
TELKOMNIKA, Vol.14, No.1, March 2016, pp. 245~253
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v14i1.2812 245

Received October 7, 2015; Revised December 18, 2015; Accepted January 7, 2016

Hybridizing PSO with SA for Optimizing SVR Applied to
Software Effort Estimation

Dinda Novitasari, Imam Cholissodin, Wayan Firdaus Mahmudy
Dept. of Informatics/ Computer Science, Brawijaya University, Malang 65145
e-mail: id.dindanovitasari@gmail.com, imamcs@ub.ac.id, wayanfm@ub.ac.id

Abstract
This study investigates Particle Swarm Optimization (PSO) hybridization with Simulated

Annealing (SA) to optimize Support Vector Machine (SVR). The optimized SVR is used for software effort
estimation. The optimization of SVR consists of two sub-problems that must be solved simultaneously; the
first is input feature selection that influences method accuracy and computing time. The next sub-problem
is finding optimal SVR parameter that each parameter gives significant impact to method performance. To
deal with a huge number of candidate solutions of the problems, a powerful approach is required. The
proposed approach takes advantages of good solution quality from PSO and SA. We introduce SA based
acceptance rule to accept new position in PSO. The SA parameter selection is introduced to improve the
quality as stochastic algorithm is sensitive to its parameter. The comparative works have been between
PSO in quality of solution and computing time. According to the results, the proposed model outperforms
PSO SVR in quality of solution.

Keywords: Particle swarm optimization, simulated annealing, support vector regression, feature selection,

parameter optimization

Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The most important part of software project is software effort estimation. It determines
how many resources that project needed and must be done accurately. If we have big error rate
in estimation, it will lead into big loss such as unpredictable delay time and unexpected budget.
To prevent many losses in the future, some approaches are developed to estimate software
effort. One of them is machine learning. Support vector machine is machine learning algorithm
introduced by Vapnik to solve classification problem. Due to solve real world problems, SVM
was developed to solve regression and time series prediction called SVM based regression
(SVR). In order to solve nonlinear regression problem, SVR mapped data to high dimensional
feature space using kernel function. This kernel must satisfy Mercer condition [1] and one of
kernels is radial basis function (RBF).

In machine learning, feature selection introduced as a process of selecting a subset
feature for use in model construction. This process is needed for SVR since it can simplify
computing process and reducing computing time, especially when computing in high
dimensional space. Besides that, proper parameter settings can influence SVR accuracy. SVR-
RBF has parameters influenced its performance i.e. error penalty, insensitive loss, and radial
basis [2]. Those mentioned above are crucial in SVR-RBF because feature selection influences
SVR parameter and vice versa [3]. In the past research, Oliviera investigated the use of SVR in
order to do software effort estimation [4]. It gives promising result but cannot guarantee give
good result since using predefined number of features and parameter means cannot discover
other options that can lead into higher accuracy rate. Numerous candidate of solution can be
generated in order to have great number of subset feature combination and vary range of
parameter, if we use enumeration. However, it does not utilize a fitness function, and is thus
unguided, often failing to find good solution. Due to the complexity of the problem, a powerful
approach is required to get a good solution.

Some stochastic optimization methods become alternative to select subset feature and
optimize parameter. It generates candidate solutions, involves objective function to evaluate the
quality of solution so solution searching could be lead into a good solution. Braga et al proposed
genetic algorithm (GA) to optimize SVR in software effort estimation [5]. Our previous research

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 1, March 2016 : 245 – 253

246

proposed particle swarm optimization (PSO) to optimize SVR in the same problem domain [6].
Basically, PSO is inspired by flocking bird motion employed parallel search techniques,
exploitation and exploration. However, PSO has disadvantage, trapped in local minimum
because particles move in high velocity and gain premature convergence [7]. On the other
hand, simulated annealing inspired by process of annealing in metallurgy, is good in finding
local optimum [8]. Therefore, this study investigates hybridization PSO with SA in order to
enhance searching capacity. This proposed model is used to optimize SVR parameter and
select subset feature applied to software effort estimation.

Several researches investigated SVR optimization have been done and gained
promising result. Braga et.al [5] investigated GA application to select subset feature and SVR
parameter applied to software effort estimation. They used binary coded chromosome as
solution representation for subset feature and SVR parameter. Their research reported success
to improve SVR performance. Our previous research [6] investigated PSO application to select
subset feature and SVR parameter applied to software effort estimation. We used continuous
value type to optimize SVR parameter and discrete value type to select subset feature. Another
effort has been done by Adhani [9], who optimized SVR with GAPSO. They are reported
success to build SVR model for predicting rainfall in dry season. However, other researches
have been done to investigate on how to improve PSO performance. Xue [10] introduced QoS-
based hybrid particle swarm optimization (GHPSO) to schedule workflow in cloud computing. It
gained better performance than PSO. A research conducted by Shieh et.al [11] in modification
PSO with SA. Their research proposed SAPSO to enhance searching capacity algorithm. They
reported proposed model could have higher efficiency, better quality and faster convergence
than PSO. Therefore, based on past researches, this study proposed SAPSO SVR applied to
software effort estimation. By using SAPSO, can be generated more optimize SVR parameter,
better selected feature, and low cost value.

2. Support Vector Regression
Given training data {xi,yi}, i = 1,...,l; xi∈ Rd; yi∈Rd where xi, yi is input (vector) and

output (scalar value as target). Other forms of alternative for bias to calculation f(x) is can be
build solution like bias as follows [1]:

l

i
kiiik

l

i
kiiik

k

T

k

xxky

xxy

xwyb

1

*

1

*

,

,

 (1)

xi is support vector where |αi - αi

*| isn’t zero. Equation f(x) can be written as follows:

 bxxxf
l

i
iii

1

* (2)

Lambda (λ) is scalar constant, with it’s an augmented factor defined as follows [12]:

.)),()(()(
1

2*

l

i
iii xxKxf (3)

2.1. Sequential Algorithm for SVR

Vijayakumar has made tactical steps through the process of iteration to obtain the
solution of optimization problems of any nature by way of a trade-off on the values of the
weights xi, or called αi to make the results of the regression becomes closer to actual value. The
step by step as follows [12]:

1. Initialize 0,0 * ii . Compute 2),(][jiij xxKR (4)

for i,j = 1,…,n
2. For each training point (xi), i=1 to n, compute:

TELKOMNIKA ISSN: 1693-6930

Hybridizing PSO with SA for Optimizing SVR Applied to Software Effort… (Dinda Novitasari)

247

 n

j ijiiii RyE
1

*)((5)

}.],),(min{max[***
iiii CE (6)

}.],),(min{max[iiii CE (7)

.***
iii (8)

.iii (9)

3. Repeat step 2 until meet stop condition.

Where learning rate γ is computed from:

 matrice kernel of diagonalmax

constantratelearning

 (10)

3. Particle Swarm Optimization
Particle swarm optimization was introduced by Kennedy and Ebenhart [13], as a nature

inspired algorithm. Particles are defined as solution for problem. Developing by Shi and
Ebenhart [14], PSO is added by inertia weight to improves performance. Each particle has
position and velocity, and updates that in every iterating. The velocity is updated by:

vij(t+1)=wvij(t)+c1r1j(t)[yij(t)-xij(t)]+c2r2j(t)[ŷ(t)-xij(t)] (15)

And its position updated by:

xi(t+1)=xi(t)+vi(t+1) (16)

Where vij(t) is velocity of particle i in dimension j=1,...n at time t, xij(t) is position of

particle i in dimension j at time t, c1 and c2 are acceleration constants used to scale contribution
of the cognitive and social components, r1j and r2j are random values in the range [0,1]. W is
inertia weight obtained by:

 max
max

max
minmax

iter

iteriter (17)

Where wmax and wmin are maximal and minimum inertia weight, itermax is maximum

number of iterations, iter is current iteration number. Yi is personal best position of particle i
obtained by:

t
i

yft
i

xft
i

x

t
i

yft
i

xft
i

y
t

i
y

1if1

1if
1 (18)

And ŷ represents global best position of particle i obtained by:

Ŷ(t)∈ {y0(t),…,yns(t)}|f(ŷ(t))=min {f(y0(t)),…, f(yns(t))} (19)

3.1. Binary PSO
Some optimization problems are set in a space featuring discrete. Kennedy and

Ebenhart [15] proposed binary PSO in which each element of particle’s position vector can take
on the binary value 0 or 1. New velocity of particle is normalized by sigmoid function:

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 1, March 2016 : 245 – 253

248

 tvijij
ije

tvsigtv

1

1
 (20)

Where vij(t) is obtained from Equation (15). Using Equation (16), the position update changes to:

otherwise0

1if1
1

3 tvsigtr
tx

ijj
ij

 (21)

Where r3j(t) ~ U(0,1).

4. Hybridizing PSO with SA

A searching algorithm has two important components, exploration and exploitation.
Exploration means algorithm search in different region of searching space to find global
optimum. Exploitation means algorithm localize promising area to find best solution in that area.
A good searching algorithm must able to balance its exploration and exploitation, able to search
entire space and jump out of local optimum solution. By that means, it must able to improve
probability and ability of finding global optimum solution.

Initial random position PSO can lead into premature convergence, entire particle move
toward local optimum solution and cause weakening exploration because particle can’t jump out
of area. It is characteristic and weakness of PSO. Meanwhile, SA with low variation of
temperature parameter and searching solution reach equilibrium condition, able to guarantee to
find global optimum. It is enhanced by metropolis process, ability to jump out from local
optimum. However, it costs high computing time.

Based on PSO and SA characteristic above, this study hybridizes PSO with SA,
combines PSO parallel process and movement mechanism and SA searching procedure. By
combining that, this proposed model able to find good solution in local and global optimum with
low computing time.

4.1. Simulated Annealing Algorithm

Simulated annealing is an optimization process based on the annealing process; the
cooling process of a liquid or solid and the analysis of the behavior of substances as they cool.
This algorithm is introduced by Kirkpatrick [16] and inspired by Metropolis work about energy
distribution [17]. In SA algorithm, metropolis process does searching solution. During the
process, disturbance mechanism (metropolis acceptance rule) determines quality of solution by
searching around existing solution and comparing neighbor solution and current solution. This
procedure affects SA ability to jump out from local optimum solution. If neighbor solution is
better than current solution then neighboring solution is accepted as the new current solution. If
neighbor solution is worse than current solution then SA will use a probability to determine
whether accept this neighboring solution as new current solution or not, or regenerate for a new
neighboring solution. The probability mechanism for metropolis acceptance rule is defined as
follows:

otherwise

if1

Tc

xfxf

ij

b

ij

e

xfxf

P (22)

Where P is probability, f(xj) is neighbor solution, f(xi) is current solution, cb>0 is

Boltzmann constant and T is temperature of the system. T is derived from:

Tk+1=α x T0 (23)

Where α is cooling rate, Tk+1 is temperature at time k, and T0 is initial temperature.

While SA is quite simple, it has been successfully implemented to solve various combinatorial
problem [18].

TELKOMNIKA ISSN: 1693-6930

Hybridizing PSO with SA for Optimizing SVR Applied to Software Effort… (Dinda Novitasari)

249

5. SAPSO SVR Model
5.1. Particle Representation

In this study, SVR RBF is defined by the parameter C – complexity parameter, ε - the
extent to which deviations are tolerated, λ - augmenting factor, σ – width of RBF kernel, cLR –
learning rate constant. The particle is comprised of six parts: C, ε, λ, σ, cLR (continuous-valued)
and features mask (discrete-valued). Table 1 shows the representation of particle i with
dimension nf+5 where nf is the number of features. The feature mask is Boolean that “1”
indicates the feature is selected and “0” indicates feature is not selected.

Table 1. Particle i is composed of six parts: c, ε, λ, ε, cLR and feature mask

Continuous-valued Discrete-valued
C ε λ σ cLR Feature mask

Xi,1 Xi,2 Xi,3 Xi,4 Xi,5 Xi,6, Xi,7 ,...,Xi,nf

5.2. Objective Function
Objective function is used to measure how optimal the generated solution. There are

two types of objective function: fitness and cost. The higher fitness value means better solution.
The lower cost value means better solution. In this study, cost typed is used as objective
function because the purpose of this algorithm is to minimize error. Accuracy of prediction and
number of selected features are criteria used to design cost function. Thus, the particle with high
accuracy of prediction and small number of features produces a low prediction error. The
prediction error has two predefined weights: WA for accuracy of prediction (95%) and WF for the
selected feature (5%) [19].

n

i i

ii

A

FA

n
MAPE

1

1 (24)

F

n

j
j

FA n

f

wMAPEwerror

F

1 (25)

Where n is number of data, Ai is actual value and Fi is prediction value for data, fj is

value of feature mask where “1” represents that feature j is selected and “0” represents that
feature j is not selected and nf is total number of features.

5.3. SAPSO SVR Algorithms

The SAPSO SVR algorithm is started by initialization of particle. Then, calculate cost
and determine personal best position (pBest) and global best position (gBest). After that, update
velocity and position. Usually, PSO automatically accept new position, however SAPSO SVR
introduces SA metropolis acceptance rule in this step. This rule determines whether to accept
new position or regenerate another candidate position based on cost function difference
between new and old positions. This enables PSO to jump out from local optimum, improve
quality of solution, and increase rate of convergence. Simulated annealing explores solution
towards direction of pBest and gBest. The acceptance rule accepts or rejects new solution
based on current temperature parameter and cost value difference. If candidate solution unable
pass criteria then a new position generated using PSO and repeated until metropolis
acceptance rule accept new position or upper bound of disturbance is reached. By this way, the
model explores solution, improve exploration and spend low computing time since using PSO
parallel processing.

Based on Figure 1, the whole procedure of SAPSO SVR is described as follows:
1. Normalizing data using

minmax

min

xx

xx
xn

 (26)

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 1, March 2016 : 245 – 253

250

Where x is the original data from dataset, xmin and xmax is the minimum and maximum value of
original data, and xn is normalized value.

2. Dividing data into k to determine training and testing data.

3. Initializing a population of particle randomly 0
1s , 00

1 v i=1,2,…n, iter=0.

4. Calculating cost of 0
1s by averaging error over k SVR training.

5. Updating pBest and gBest of each particle.
6. Updating inertia weight.
7. Repeat these steps until meet stopping condition

a) Updating velocity 1
1

iterv and position of each particle.

b) Calculating cost of 1
1

iters by averaging error over k SVR training.

c) Evaluate ∆cost= iteriter ss 1
1

1 costcost and generate random number R [0,1]. If

∆cost≤0, then accept new position with probability ONE. Otherwise,
1

1

iters is

accepted based on following criterion: temp

t

e
cos

yprobabilit

 ≥R. Proceed to next step if

all new positions are accepted or repeat step 7.1 until 7.3 for those particles failed
to be accepted. Too many failures (i.e. 100 in our study) for same particle will force
the last position will be accepted.

d) Updating pBest and gBest of each particle.
e) Updating inertia weight and temperature, set iter=iter+1.
8. If stopping criteria is satisfied, and then end iteration. If not, repeat step 7. In this

study, stopping criteria is a given number of iterations.
9. Output the best solution gBest and its cost value.

Figure. 1 Flowchart of SAPSO SVR algorithm

TELKOMNIKA ISSN: 1693-6930

Hybridizing PSO with SA for Optimizing SVR Applied to Software Effort… (Dinda Novitasari)

251

6. Application SAPSO SVR in Software Effort Estimation
6.1. Simulation Settings

This study simulates 2 algorithms: PSO SVR and SAPSO SVR programmed using C#.
For SAPSO SVR simulation, we use the same parameter and dataset that is obtained from [6]
that conducted PSO SVR simulation. For software effort estimation, the inputs of SVR are
Desharnais dataset [20]. The Desharnais dataset consists of 81 software projects described by
11 variables, 9 independent variables and 2 dependent variables. For the simulation, we decide
to use 77 projects due to incomplete provided features and 7 independent variables (TeamExp,
ManagerExp, Transactions, Entities, PointsAdjust, Envergure, and PointsNonAdjust) and 1
dependent variable (Effort). The PSO parameters were set as in Table 2.. Firstly, we run test to
determine best parameter for SA (T0 and α) then simulations is performed and compared to
other algorithms.

Table 2. PSO parameter settings
Number of fold
Population of particles
Number of iterations
Inertia weight(wmax, wmin)
Acceleration coefficient(c1, c2)
Parameter searching space

10
20
40
(0,9, 0,4)
 (2, 2)
 C (0,1-1500), ε (0,001-0,009), σ (0,1-4), λ(0,01-3), cLR (0,01-1,75)

6.2. Best Parameter

In stochastic algorithms, parameters have effect to quality of generated solution. In SA,
initial temperature and cooling rate influence its performance. By observing parameters, we
choose best parameter has lowest cost in each simulation.

Table 3 showed simulation to choose best initial temperature (T0). This simulation
conducted by increasing temperature by 10% from 50 up to 90 in each simulation and use
cooling rate at 0,5. If T0 is too low then algorithm has possibility to not explore, makes converge
at local optimum. If T0 is too high, then it can increase computing time. This table showed that
T0 at 90 give lowest cost.

Table 4 showed simulation to choose best cooling rate (α). This simulation conducted
by increasing temperature by 10% from 0,5 up to 0,9 in each simulation If α is too low then
algorithm has possibility to fail into local optimum solution, repeats calculation, and increase
computing time. If α is too high, then it increase computing time. This table showed that α at 0,9
give lowest cost.

Table 3. Parameter setting for initial temperature
i-th

simulation
T0

50 60 70 80 90

1 0,6084 0,8336 0,5801 0,6096 0,5690

2 0,5706 0,5760 0,7265 0,5975 0,5734

3 0,5992 0,5898 0,5886 0,5848 0,5682

4 0,5610 0,6177 0,6223 0,5875 0,5935

5 0,7475 0,7579 0,6161 0,5795 0,5761

Average Cost 0,6174 0,6750 0,6267 0,5918 0,5760

Table 4. Parameter setting for cooling rate
i-th

simulation
α

0,5 0,6 0,7 0,8 0,9

1 0,5690 0,5861 0,5776 0,5769 0,5659

2 0,5734 0,5957 0,5994 0,6163 0,5563

3 0,5682 0,5898 0,6182 0,6003 0,5748

4 0,5935 0,5765 0,6007 0,5753 0,5575

5 0,5761 0,6013 0,6026 0,5778 0,5628

Average Cost 0,5760 0,5899 0,5997 0,5893 0,5635

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 1, March 2016 : 245 – 253

252

6.3. Comparison Works
By using best parameter, we compare SAPSO SVR and PSO SVR performance. Figure

2 showed comparison of convergence between PSO SVR and SAPSO. It showed that SAPSO
have faster convergence than PSO SVR. In Table 5, we can see that SAPSO has higher
computing time faster than PSO SVR but on the other hand, SAPSO also can have faster
convergence and lower cost than PSO SVR. The error difference of error is big, but the high
computing time can be compromised. The computing time is high because the model must
repeat searching candidate position if they fail meet the acceptance rule criteria and this is
different with PSO automatically accept candidate position.

Table 5. Simulation result
Model Time (ms) Optimal (C, ε, σ, cLR, λ) Selected features Error

PSO-SVR 50238 393,04, 0,09, 0,1, 0,01, 1,6669 2 (PointsAdjust and PointsNonAdjust) 0,5981

SAPSO-SVR 83756 1500, 0,0401, 0,3996, 0,01, 0,01 2 (Envergure, and PointsNonAdjust) 0,5575

Figure 2. Convergence curve PSO SVR and SAPSO

7. Conclusion

This study investigated the use of SAPSO for optimal feature subset selection and SVR
parameters optimization in the problem of software effort estimation. In our simulations, we used
Desharnais dataset. We compared our results to PSO-SVR. From the experiment results, using
SA can improve performance of PSO. The proposed model can combine the advantage of both
algorithms and gain lower cost than PSO.

References
[1] Smola AJ, Scholkopf B. A Tutorial on Support Vector Regression. Statistics and Computing. 2004;

14(3): 199-222.
[2] Wang W, Xu Z, Lu W, Zhang X. Determination of The Spread Parameter in the Gaussian Kernel For

Classification and Regression. Neurocomputing. 2003; 55: 643–663.
[3] Frohlich H, Chapelle O, Scholkopf B. Feature Selection for Support Vector Machines by Means of

Genetic Algorithm. In Proceedings 15th IEEE International Conference on Tools with Artificial
Intelligence. 2003: 142-148.

[4] Oliveira ALI. Estimation of software project effort with support vector regression. Neurocomputing.
2006; 69(13-15): 1749–53.

[5] Braga PL, Oliveira ALI, Meira SRL. A GA-based Feature Selection and Parameters Optimization for
Support Vector Regression Applied to Software Effort Estimation. In Proceedings of the 2008 ACM
Symposium on Applied Computing. Fortaleza, Ceará, Brazil, ACM. 2008: 1788–1792.

[6] Novitasari D, Cholissodin I, Mahmudy WF. Optimizing support vector regression using particle swarm
optimization for software effort estimation. Submitted to: IAENG International Journal of Computer
Science. 2015

[7] Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99. 1999: 1945–1950.

[8] Locatelli M. Convergence properties of simulated annealing for continuous global optimization. Journal
of Applied Probability. 1996; 33(4): 1127–1140.

[9] Adhani G, Buono A, Faqih A. Optimization of Support Vector Regression using Genetic Algorithm and

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33 36 39

C
o
st

IterationPSO SVR

SAPSO SVR

TELKOMNIKA ISSN: 1693-6930

Hybridizing PSO with SA for Optimizing SVR Applied to Software Effort… (Dinda Novitasari)

253

Particle Swarm Optimization for Rainfall Prediction in Dry Season. TELKOMNIKA Indonesian Journal
of Electrical Engineering. 2014; 12(11): 7912–7919.

[10] Xue S, Wu W. Scheduling Workflow in Cloud Computing Based on Hybrid Particle Swarm Algorithm.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(7): 1560–1566.

[11] Shieh H-L, Kuo C-C, Chiang C-M. Modified particle swarm optimization algorithm with simulated
annealing behavior and its numerical verification. Applied Mathematics and Computation. 2011;
218(8): 4365–4383.

[12] Vijayakumar S, Wu S. Sequential Support Vector Classifiers and Regression. In Proceedings of
International Conference on Soft Computing (SOCO ‘99). 1999: 610–619.

[13] Kennedy J, Eberhart R. Particle Swarm Optimization. In Proceedings of IEEE International
Conference on Neural Networks. Piscataway, NJ. 1995: 1942–1948.

[14] Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. In 1998 IEEE International Conference on
Evolutionary Computation Proceedings IEEE World Congress on Computational Intelligence. 1998:
69–73.

[15] Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In Proceedings of
the World Miulticonference on Systemics, Cybernetics and Informatics. Piscataway, NJ. 1997: 4104–
4109.

[16] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220(4598):
671–680.

[17] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by
Fast Computing Machines. Journal of Chemical Physics. 1953 ;1087(21).

[18] Mahmudy WF. Improved simulated annealing for optimization of vehicle routing problem with time
windows (VRPTW). Kursor. 2014; 7(3): 109–116.

[19] Guo Y. An Integrated PSO for Parameter Determination and Feature Selection of SVR and Its
Application in STLF. In Proceedings of the Eighth International Conference on Machine Learning and
Cybernetics. Baoding. 2009: 12–15.

[20] Sayyad Shirabad J, Menzies TJ. The PROMISE Repository of Software Engineering Databases
[Internet]. School of Information Technology and Engineering, University of Ottawa, Canada. 2005.

