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ABSTRACT

In this study, a single band 28 GHz antenna with defected ground structure
(DGS) has been proposed. The integration of a DGS is explored to exploit
ground plane defects for achieving wideband operation. Through systematic
design and optimization, our approach achieves remarkable bandwidth enhance-
ment, expanding from 0.75 GHz to 5.78 GHz, covering frequencies from 26.43
GHz to 32.21 GHz, resulting in an impressive impedance bandwidth of 20.5%.
Notably, the proposed methodology significantly improves the reflection coeffi-
cient, reducing it from -16 dB to -57 dB. Furthermore, the antenna demonstrates
a gain of 5.123 dBi and an enhanced voltage standing wave ratio (VSWR) of
1.0056348. Comparative analysis against existing works underscores the supe-
rior performance of our antenna design, affirming its potential for various appli-
cations. This work presents a novel DGS featuring a circular microstrip patch
antenna (MPA) with dimensions of 8×8×0.5 m³, utilizing Rogers RT5880LZ
substrate (E=2) with a thickness of 0.5 mm.
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1. INTRODUCTION
The mmWave spectrum refers to a range of radio frequencies typically between 30-300 GHz is a key

component of 5G cellular networks which is anticipated to be dominant because of its high rate of data trans-
mission to fulfill the needs of the proliferation of 5G applications [1]. The frequency bands of interest for the
5G are 28, 38, 60, and 73 GHz [2]. In contemporary times, the swift evolution of microwave technology has
led to an increasing need for expanded bandwidth [3]. Unlike traditional microwave antennas, microstrip patch
antennas (MPAs) encounter limitations including reduced gain, significant ohmic loss within the array, and
primarily radiating energy into half space. Their practical application is hindered by their limited bandwidth
[4]–[6]. Microstrip antennas’ limited bandwidth necessitates wideband antenna selection for energy harvesting,
capturing a broader spectrum of RF energy for more effective DC power conversion [7]. Traditional MPAs,
with a bandwidth typically between 1% to 2%, face limitations due to their resonant nature and thin profile.
Research efforts are directed towards broadening their frequency coverage to enhance suitability for diverse
applications [8]. The primary challenge in designing MPAs lies in achieving both wide bandwidth and in-
creased gain concurrently [9]. Over the preceding years, various approaches have been suggested to augment
the bandwidth of MPAs, including strategies like elevating the substrate thickness [10], lowering the dielectric
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constant of the substrate [11], employing parasitic patches in both single layer and multi layer configurations
[12], utilizing electromagnetic band gap structures [13], employing a backed edge-fed cavity [14]. Recently
defected ground structures (DGS) are introduced in antenna design. DGS involves etching patterns into the
ground plane to suppress unwanted frequencies and enhance bandwidth [15]. Integrating DGS into MPAs of-
fers a strategy for multi-band support and operation across various frequencies within a single device. Different
DGS types provide advantages like reducing antenna size and improving bandwidth [16]. Farahat and Hussein
[17], a compact dual-band antenna with a modified ground plane exhibits operational bandwidths of approx-
imately 1.23 GHz at 28 GHz and 1.06 GHz at 38 GHz. Despite the adjustment in the ground plane, notable
enhancements in bandwidth are not observed. Surendran et al. [18] utilizing a 3×3 array of radiating patches
and a slotted ground plane, a Franklin array element operates in two separate frequency bands: 21.5–24.3 GHz
and 33.9–36 GHz. The antennas offer wide operational bandwidth, high gain, and compact size advantages,
yet their complex structures pose a hindrance. Khan et al. [19], the antenna setup features a defected circular
shape radiator with a modified ground plane, operating from 23 to 28 GHz with a maximum gain of 5.85 dB.
However, despite its performance, the antenna is relatively large. In contrast, an arc-shaped millimeter-wave
antenna offers a bandwidth of 4.41 GHz and a gain of 4.49 dBi [20]. Przesmycki et al. [21] the problem with
this design is lower gain and poor return loss. Another antenna, with a bandwidth of 5.57 GHz and a gain of
5.09 dBi, was introduced but lacks compactness and failed to achieve satisfactory return loss. Additionally, a
28 GHz resonating antenna incorporating a DGS has been developed as referenced [22]. This antenna boasts a
bandwidth of 2.9 GHz and achieves a single element gain of 3.45 dBi. In addressing the constraints observed
in prior designs, this paper introduces a compact antenna designed for operation within the mm-wave 5G fre-
quency spectrum. Our proposed DGS techniques boost antenna bandwidth while maintaining a decent gain
without adding extra complexity or without increasing its size.

2. DESIGN AND ANALYSIS
Initially, the design of a traditional circular microstrip patch antenna is executed using CST studio

software. Subsequently, the software facilitates the simulation of antenna design to gauge its real-world per-
formance. In the process of antenna design, it is presupposed that the substrate’s dielectric constant (E), the
resonant frequency (f in GHz), and the substrate height (h in mm) are predetermined. circular patch’s radius is
determined by [23]:

r =
F

[1 + 2h
πFϵ (ln

πF
2h + 1.7726)]

1
2

(1)

F =
8.791× 109

f
√
ϵ

(2)

The equations presented earlier have led to the antenna dimensions outlined in Table 1. The design of
the antenna is depicted in Figures 1(a)-1(c) based on these calculations. These data will be utilized for opti-
mizing the antenna, focusing on enhancing bandwidth and reducing its overall size. In initial design substrate
length (Sy) , substrate width (Sx) , ground length (Gy), and ground width (Gx) are equal.

Table 1. Dimensions of the conventional antenna design
Antenna component Symbol Dimensions (mm)
Antenna radius r 2.3
Substrate length Sy 8
Substrate height h 0.5
Ground depth Gd 0.035
Feed line length Fy 3.8
Feed line width Fx 1.6453
Inset length Iy 2.1
Inset width Ix 0.25

In the initial phases of antenna design, precision was paramount in crafting a circular patch antenna
using (1) and (2) with cst along with a judiciously incorporated 50 Ω power port, ensured efficient energy trans-
fer. Figures 1(a)-1(c) visually articulates the preliminary antenna, which resonated at 27.2 GHz, exhibiting a
noteworthy 0.75 GHz bandwidth and 6.71 dBi gain. To enhance the bandwidth and improve the return loss, a
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highly effective method involves introducing a ground defect, which has proven to work remarkably well. Fol-
lowing this modification, the antenna exhibited remarkable attributes, functioning as a high-bandwidth antenna
with improved return loss and enhanced impedance matching. The primary approach involves strategically
cutting the ground to reduce its length and width relative to substrate dimensions, denoted as Ax and illus-
trated in Figure 1(d). Figure 1(e) shows the lateral view of the modified antenna with DGS, highlighting the
differences in length and width between the ground plane and substrate. This ground-cutting method resulted
in a significant enhancement of bandwidth, increasing from 0.75 GHz to an impressive 5.78 GHz. The antenna
resonated at 28.15 GHz, accompanied by a substantially improved reflection coefficient of -43 dB, compared to
the previous -17 dBi. This denotes a noteworthy advancement in antenna performance. Further refinement was
achieved by introducing an additional ground defect, as depicted in Figure 1(f), involving the removal of a thin
circular ring with thickness ’a’. This refinement maintained the resonant frequency at 28 GHz while achieving
a more improved reflection coefficient of -57 dB, without compromising the increased bandwidth. These find-
ings underscore the effectiveness of ground-cutting methods in significantly enhancing antenna performance
showed in Figure 2(a). Reducing the length and ground dimensions of the preliminary antenna by Ax, while
maintaining other dimensions constant, has yielded a significant impact. This modification has resulted in a
wide bandwidth with an improved reflection coefficient, as depicted in Figure 2(b). The graph highlights the
variations in reflection coefficient and bandwidth corresponding to different values of Ax.

(a) (b) (c) (d) (e) (f)

Figure 1. Conventional circular patch antenna design: (a) front View, (b) side view, (c) back view. Proposed
antenna with DGS of: (d) back view with first step (e) side view, and (f) back view with second step of DGS

(a) (b)

Figure 2. Comparison of antenna performance between conventional and proposed antenna; (a) bandwidth
and reflection coefficient concerning ‘a’ and (b) bandwidth and reflection coefficient concerning Ax

3. PARAMETRIC ANALYSIS
3.1. Effect of reducing ground length and width by (2Ax)

Simulation results reveal a consistent shift in reflection coefficients to a distinct frequency range with
each alteration of Ax, consistently hovering around 28 GHz bandwidth. Table 2 enumerates the values obtained
from a series of simulations. Notably, the proposed antenna dimensions, specifically with Ax set at 0.175 mm,
demonstrate the desired resonant frequency and a notably broader bandwidth. The antenna exhibits a minimal
S11 level of -43 dB at 28.2 GHz, accompanied by a bandwidth spanning from 26.43 GHz to 32.21 GHz.
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Table 2. Antenna simulation results concerning Ax
Ax (mm) Bandwidth (GHz) Reflection coefficient (dB) Reduced length and width (2Ax) Resonant frequency (GHz)

0.25 4.8 -23 0.5 28.3
0.175 (proposed) 5.78 -43 0.35 28.2

0.15 5 -39 0.30 28.15
0.20 5.6 -42 0.40 28.2
0.3 5.2 -23 0.6 28.8
0.35 5.3 -23 0.7 28.5

3.2. Effect of trimming a thin circular ring with thickness ‘a’ on the reduced ground dimensions
Through previous simulations, advancements have been achieved in enhancing bandwidth and mini-

mizing return loss by strategically reducing the dimensions of both length and width in the ground plane. A
novel technique has been introduced, as depicted in Figure 1(f), involving the removal of an extremely thin
circular ring with thickness ‘a’ from the ground while maintaining the constancy of the ground defect Ax. This
innovative approach involves the precise trimming of a circular shape with a thickness (a) of 0.005 mm. Re-
markably, this adjustment has proven instrumental in attaining an exact resonance frequency at 28 GHz. The
efficacy of this method is clearly illustrated in Figure 3(a) and summarized in Table 3, showcasing significant
improvements in return loss results for different values of ‘a’ while maintaining a constant value of ’Ax’. The
proposed antenna exhibits a remarkable reduction in return loss, registering at S11=-57dB, while resonating
precisely at the targeted frequency of 28 GHz showed. Furthermore, this optimization has widened the band-
width, now spanning from 26.43 GHz to 32.216 GHz. Further experiments were conducted to analyze the
effect of varying values of Ax while maintaining a constant thickness ‘a’. The results are illustrated in Figure
3(b) and the corresponding parametric values are detailed in Table 4. These outcomes underscore the success of
the introduced circular trimming technique in refining antenna performance and achieving optimal resonance
characteristics.

(a) (b)
Figure 3. Comparison of antenna performance concerning the combination of different shapes of DGS; (a)

bandwidth and reflection coefficient concerning DGS ‘a’ and (b) bandwidth and reflection coefficient
concerning DGS ‘a’ and ‘Ax’

Table 3. Antenna simulation results concerning ‘a’ with constant ‘Ax’
Ax (mm) a (mm) Reflection coefficient(dB) Resonant frequency (GHz)

0.175 0.01 -30 27.9
0.175 0.001 -54 28.5
0.175 0.005 (proposed) -57 28
0.175 0.007 -44 28.55

Table 4. Antenna simulation results concerning ‘a’
Ax (mm) a (mm) Reflection coefficient (dB) Reduced length and width (2Ax) Resonant frequency (GHz)

0.25 0.005 -24 0.5 28.3
0.175 (proposed) 0.005 -57 0.35 28

0.15 0.005 -49 0.30 28
0.20 0.005 -47 0.40 28
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4. RESULTS AND DISCUSSION
4.1. Voltage standing wave ratio

For a patch antenna, it is essential that the voltage standing wave ratio (VSWR) remains below 2
throughout the entire frequency range. In this case spanning from 26.43 GHz to 32.21 GHz. Figure 4(a)
illustrates the relationship between the VSWR, examining the graph, it is evident that throughout the entire
frequency range spanning from 26.43 GHz to 32.21 GHz the value of VSWR is less then 2. At the resonance
frequency of 28.00 GHz, the VSWR value is measured at 1.005634. Equation of finding VSWR and return loss
[24] where, Γ is reflection coefficient:

Γ =
V SWR− 1

V SWR+ 1
(3)

ReturnLoss = −20log10Γ (4)

4.2. Surface current
The surface current distribution analysis at 28 GHz reveals varying maximum current densities along

different parts of the circular patch for the designed antenna Figures 4(b) and 4(c). In contrast, the conventional
antenna 4(c) primarily concentrates its maximum current strength in the lower middle of the 28 GHz circular
patch. Additionally, Figure 4(b) showcases the current distribution of an antenna with a DGS, indicating
heightened current concentration in the lower section of the antenna ground, specifically within a segment of
the DGS.

(a) (b) (c)

Figure 4. VSWR and surface currents; (a) the graph depicting the VSWR concerning frequency corresponds
to the proposed antenna’s operation, (b) proposed antenna’s current distribution at 28 GHz, and (c)

conventional antennas current distribution at 28 GHz

4.3. Antenna gain and efficiency
In a transmitting antenna, the gain characterizes the efficiency with which the antenna transforms input

power into directed radio waves. Conversely, in a receiving antenna, the gain denotes the efficiency with which
the antenna converts incoming radio waves from a specific direction into electrical power. In cases where no
specific direction is indicated, gain is commonly interpreted as the maximum value of the gain, representing
the gain in the direction of the antenna’s primary lobe [25]. The suggested antenna exhibits a gain of 5.123
dBi at the resonance frequency of 28.00 GHz, a notably elevated value within the realm of compact microstrip
antennas. The graphical representation of antenna gain across different frequencies is illustrated in Figure 5(a).
The efficiency of the proposed antenna depicted in Figure 5(b).

4.4. Radiation characteristics
The radiation characteristics illustrate how an antenna emits energy in different directions. This in-

volves depicting a standardized pattern of the electric field or the proportional distribution of surface power
density [26]. The desired antenna is expected to demonstrate bidirectional radiation patterns in both the E-
plane and H-plane, attributed to the influence of the incorporated DGS. In Figures 6(a) and 6(b), the radiation
characteristics of the antenna with a DGS are presented. The findings reveal that the antenna attains a max-
imum gain of 5.123 dBi, observed in the direction of 12°. Likewise, the three-dimensional radiation pattern
incorporating DGS is illustrated in the Figure 6(b). Figures 6(c) and 6(d) depicts the radiation characteristics
in the E-plane and H-plane of the conventional antenna without any DGS. The results indicate that the an-
tenna achieves its maximum gain of 6.71 dBi at an azimuthal direction of 6°. Similarly, the three-dimensional
radiation pattern without (DGS) is illustrated in the Figure 6(d).
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(a) (b)

Figure 5. The graph depicting the antenna gain and efficiency concerning frequency for the proposed antenna;
(a) gain and (b) efficiency

(a) (b) (c) (d)

Figure 6. Radiation patterns for the proposed antenna with DGS and without DGS operating at 28 GHz; (a)
E-plan and H-plan without DGS, (b) 3D radiation pattern without DGS, (c) E-plan and H-plan with DGS, and

(d) 3D radiation pattern without DGS

4.5. Comparative analysis
The new antenna was compared with recent designs, as shown in Table 5. It is more compact, has

reduced height, a wide bandwidth, high gain, and a simple structure. Which making it a strong candidate for
28 GHz 5G applications.

Table 5. Analyze and compare the proposed antenna with those documented in existing literature
References Dimensions

m3
Resonating
frequency

(GHz)

Bandwidth
(GHz)

Peak gain (dBi) Reflection
coefficient (dB)

Efficiency (%)

[20] 5×3×1.6 28 4.41 4.49 -27 89
[21] 6.2×8.4×1.57 28 5.57 5.06 -23 -
[19] 30×30×0.508 28 5 5.8 -30 80
[27] 1.2×1.2×0.018 28 6.4 5.6 -33 87
[26] 7.43×3.8×0.79 28 2.1 7.41 -30 -
[28] 5.16×3.44×0.55 28 1.95 6.14 -27 -
[29] 10×10×1.575 28 4 7.1 -28 -
[22] 18.85×24×0.254 28 2.9 3.45 -35 88

Proposed 8×8×0.5 28 5.78 5.123 -57 70

5. CONCLUSION
This study introduces a novel design methodology for a circular patch antenna (MPA) integrated with

a DGS. By leveraging ground plane defects, our approach achieves significant enhancements in bandwidth,
impedance characteristics, reflection coefficient, gain, and VSWR. Through systematic optimization, the an-
tenna’s operational bandwidth expands impressively from 0.75 GHz to 5.78 GHz, covering frequencies from
26.43 GHz to 32.21 GHz, with an impedance bandwidth of 20.5%. Notably, the reflection coefficient is im-
proved from -16 dB to -57 dB, demonstrating the effectiveness of the proposed methodology. Comparative
analysis against existing works further confirms the superior performance of our antenna design. These results
underscore the potential of our approach for various applications in wideband communication systems.
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