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Abstract 
We study the compressive sampling (CS) and its application in a video encoding framework. The 

video input is firstly transformed into a suitable domain in order to achieve sparser configuration of 
coefficients. Then, we apply coefficient thresholding to classify which frames are to be sampled 
compressively or conventionally. For frames chosen to undergo compressive sampling, the coefficient 
vectors will be projected into smaller vectors using a random measurement matrix. As CS requires two 
main conditions, i.e. sparsity and matrix incoherence, this research is focused on the enhancement of the 
sparsity property of the input signal. It was empirically proven that the sparsity enhancement could be 
reached by applying motion compensation and thresholding to the non-significant coefficient count. At the 
decoder side, the reconstruction algorithm can employ basis pursuit or L1 minimization algorithm. 
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1. Introduction 

Since many signals in nature have an internal structure that can be exploited greatly, it 
is not uncommon that we are able to compress those signals to some extent so that the 
recovery still acquires acceptable accuracy. In line with that, the compressive sensing/sampling 
is a relatively new paradigm in signal processing, where the sampling frequency might be lower 
than that of the Nyquist theorem requirement [1],[2]. The acquisition phase is very simple and 
integrated with the compression phase, as the name implies. Furthermore, compressive video 
sampling is one of the promising applications of CS due to its demand on the low complexity 
encoding process. As a consequence of the simple acquisition, the reconstruction phase is quite 
complicated yet computationally feasible. 

The CS method can break the Nyquist Shannon limit by taking fewer measurements for 
exact recovery [1], as long as the signal is adequately sparse and the random matrices are 
incoherent to each other. Various algorithms have been proposed to reconstruct highly 
incomplete signals. These algorithms are categorized into three classes, i.e. convex 
optimization, greedy algorithm, and iterative thresholding. In this research, we use the convex 
optimization represented by basis pursuit (BP) [3]. Theoretically, basis pursuit should 
outperform matching pursuit (MP) in terms of accuracy. On the other hand, MP might be less 
complex and have faster processing time. In general, the basis pursuit method will reconstruct 
the optimum signal by means of linear programming. The received signal will be decomposed 
into smaller parts from an over-complete dictionary. The decision on which element must be 
selected is resulted from the calculation of L1 norm. 
 The paper by [4] investigates the chance of compressive sampling to be implemented in 
a video coding framework. However, it did not consider motion compensation to reduce 
temporal redundancy by exploiting inter-frame correlation. Other works related to compressive 
video sampling include [5] and [6]. The former method focused on video processing and 
reconstuction of multiple frames simultaneously rather than forming smaller blocks, while the 
latter studied distributed video coding, in which the coder conducted conventional sampling for 
reference or key frames and compressive sampling for non reference frames. The application of 
compressive video sampling in multimedia communication such as wireless visual sensor 
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networks (WVSN) is studied by [7],[10], while single pixel camera application for earth 
observation can be found in [18]. 
  
 
2. Compressive Sampling 

Considering the raw video sequence with very large digital data, with a traditional video 
coding method, the video input is first transformed, quantized, and then entropy coded. In the 
compressive sampling method, the video sequence or the transformed sequence is simply 
multiplied by a random measurement/projection matrix, such as Gaussian, Hadamard, Bernoulli, 
etc. There are two matrices utilized in this scheme, i.e. the sparsifying matrix  and the 
projection matrix . The dimension of the projection matrix is MN, where M<N, implies a 
smaller number of rows than columns. It is expected that one can recover the video sequence 
with a slower measurement rate denoted by M. Among the properties fostering the goal of 
compressive sampling are the sparsity level of the input signal and the incoherence measure 
between those two matrices [8]. With compressive sampling, it was proven that we can apply 
sampling frequency less than Nyquist bound to sparse signals. However, the reconstructed 
signal/video quality remains satisfactory in terms of PSNR.  

Each input entity x, e.g. pixel block or frame in N-length vector form, is processed 
according to a compressive sampling principle, where the input is multiplied by a random 
projection matrix  of size MN. The basic formulation to obtain the output signal y of length M 
is as follows. 

 
y = x (1) 
 
Thus, the measurement rate of this sampling mechanism is R = M/N. Depending on the 

selection of processing level, the number of samples N may represent GOP (group of pictures) 
length, frame size, or even block size in cases where the input is split into several non-
overlapped blocks. 
The input signal x can be treated in either its original form or transformed into another basis 
function. After the transformation process, it is expected that the signal coefficients become 
sparser. The relationship can be written as 
 

x = z (2) 
 
where z is the representation of x in the  domain. Nevertheless, for a video sequence with low 
spatial and temporal redundancy, which has fast motion scenes, the sparsity level of transform 
coefficients could still remain low. Hence, in addition to the sparsifying transform, we also apply 
several sparsity enhancement methods as discussed in Section 3. Doing so, better accuracy 
could be achieved [9]. 
 
 
3. Research Method 

This section briefly discusses the signal sparsity or sparseness and its dynamics, as 
well as the enhancement method. Generally, one can have a sparser data by merely choosing a 
suitable basis function for the input signal, because most of the transform coefficients have 
negligible value. This is in accordance with Parseval theorem. However, the reconstruction 
stage of compressive sampling commonly searches for a sparsest solution. Therefore, the effort 
to represent the signal as sparse as possible can alleviate reconstruction error. In addition to the 
sparsifying transform, we also apply two enhancement methods. Firstly, motion compensation 
and estimation supported by a simple block matching algorithm is expected to result in sparse 
motion vectors. Secondly, thresholding to the amount and the absolute value of non-significant 
coefficients is supposed to separate the sparse and non-sparse frames, such that only sparse 
frames can go through compressive sampling. 
 
 
3.1. Sparsity Enhancement by Motion Compensation 

Motion-compensated frames generation is usually corresponding to a motion estimation 
algorithm. Motion estimation is the determination of motion vectors that describe the temporal 
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change from one image to another. The vectors are typically based on adjacent frames, forward 
or backward direction, in a video sequence. This is an ill-conditioned problem because the 
motion is in 3D but the images are on a 2D plane. The motion vectors refer to the whole image 
frame or specific parts, such as squares, rectangular blocks, or on a per pixel basis. We studied 
how the high-redundant video sequences yield better CS improvement over conventional 
compression compared with that of low redundant videos. Our compressive video system 
modifies the video processing platform [4] by integrating the acquisition phase, texture, and 
motion coding. Figure 1 shows the general block diagram of the system. 

 
 

 
 

Figure 1. Our proposed compressive video sampling 
 
 
3.2. Sparsity Enhancement by Coefficient Thresholding 

We tailor the video sequence by pre-processing and dividing it into reference and non-
reference frames. Then, coefficient threshold Tc and compressive threshold , i.e. the ratio of 
non-significant coefficient count to the total number of transform coefficients, are determined 
empirically. The Tc value is based on the renowned Parseval theorem, while  derivation is 
based on the Candes equation. According to the classical theorem, the total energy of 2D 
discrete space is as follows. 

 

 ∑ ∑ | , |∞
∞

∞
∞ | Ω,Ψ | Ω Ψ  (3) 

 
After discrete cosine transform (DCT), we have the (p,q)th order DCT coefficient for an 

NN image having intensity f(x,y) denoted by Cpq and supported by the cosine kernel function of 
the basis Dn(t) and a normalization factor ρ(n) [11], where 0  p,q,x,y  N-1. The DCT 
coefficients distribution resembles Laplacian in some experimental results after testing with the 
Kolmogorov-Smirnov method [12]. In most of our experiments, the popular JPEG block size of 
88 pixels is used. Hence, the following type-II DCT coefficient value is considered.  

 

, ∑ ∑ , cos cos 	  (4) 

 
The conditional probability of transform coefficient value p(Im,n|2) is approximately a 

zero-mean Gaussian distribution. Meanwhile, the empirical data of image block variance is 
consistent with half-Gaussian distribution approximations. Considering this case of block 
variance 2, the fit probability of transform coefficients is then a multiplication of the conditional 
probability and its variance probability. The expected value of the transform coefficients can be 
used to represent the coefficient threshold of our interest. 

 
∞

∞
  (5) 

 
By using the maximum possible DC coefficient I0,0 = 2040 and the following relationship from the 
integral table in [13]. 
 

  (6) 
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we could compute the expected value of transform coefficient for thresholding, as well as the 
expected value of energy. 
 

∞

√

2.08 10 2040 2040

  (7) 

 
This last equation presents the relationship between average energy after 

transformation and the block variance value. Greater variance means faster object motion and 
detailed spatial texture of the image. The maximum value of coefficient variance is proportional 
to I0,0

2/4 or approximately 1.04e+06. The derivation of threshold value Tc from the energy 
expectance is shown in Table 1. 
 
 

Table 1. The derivation of coefficient threshold value Tc 
s E[I2] E[I2]90% Tc 

0,1 0,05 0,045 0 
1 0.5 0,45 0 

10 5 4,5 0 
100 50 45 3 
103 500 450 23 
104 5000 4500 45 
105 4,97104 4,47104 246 

 
 

In order to derive the compressive threshold value (Ns/N > ), the tenets published in a 
paper by [8] stated that random measurements can be used for signals s-sparse in any basis as 
long as  obeys the following condition 

 
ln

.
ln 2

.
  (8) 

 
The small constant of 1.7 is based on previous empirical results to guarantee less 

decoding failure [14]. To solve Equation (9), we use the Lambert W function, represented by 
W(z) and defined as the inverse of f(z) = zez satisfying W(z)eW(z) = z. The mathematical history 
of W(z) begins when Lambert solved the trinomial equation, that is subsequently transformed by 
Euler into the form [15] x-x = (-)vx+. For n = 1 and  =   

 
1 1 2 1 3 1 4 ⋯  (9) 

 
For  = -1, we have 
 

ln ln 10 … 2.3   (10) 

 
This equation solves our objective to obtain the sparsity level  and eventually the 

compressive threshold . The last series converges for |v| < 1/e and defines a function T(v) 
called the tree function. Thus, the Lambert W function has the generic series expansion as 
follows. 

 

∑
!

∞   (11) 

 

⋯  (12) 
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We use the negative branch of the Lambert function W-1(x), as it is designated to have 
an inversely proportional relationship between measurement rate and compressive threshold 
value. According to [16], the rational function W-1(x) provides a relative approximation error for 
W-1(x) of less than 10-4 for any x  [-0.333, -0.033] 

 
. . . . .

. . .
  (13) 

 
 
4. Results and Discussion 

We implement compressive video sampling in Matlab with three main scenarios and 
various video sequences. In the first scenario, we observe the influence of block or patch size, 
ranging from 44 to 3232 pixels, to the accuracy represented by average PSNR (peak signal 
to noise ratio). Larger block size could lose intrablock pixel-correlation, while smaller block 
implies longer total processing time. In the second scenario, we demonstrate how various types 
of video input, i.e. low to high redundancy, affect the reconstructed video’s PSNR. The low 
redundancy sequence pertains to fast moving objects in a scene or high details in video texture, 
and vice versa. In the last scenario, the compressive coefficient threshold  and its optimal value 
in terms of PSNR is investigated. The higher the coefficient threshold, the greater the chance for 
the system to select conventional sampling, and eventually yielding better accuracy yet higher 
complexity. The video sequence employed in our experiments has a resolution size of 8064 
pixels and a frame rate of 15 fps. 
 
 

 
 

Figure 2. PSNR comparison for Traffic sequence in a video processing scheme for various 
block size and measurement rate 

 
 

Our simulations include the effect of compressive sampling with the combination of 
measurement rate (MR), block size (BS), and various compressive thresholds on reconstructed 
video PSNR. These simulation results are then compared with the theoretical results, especially 
the values of coefficient threshold Tc and compressive threshold . In most simulations, we use 
a block size of N = m×n pixels.  

 

4x4 4x8 8x8 8x16 16x16 16x32 32x32
10

15

20

25

30

35

40

45

50
Perbandingan PSNR berbagai laju pengukuran dan ukuran blok

Ukuran blok

P
S

N
R

 (
dB

)

 

 

MR = 20%

MR = 40%
MR = 60%

MR = 80%



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 4, December 2014: 897 – 904 

902

 
 

Figure 3. PSNR comparison for several video input ordered based on spatial and temporal 
redundancy, GOP length = 12 [17] 

 
 

 
 

Figure 4. Reconstructed PSNR of compressive threshold  experiment, with coefficient threshold 
Tc = 35 and TSS algorithm 
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The effect of block size variation to the reconstructed signal accuracy or PSNR is 
shown in Figure 2. Interestingly, despite the clear PSNR decrease over larger block size for MR 
= 80%, the contrast tendency is observed for MR = 20% to 60%. This could be caused by the ill-
conditions of the low rate environment, such that the smaller BS could not outperform the larger 
BS. These results lead us to the selection of block size 88 and 3232 pixels in the subsequent 
experiments. Meanwhile, the reconstructed PSNR comparison of various input video sequence 
type is presented in Figure 3. For the next experiment, we choose the greyscale Traffic and 
Mobile sequence as high- and low-redundant video respectively. 

Figure 4 shows the influence of compressive sampling threshold  to the PSNR of 
reconstructed signal. It can be seen that at some point of , the PSNR observation results in 
peak value, i.e. around 80% to 90%. As predicted, the increase of measurement rate affects the 
reconstruction accuracy of high-redundant video greatly, represented by Traffic sequence. On 
the other hand, modest improvement is resulted for low-redundant video, i.e. Mobile sequence. 
This is in agreement with the theoretical analysis in our previous work, in which the 
recommendation for  is 0.89. The compressive threshold  of 85% is suitable for all of our 
experimental scenarios. Generally, a compressive video sampling method with sparsity 
enhancement and thresholding support could be implemented with prominent results in the 
terms of PSNR. 
 
 

Table 2. The sparsity ratio  on various methods and video sequence types, Tc=3 and =80% 
Video Frame  original  transform  MC  ME  threshold1  threshold2 

Mother & 
daughter 

reference 97.50% 72.13% 51.84% 20% 
non ref 97.50% 36.76% 28.96% 26.97% 

Traffic 
reference 99.98% 69.94% 46.58% 20% 

non ref 99.96% 51.97% 81.33% 38.09% 

News 
reference 100% 75.37% 56.21% 20% 

non ref 100% 51.97% 24.55% 21.48% 

Rhinos 
reference 100% 70.98% 46.80% 20% 

non ref 100% 51.97% 63.28% 38.03% 

Mobile 
reference 99.92% 95.16% 84.92% 20% 

non ref 99.88% 51.97% 45.68% 42.01% 

 
 
Table 2 presents the sparsity ratio  as the percentage of significant coefficient counts 

to the total samples after each process involved in our system. The greatest decrease in , i.e. 
yielding sparsest data, is achieved by sparsity transform with the average of 36.7%. The second 
process to make  go down is the determination of coefficient threshold, denoted by threshold1 
in the table, with the average of 19.5%. With a lower sparsity ratio, the required number of 
measurements in projection transform is obviously lower as well. Due to the utilization of 
threshold Tc=3 for the reference frames in this experiment, the resulted ratio  is relatively high. 
The higher threshold values in line with the theoretical analysis, for instance Tc=42, would 
produce a very low sparsity ratio. 
 
 
5. Conclusion 

This paper provides an empirical evidence of the promising implementation of 
compressive video sampling. The image block or patch size is inversely proportional to the 
PSNR of reconstructed video, especially for measurement rate greater than 50%. Moreover, 
despite the decrease in spatial and/or temporal redundancy, compresive sampling with motion 
compensation support is quite reliable in most of the test video sequences including medical 
video. However, for extremely low redundant videos like Mobile sequence, the measurement 
rate requirement is higher. As for our last scenario, namely the coefficient thresholding scenario, 
the increase of compressive threshold positively affects the accuracy with optimum value 
around 80%. If we set the larger compressive threshold, then the accuracy tends to deteriorate 
slightly. Having these results, together with the simplicity of the encoding process, we could 
recommend the compressive video sampling to be implemented in several future applications, 
such as wireless visual sensor networks (WVSN) and video surveillance. 
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