹𝑃 refers to number of

predicting defective module as non-defective and 𝐹𝑁 refers to number of predicting non-defective module as

defective.

2.4. Experiment design

We divided the datasets into training (source) and test sets (target) for each algorithm evaluation. To

be in conformity with the previous studies in SDP, we arrange all the datasets in pairs. For instance, when EQ

was used as a source, each of the other projects was used as a target i.e., EQ ⇒ JDT, ML, PDE, LC. Consistent

experimental conditions were ensured to isolate the impact of the ML algorithms. All the experiments were

conducted using Jupiter notebook python.

2.5. Statistical evaluation

To determine which ML algorithm is better, we first examine whether the performance difference

between any two predictors is cause by chance. We employed a non-parametric statistical tool (wilcoxon

signed-rank test) to compare pairs of predictors. The results were presented in the form of the win/draw/loss

i.e., the number of datasets upon which one predictor is better, equal, or lower than another predictor. To

determine the practical size of the difference, we used cliff delta test based on the criteria specified in Table 2.

Table 2. Cliff’s 𝛿 effectiveness levels
Cliff’s δ Effectiveness levels

|𝛿| < 0.147 Negligible (N)

0.147 ≤ |𝛿| < 0.33 Small (S)

0.33 ≤ |𝛿| < 0.474 Medium (M)

|𝛿| ≥ 0.474 Large (L)

3. RESULTS AND DISCUSSION

This section presents the findings from our investigation into the influence of various ML algorithms

on the prediction performance of cross-project defect prediction, guided by three key research questions. First,

we examine which algorithm performs best in terms of predictive accuracy and robustness across different

projects. Second, we analyze how each algorithm's performance metrics such as F1-score, highlighting their

strengths and weaknesses. Finally, we discuss the practical implications of our findings for choosing

appropriate algorithms in real-world defect prediction scenarios.

3.1. RQ1: how does a choice of machine learning algorithm affect the overall prediction performance of

cross-project defect prediction?

Results in Table 3 indicate notable variations in predictive performance of cross-project defect

prediction across algorithms. CPDP built using KNN (CPDP_KNN) achieved average F1-score of 0.54, CPDP

built using RF (CPDP_RF) achieved average F1-score of 0.60, CPDP built using SVM (CPDP_SVM) achieved

average F1-score of 0.58, and CPDP built using LR (CPDP_LR) achieved average F1-score of 052. Varying

performance of cross-project defect prediction across difference learning algorithms emphasized the impact of

algorithm choice on prediction performance of cross-project defect prediction. Understanding how different

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 830-837

834

algorithms respond to the challenges posed by diverse projects is crucial for developing effective and reliable

defect prediction models in real-world software development environments.

3.2. RQ2: which machine learning algorithms demonstrate the highest prediction performance in

cross-project defect prediction scenarios?

Results in Table 3 indicate notable variations in performance across algorithms. RF achieved the

highest F1-score most of the cross-project scenarios, demonstrating its effectiveness in handling cross-project

defect prediction tasks. However, to further confirm the superiority of RF, we analyze its performance against

each algorithms using statistical test.

3.2.1. RF verses KNN

To further confirm whether the performance achievement of RF over KNN is not by chance. We

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on

95% significant level i.e., p=0.05. Prior to the test, we established the following hypothesis.

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the KNN.

− Alternative hypothesis (𝐻1𝐴): RF achieved better prediction performance compared to the KNN.

As shown in the table, the test result obtained for RF against KNN is 0.001. Since the result is less

than 0.05. This simply means that, the difference between the performance of RF and KNN is statistically

significant. Therefore, the alternative hypothesis is supported, and the null hypothesis is rejected. In addition,

RF won against the KNN in 19 out of 20 datasets. Furthermore, to examine the size of effectiveness level. We

used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible effectiveness on three

datasets against KNN. Therefore, we can conclude that RF is more effective than KNN when selected for

building CPDP model using AEEEM datasets as source projects.

3.2.2. FR verses SVM

To further confirm whether the performance achievement of RF over SVM is not by chance. We

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on

95% significant level i.e., 𝑝 = 0.05. Prior to the test, we established the following hypothesis.

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the SVM.

− Alternative hypothesis (𝐻1𝐴): RF can achieve better prediction performance compared to the SVM.

As shown in the table, the test result obtained for RF against SVM is 0.248. Since the result is not less

than 0.05. this simply means that, the difference between the performance of RF and SVM is not statistically

significant. Therefore, the null hypothesis is supported, and the alternative hypothesis is rejected. However,

RF won against the KNN in 12 out of 20 datasets and loss 6 to SVM. Furthermore, to examine the size of

effectiveness level. We used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible

effectiveness on only one dataset against SVM. Therefore, although, RF outperformed SVM in 12 out of 20

datasets yet we can conclude that the difference between RF and SVM when it comes to building CPDP model

using AEEEM datasets as source projects is not statistically significant.

3.2.3. FR verses LR

To further confirm whether the performance achievement of RF over LR is not by chance. We

conducted statistical test and size effect test as shown in Table 4. We performed a Wilcoxon rank sum test on

95% significant level i.e., 𝑝 = 0.05. Prior to the test, we established the following hypothesis.

− Null hypothesis (𝐻10): RF does not achieve better prediction performance compared to the LR.

− Alternative hypothesis (𝐻1𝐴): RF can achieve better prediction performance compared to the LR.

 As shown in the table, the test result obtained for RF against LR is 0.005. Since the result is less than

0.05. This simply means that, the difference between the performance of RF and LR is statistically significant.

Therefore, the alternative hypothesis is supported, and the null hypothesis is rejected. In addition, RF won

against the LR in 17 out of 20 datasets and loss only 2 to LR. Furthermore, to examine the size of effectiveness

level. We used Cliff’s delta. As shown in the table, the results showed that RF has non-negligible effectiveness

on five datasets against LR. Therefore, we can conclude that RF is more effective than LR if selected for

building CPDP model using AEEEM datasets as source projects.

3.3. RQ3: how does the diversity of training datasets impact the performance of ML algorithms in cross-

project defect prediction?

Table 5 show significant differences in each ML algorithm’s predictive performance across different

training datasets (source). For example, KNN achieved an average F1-score of 0.52 when using EQ as training

datasets; an average F1-score of 0.58 when using JDT; an average F1-score of 0.55 when using LC; an average

TELKOMNIKA Telecommun Comput El Control

The influence of machine learning on the predictive performance of … (Yahaya Zakariyau Bala)

835

F1-score of 0.54 when using ML; and an average F1-score of 0.52 when using PDE. Likewise with regard to

every other algorithm. The varying performance of different ML algorithms across diverse training datasets

implies that algorithm effectiveness is context-dependent. Each algorithm reacts differently to changes in the

characteristics of the training data, such as project size, domain diversity, and temporal variations. This

suggests that there is no one-size-fits-all solution in cross-project defect prediction; the choice of algorithm

should be carefully considered based on the specific attributes of the training dataset.

Table 3. F1_score on AEEEM dataset
Source→target CPDP_KNN CPDP_RF CPDP_SVM CPDP_LR
EQ→JDT 0.58 0.66 0.55 0.36
EQ→LC 0.47 0.53 0.53 0.49
EQ→ML 0.48 0.5 0.57 0.47
EQ→PDE 0.54 0.59 0.53 0.43
JDT→EQ 0.64 0.67 0.54 0.59
JDT→LC 0.51 0.59 0.55 0.55

JDT→ML 0.57 0.61 0.58 0.53

JDT→PDE 0.6 0.61 0.58 0.6
LC→EQ 0.61 0.46 0.63 0.67

LC→JDT 0.51 0.66 0.54 0.57

LC→ML 0.55 0.61 0.6 0.3
LC→PDE 0.52 0.59 0.6 0.41

ML→EQ 0.53 0.6 0.66 0.59
ML→JDT 0.57 0.65 0.55 0.5

ML→LC 0.48 0.57 0.51 0.54

ML→PDE 0.58 0.6 0.6 0.57
PDE→EQ 0.44 0.65 0.64 0.7

PDE→JDT 0.61 0.66 0.69 0.66

PDE→LC 0.51 0.63 0.56 0.5
PDE→ML 0.51 0.52 0.62 0.46

Mean 0.54 0.60 0.58 0.52

Table 4. Statistical test and effect size results
Test RF and KNN RF and SVM RF and LR

Wilcoxon 0.001 0.248 0.005
W/D/L 19/0/1 12/2/6 17/1/2
Cliff’s δ (N/S/M/L) 17/3/0/0 19/1/0/0 15/5/0/0

Table 5. F1_score on different source projects
Source CPDP_KNN CPDP_RF CPDP_SVM CPDP_LR
EQ 0.52 0.57 0.55 0.44
JDT 0.58 0.62 0.56 0.57
LC 0.55 0.58 0.59 0.49
ML 0.54 0.61 0.58 0.55
PDE 0.52 0.62 0.63 0.58

4. CONCLUSION

This empirical investigation has provided valuable insights into the influence of ML algorithms on

the prediction performance of cross-project defect prediction. The study addressed three key research

questions, elucidating the nuanced dynamics associated with algorithm selection in cross-project defect

prediction context. The results demonstrated varying performance of cross-project defect prediction on

different ML algorithms. This suggests that the choice of algorithm significantly influences the success of

defect prediction across diverse software projects.

The results also unequivocally demonstrated the superiority of RF in cross-project defect prediction.

RF consistently outperformed KNN, SVM, and LR across various cross-project scenarios based on F1_score

evaluation metric. RF exhibited the highest F1-score, indicating its robustness in capturing true positives while

minimizing false positives and negatives. This underscores RF’s effectiveness in providing a balanced and

accurate prediction of defects across diverse projects. The findings provide practical guidelines for practitioners

in selecting ML algorithms for cross-project defect prediction. RF emerges as a reliable choice, particularly

when faced with varied project characteristics.

The robustness of RF across different project types suggests its applicability in real-world software

development settings. This could lead to more reliable defect prediction models, aiding software teams in

proactively addressing potential issues. As the field of ML continues to evolve, the lessons learned from this

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 830-837

836

investigation contribute to a more informed and effective approach to algorithm selection in the realm of cross-

project defect prediction.

Future research could delve into fine-tuning strategies for RF to optimize its performance further.

Exploring hyperparameter adjustments and ensemble configurations may unlock additional potential in

enhancing defect prediction accuracy. In addition, investigating RF’s performance in dynamic project

environments, where codebases evolve over time, could provide valuable insights into the algorithm’s

adaptability and resilience in scenarios of continuous development.

ACKNOWLEDGEMENTS

This work was supported by University Putra Malaysia and Tetfund Nigeria.

REFERENCES
[1] W. Wen et al., “A Cross-Project Defect Prediction Model Based on Deep Learning with Self-Attention,” IEEE Access, vol. 10, pp.

110385-110401, 2022, doi: 10.1109/ACCESS.2022.3214536.

[2] S. Goyal, “Effective software defect prediction using support vector machines (SVMs)” International Journal of System Assurance

Engineering and Management, vol. 13, no. 2, pp. 681-696, 2022, doi: 10.1007/s13198-021-01326-1.
[3] I. Batool, and T. A. Khan, “Software fault prediction using data mining, machine learning and deep learning techniques: A

systematic literature review,” Computers and Electrical Engineering, vol. 100, pp. 107886, 2022, doi:
10.1016/j.compeleceng.2022.107886.

[4] S. Stradowski, and L. Madeyski, “Industrial applications of software defect prediction using machine learning: A business-driven

systematic literature review,” Information and Software Technology, 107192, 2023, doi: 10.1016/j.infsof.2023.107192.
[5] C. Pornprasit, and C. K. Tantithamthavorn, “Deeplinedp: Towards a deep learning approach for line-level defect prediction,” IEEE

Transactions on Software Engineering, vol. 49, no. 1, pp. 84-98, 2022, doi:10.1109/TSE.2022.3144348.

[6] Z. X. Li, Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Software, vol. 12, pp. 161–175, 2018,
doi: 10.1049/iet-sen.2017.0148.

[7] B. Turhan, T. Menzies, A. Bener, and J. D. Stefano, “On the relative value of cross-company and within-company data for defect

prediction,” Empirical Software Engineering, vol. 14, pp. 540–578, 2009, doi: 10.1007/s10664-008-9103-7.
[8] T. Zimmermann., N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: A large scale experiment on

data vs. domain vs. process” ESEC/FSE ‘09: Proceedings of the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, New York, NY, USA, 2009, pp. 91–100, doi:

10.1145/1595696.1595713.

[9] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local models for cross-project defect prediction.” Empirical Software
Engineering, vol. 22, pp. 1866–1902, 2017, doi: 10.1007/s10664-016-9468-y.

[10] X. Chen, et al., “A survey on cross-project software defect prediction methods,” Chinese Journal of Computers, vol. 41, pp. 254–

274, 2018, doi: 10.11897/SP.J.1016.2018.00254.
[11] S. Chen, J. M. Ye, and T. Liu, “Domain adaptation approach for cross-project software defect prediction,” Tongfang CNKI (Beijing)

Technology Co, vol. 31, pp. 266–281, 2020, doi: 10.13328/j.cnki.jos.005632.

[12] K. Stąpor, “Evaluating and comparing classifiers: Review, some recommendations, and limitations,” Proceedings of the 10th
International Conference on Computer Recognition Systems CORES 2017, pp. 12–21, 2017, doi: 10.1007/978-3-319-59162-9.

[13] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra, “Machine learning-based software defect prediction for mobile applications: A

systematic literature review,” Sensors, vol. 22, no. 7, pp. 2551, 2022, doi: 10.3390/s22072551.
[14] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, “Machine Learning Techniques for Sentiment Analysis: A Review,”

International Journal of Multidisciplinary Sciences and Engineering, vol. 8, no. 3, pp. 27-32, 2017.

[15] L. Alzubaidi et al., “A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and
applications,” Journal of Big Data, vol. 10, no. 1, Apr. 2023, doi: 10.1186/s40537-023-00727-2.

[16] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol. 385, pp. 100-110,

2020, doi: 10.1016/j.neucom.2019.11.067.
[17] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect prediction techniques,” International Journal of Applied

Science and Engineering, vol 17, no. 4, pp. 331-344, 2020, doi: 10.6703/IJASE.202012_17(4).331.

[18] P. Manchala, and M. Bisi, “Diversity based imbalance learning approach for software fault prediction using machine learning
models,” Applied Soft Computing, vol. 124, pp. 109069, 2022, doi: 10.1016/j.asoc.2022.109069.

[19] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software Defect Prediction Analysis Using Machine Learning

Techniques,” Sustainability, vol. 15, no. 6, pp. 5517, 2023, doi: 10.3390/su15065517.
[20] Y. Zhao, Y. Zhu, Q. Yu, and X. Chen, “Cross-Project Defect Prediction Method Based on Manifold Feature Transformation,”

Future Internet, vol. 13, no. 8, pp. 1-17, 2021, doi: 10.3390/fi13080216.

[21] M. A. Mabayoje, A. O. Balogun, H. J. Jibril, J. O. Atoyebi, H. A. Mojeed, and V. E. Adeyemo, “Parameter tuning in KNN for
software defect prediction: an empirical analysis,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no 4, pp. 121-126, 2019, doi:

10.14710/jtsiskom.7.4.2019.121-126.

[22] S. Taneja, C. Gupta, K. Goyal, and D. Gureja, “An enhanced k-nearest neighbor algorithm using information gain and clustering.”
In 2014 Fourth International Conference on Advanced Computing & Communication Technologies, pp. 325-329, 2014, doi:

10.1109/ACCT.2014.22.

[23] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on selected features,” Information
and Software Technology, vol. 58, pp. 388-402, 2015, doi: 10.1016/j.infsof.2014.07.005.

[24] M. Akour, I. Alsmadi, and I. Alazzam, “Software fault proneness prediction: A comparative study between bagging, boosting, and

stacking ensemble and base learner methods,” International Journal of Data Analysis Techniques and Strategies, vol. 9, no. 1, pp.
1-16, 2017, doi: 10.1504/IJDATS.2017.083058.

[25] B. Yalçıner, and M. Özdeş, “Software defect estimation using machine learning algorithms,” In 2019 4th International Conference

on Computer Science and Engineering (UBMK), pp. 487-491, 2019, doi: 10.1109/UBMK.2019.8907149.

TELKOMNIKA Telecommun Comput El Control

The influence of machine learning on the predictive performance of … (Yahaya Zakariyau Bala)

837

[26] O. E. Karim, and O. E. Mahmoud “Predicting defect-prone software modules using support vector machines,” Journal of Systems
and Software, vol. 81, no. 5, pp. 649– 660, 2008, doi: 10.1016/j.jss.2007.07.040.

[27] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Combined classifier for cross-project defect prediction,” an extended empirical study.

Frontiers of Computer Science, vol. 12, no. 2, pp. 280-296, 2018, doi: 10.1007/s11704-017-6015-y.
[28] Y. Z. Bala, P. A. Samat, K. Y. Sharif, and N. Manshor, “Improving Cross-Project Software Defect Prediction Method Through

Transformation and Feature Selection Approach,” IEEE Access, vol. 11, pp. 2318-2326, 2023, doi:

10.1109/ACCESS.2022.3231456.
[29] Y. Z. Bala, P. A. Samat, K. Y. Sharif, and N. Manshor, “Cross-Project Software Defect Prediction,” Journal of Theoretical and

Applied Information Technology, vol. 100, no. 15, pp. 4826-4833, 2022.

BIOGRAPHIES OF AUTHORS

Yahaya Zakariyau Bala received his B.Sc. and M.Sc. degrees in Computer

Science from Adamawa State University Mubi, Nigeria, in 2008 and 2014, respectively, and

is currently a Ph.D. student in the Department of Software Engineering and Information

System, Faculty of Computer Science and Information Technology, Universiti Putra

Malaysia (UPM). He is currently Lecturer I with the Department of Computer Science,

Faculty of Science, Federal University of Kashere, Nigeria. His research interests include

software defect prediction and cross-project software defect prediction. He can be contacted

at email: balagombi2@gmail.com or gs61002@student.upm.edu.my.

Pathiah Abdul Samat received her B.Sc. and M.Sc. degrees in Computer

Science from Universiti Technology Malaysia (UTM), in 1996 and 1998, respectively, and

Ph.D. degree in Computer Science from Universiti Kebangsaan Malaysia (UKM), in 2012.

She is currently a senior lecturer with the Department of Software Engineering and

Information System, Faculty of Computer Science and Information Technology, Universiti

Putra Malaysia (UPM). Her research interests include formal software verification, model

checking. She can be contacted at email: pathiah@upm.edu.my.

Khaironi Yatim Sharif received the Ph.D. degree from the University of

Limerick, Ireland. He is currently an Associate Professor with the Computer and Information

Science Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia. He is also an Adjunct

Associate Professor with the Shibaura Institute of Technology, Japan. His research interest

includes the area of programmers’ information need, particularly identifying programmers’

information needs with regards to their task contexts such as software maintenance, program

comprehension, code concept mapping, fault localization, and agile development. He can be

contacted at email: khaironi@upm.edu.my.

Noridayu Manshor received her B.Sc., and M.Sc. degrees in Computer Science

from Universiti Putra Malaysia (UTM) and Universiti Technology Malaysia (UTM),

respectively, and Ph.D. degree in Computer Science from Universiti Saint Malaysia (USM).

She is currently a senior lecturer with the Department of Computer System, Faculty of

Computer Science and Information Technology, Universiti Putra Malaysia (UPM). Her

research interests include pattern recognition, image processing, and computer vision. She

can be contacted at email: ayu@upm.edu.my.

https://orcid.org/0000-0003-0640-552X
https://orcid.org/0000-0001-8915-7554
https://orcid.org/0000-0003-3894-1773
https://orcid.org/0000-0002-5188-3793

