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Abstract 
Stemming has been commonly used by some researchers in natural language processing area 

such as text mining, text classification, and information retrieval. In information retrieval, stemming may 
help to raise retrieval performance. However, there is an indication that stemming does not hand over 
significant influence toward the accuracy in text classification. Therefore, this paper analyzes further 
research about the influence of stemming on tweet classification in Bahasa Indonesia. This work examines 
about the accuracy result between two conditions by involving stemming and without involving stemming in 
pre-processing task for tweet classification. The contribution of this research is to find out a better pre-
processing task in order to obtain good accuracy in text classification. According to the experiments, it is 
observed that all accuracy results in tweet classification tend to decrease. Stemming task does not raise 
the accuracy either using SVM or Naive Bayes algorithm. Therefore, this work summarized that stemming 
process does not affect significantly towards the accuracy performance. 
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1. Introduction 

Stemming has been commonly used by researchers in natural language processing 
area such as text mining, text classification, and information retrieval. The purpose of stemming 
is to obtain the root of words by removing affixes and suffixes. Nevertheless, stemming process 
in every language is different depends on the formation of words in it. For example, English 
stemming reduces the words “plays”, “player”, “players”, and “played” to the word “play”. To 
obtain the root of words in English, there are some stemming algorithm such as Lovins, 
Dawson, and, Porter. On the other hand, Indonesian language has different characteristics from 
English. The words in Bahasa Indonesia have the special and complex morphological structure 
compared with the words in other languages. In Bahasa Indonesia, the words composed of 
inflectional and derivational structure. Inflectional is a collection of suffixes which does not alter 
the form and does not affect the meaning of the root word. Derivational structure consists of 
prefixes, suffixes, and also a couple of combination of the two. In Indonesian language, there 
are various algorithms for stemming like Vega, Nazief-Adriani, Arifin-Setiono, and Enhanced 
Confix Stripping Stemmer.  

However, some previous research has shown different result regarding to the influence 
of stemming in text mining. Several research clarified that stemming could enhance the 
accuracy and the others claimed that stemming did not hand over significant influence toward 
the accuracy.  

Basnur and Sensuse [1] have classified news article in Indonesian Language using 
ontology by observing two aspects, stop words and stemming. They declared that stemming in 
classifying text documents could enhance the accuracy. Ramasubramanian and Ramya [2] 
made an effective pre-processing step using improved stemming algorithm. The research 
concluded that improved Porter’s stemming with the Spell-check utility has increased the 
accuracy level of output content. Porter’s stemming algorithm also utilized by [3] to evaluate 
stemming and stop word techniques in classification problem. This paper revealed that 
stemming techniques have a significant affect to the size of the feature set with a different 
sparsity value. 
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Gaustad and Boume [4] conducted the investigation about the use of stemming for 
classification of Dutch email texts. This research also used Porter’s algorithm for stemming 
process. It was found that stemming does not consistently improve classification accuracy. Yu 
[5] evaluated the effect of stemming on classification performance. The research examined 
whether the overall classification accuracies change significantly after stemming. In addition, it 
also compared the contribution of individual features before and after stemming toward 
classification. According to the experiment, the accuracy did not change significantly before and 
after stemming.  

Torunoglu, et al., [6] analyzed the effect of preprocessing methods in text 
classification on Turkish texts. They concluded that stemming has very little impact on 
accuracies. Toman, et al., [7] compared between various lemmatization and stemming 
algorithms using English and Czech datasets to examine the influence of the word normalization 
on general classification task. This research summarized that lemmatization and stemming in 
word normalization did not affect significantly in text classification. Wahbeh, et al., [8] examined 
the effect of stemming as part of the pre-processing tasks on Arabic text classification. Their 
experiment referred that stemming has decreased the accuracy. Hidayatullah [9] clarified that 
stemming does not raise the accuracy as well. This research uses Nazief and Adriani algorithm 
in stemming process to obtain the root of the words. Nazief and Adriani Indonesian stemming 
algorithm is choosen because it has better accuracy than any other stemming algorithms [10]. 

This paper addresses the issue of text classification in Bahasa Indonesia. Furthermore, 
this research conducts further investigation about the influence of stemming on text 
classification using tweet dataset in Indonesian Language. Moreover, this work examines about 
the difference effect between two conditions by involving stemming and without involving 
stemming on pre-preprocessing task. According to previous research by Hidayatullah [9], the 
number of datasets in this research also increased to obtain more valid result.  

The rest of this paper is organized as follows. Section 2 describes the research method 
in this work. Section 3 explains the result and discussion of this research. Finally, the conclusion 
of this work is described in Section 4. 

 
 

2. Research Method 
Figure 1 depicts the detail experimental design in this work. In data collection, tweet 

datasets were gathered using Twitter Search API v1.1. Secondly, pre-processing step is 
conducted to clean the tweet from noisiness. The third step is feature selection which aims to 
get the influential feature and remove the uninfluential feature. This research uses two term 
weighting methods in feature selection task, term frequency and TF-IDF (Term Frequency-
Inverse Document Frequency). The tweet datasets will be classified using Naive Bayes 
Classifier and Support Vector Machine (SVM) method.  

 
 

 
 

Figure 1. Experimental design 
 
 

Finally, performance evaluation is carried on to evaluate the proposed method. The 
objective of performance evaluation is to measure how precise the method in classifying text. 
The confusion matrix model is chosen for two class prediction which can be seen in Table 1. 

 
 

Table 1. Confusion Matrix for Two Classes Prediction 

 
Actual Class 
Class-1 Class-2 

Predicted 
Class 

Class-1 True positive (TP) False negative (FN) 
Class-2 False positive (FP) True negative (TN) 
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The confusion matrix above is used to calculate the accuracy of the proposed methods. 
Accuracy is the total validity of the model that calculated as the sum of true classifications 
divided by the total number of classifications. The formula to obtain accuracy is described 
below: 

 

         (1) 

 
2.1. Datasets 

Tweet datasets were gained from the previous datasets used by Hidayatullah [9]. 
Moreover, this research also increase the number of tweet datasets and examined 2000 tweets. 
Those tweets were labelled manually into two sentiment polarities, positive and negative. The 
datasets contain 1074 positive tweets and 926 negative tweets as shown in Table 2.  

 
 

Table 2. Distribution of Tweet Polarity 
Tweet Polarity Quantity
Positive 1074 
Negative 926 

 
 
2.2. Text Pre-processing 

This research proposes several steps in text pre-processing, such as: 
1. Removing URLs task handles the URLs in tweet, for example 

http://www.website.com.  
2. Changing emoticon step replaces the emoticons that present in tweet by 

transforming the emoticon into representative words which shown in Table 3.  
 
 

Table 3. Emoticon Conversion 
Emoti

con 
Conversion 

:) :-) :)) :-)) =) =)) Senyum (smile) 
:D :-D =D Tawa (laugh) 

:-( :( Sedih (sad) 
;-) ;) Berkedip (wink) 

:-P :P Mengejek (stick out tongue) 
:-/ :/ Ragu (hesitate) 

 
 

3. Removing special characters of Twitter such as #hastags, @username, and RT 
(retweet). 

4. Removing symbols or numbers (e.g.!, #, $, *, 1234, etc.) 
5. Normalize lengthening words, for example the word ‘semangaaaaatttt’ will be 

normailzed into ‘semangat’ which means spirit. 
6. Tokenization separates a stream of text into parts called tokens. 
7. The public figure name which appears in the tweet will be omitted in this step.  
8. Case folding transforms words into similar form (lowercase or uppercase). 
9. Change slang words into standard word based on dictionary. 
10. Stemming is used to reduce the affixes and suffixes in the word. 
11. Removing stopword task removes the stopword. 
12. Concatenate negation recognizes negation in tweet for example when there is a 

term ‘tidak’ (not) then the word ‘tidak’ will be concatenated with the next word.  
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Figure 2. Two different approaches in pre-processing 
 
 

Two different approaches were conducted to compare the result accuracy between 
involve stemming and the second do not involve stemming in pre-processing steps. The 
stemming rules in the first approach utilized Nazief and Adriani algorithm. Figure 2 shows the 
two different approaches in pre-processing task. 

 
2.3. Nazief and Adriani’s Algorithm 

The steps of Nazief and Adriani’s Algorithm are described as follows [11]: 
1. Firstly, find the current word in the dictionary. The word will be considered to be a 

root word if it found and the process stops. 
2. The inflection suffix (“-lah”, “-kah”, “-ku”, “-mu”, or “-nya”) will be omitted. If it 

succeeds and the suffix is a particle (“-lah” or “-kah”), then remove the inflectional possessive 
pronoun suffix (“-ku”, “-mu”, or “-nya”). 

3. Remove the derivation suffix (“-i” or “-an”). If this succeeds, then go to the step 4. 
Otherwise, if step 4 does not succeed, do these steps : 

a. If “-an” was removed, and the last letter of the word is “-k”, then the “-k” is also 
removed and try again Step 4. If that fails, Step 3b will be carried out. 

b. The removed suffix (“-i”, “-an”, or “-kan”) is brought back.  
4. Remove the derivation prefix, as “di-”,“ke-”,“se-”,“me-”,“be- ”,“pe”, “te-” by attempting 

these steps: 
a. If a suffix was eliminated in Step 3, then check the dissalowed prefix-suffix 

combinations which is listed in Table 4.  
 
 

Table 4. Dissallowed Prefix-Suffix Combinations 
Prefix Dissallowed Suffixes 

be- -i 
di- -an 
ke- -i, -kan 
me- -an 
te- -i, -kan 
se- -an 

 
 

b. The algorithms returns if the latest word appropriates with any previous prefix. 
c. The algorithms returns if three prefixes have previously been deleted. 
d. The prefix type is recognized by one of these following actions : 

1) If the prefix of the word is “di-”, “ke-”, or “se-”, then the prefix type is “di”, “ke”, or 
“se” successively. 

2) When the prefix is “te-”, “be-”, “me-”, or “pe-”, an extra process of extracting 
character sets to determine the prefix type is needed. For example, the word 
“terlambat” (late) will be stemmed. After the prefix “te-“ removed to obtain “-
rlambat”, the first collection of characters are extracted from the prefix as initiated 
by the “Set 1” rules in Table 5. This example the letter after the prefix “te-“ is “r” 
and this is appropriate with the first five rows of the table. The letter “r” is followed 
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by “l” and match with third to fifth rows (Set 2). The next after the letter “l” is 
“ambat” and  this is exactly with the fifth row (Set 3), so the prefix type in the word 
“terlambat” is “ter-“.  

 
 

Table 5. Determining the prefix type for words prefixed with “te–” 
Following Characters 

Prefix Type 
Set 1 Set 2 Set 3 Set 4 
“-r-” “-r-” - - None 
“-r-” Vowel - - Ter-luluh 
“-r-” not (“-r-” or vowel) “-er-” vowel Ter 
“-r-” not (“-r-” or vowel) “-er-” not vowel None 
“-r-” not (“-r-” or vowel) not “-er-” - ter 

not (vowel or “-r-”) “-er-” vowel - None 
not (vowel or “-r-”) “-er-” not vowel - Te 

 
 

3) The algorithm returns when the first two characters do not match with “di-”, “ke-”, 
“se-”, “te-”, “be-”, “me-”, or “pe-”. 

e. If the prefix type is “none”, then the algorithm returns. For not “none” prefix type, it is 
found in Table 6 and the prefix will be removed from the word. 

 
 

Table 6. Determining the prefix from the prefix type 
Prefix type Prefix to be removed 

di di- 
ke ke- 
se se- 
te te- 
ter ter- 

ter-luluh ter- 

 
 

f. Step 4 will recursively endeavoured when the root word has not been found until the 
root word found. 

g. Perform the recoding step which is depending on the prefix type. It is only shown the 
prefix type “ter-luluh” in Table 5 and 6. In this case, the letter “r-“ is added to the 
word after removing the prefix “ter-“. If the new word is not found in the dictionary, 
then Step 4 is carried out again. The “r-“ is removed and “ter-“ restored when the 
root word is still not found. The prefix is is set to “none” and the algorithm returns. 

h. The algorithm will return the original word after failed in all steps. 
 
2.4. Feature Selection Methods 

1. Term Frequency 
Term frequency is the standard idea of frequency in corpus-based natural language 

processing (NLP). It calculates the quantity of times that a type (term/word/n-gram) shows up in 
a corpus [12]. The term frequency of a term t in a document d can be utilized for record 
particular weighting and denoted as , .  

2. TF-IDF 
TF-IDF combines both TF and IDF to determine the weight of a term [13]. The TF-IDF 

weight scheme of a term t in a document d given by [14]: 
 
 , ,         (2) 

 
The weight of term t in document d is denoted as , , whereas  is inverse document 
frequency of term t which derived from: 
 

 log           (3) 
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In the Equation (2), the number of all document represented as N and  is the quantity of 
document d which contains term t. 
 
2.5. Classification Method 

1. Naive Bayes 
Naive Bayes is a probabilistic learning approach [14]. The likelihood of a document d 

being in class c is processed as: 
 
 | ∝ ∏ |         (4) 
 

|  is the probability of term  occuring in a document of class c whereas  is 
the prior probability of a document occurring in class c. Variable  is the number of token in 
document d. The best class in Naive Bayes classification is the most probability that procured 
from Maximum a posteriori (MAP) class	 : 

 

 ∈
|

∈
∏ |      (5) 

The value of  is calculated using Equation (6) by dividing the number of document 
in class c ( ) with all number of document in training data (N’). 

 

 = 
′
          (6) 

2. Support Vector Machine (SVM) 
SVM finds a hyperplane with the highest possible margin to separate between two 

categories. Hyperplanes with larger margin are less likely to overfit the training data. Suppose 
that, we have datasets , , … ,  whereas 	 ∈ 	 1, 1  as the class label of . Figure 3 
shows the hyperplane with the largest margin, which separate between two classes. The 
hyperplane can be written as: 

 
 . 0          (7) 

 
In Equation (7), w is a weight vector , , … ,  and b is an additional weight. 

According to Figure 3, there are two hyperplanes that define the sides of the margin. Both of 
hyperplanes can be written as: 

 
 . 1	 	 	 1        (8) 
 
 	 . 1	 	 	 1        (9) 
 
 

 
 

Figure 3. Hyperplane with the largest margin 
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2.6. Experiment 
This work uses Rapidminer 5.3.000 to conduct the experiment. Moreover, this research 

proposes four combinations in the experiment such as TF-IDF with stemming, TF-IDF without 
stemming, term frequency (TF) with stemming, and term frequency (TF) without stemming. 
Each combination will be classified using Naive Bayes Classifier and SVM. The main process 
using Rapidminer can be seen in Figure 4 below. 

 
 

 
Figure 4. Main Process in Rapidminer 

 
 

The main process in Rapidminer uses four operators such as read database, process 
document, set role, and split validation. Read database operator retrieves tweet data from 
database. Process document operator generates word vectors from string attributes using term 
frequency or TF-IDF. Set role operator is used to change the attribute role (e.g. regular, special, 
label, id, etc). Split validation operator randomly splits up the data into training and test set then 
evaluates the model.  

The training and testing process are conducted in the sub process of the split validation 
operator. Three operators choosen in the sub process, modeling operator, apply model, and 
performance. In modeling operator, the experiment uses Bayesian Modeling for Naive Bayes 
method. For SVM method, it uses Support Vector Modeling. Figure 5 depicts the training and 
testing process using Naive Bayes method. 

 
 

  
 

Figure 5. Training and testing process using Naive Bayes 
 
 

The scenario for training and testing process using SVM can be seen in Figure 6 below. 
 
 

 
 

Figure 6. Training and testing process using Naive Bayes 
 
 

3. Results and Analysis 
To examine the influence of stemming in tweet classification, our experiments compare 

the accuracy based on the number of datasets. The datasets are divided into three different 
subset size (1500, 1750, and 2000).  
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The experiments using Naive Bayes and TF-IDF can be seen in Table 7. The accuracy 
results with stemming are lower than without stemming. However, the accuracy difference 
between both treatments are not too high with the average 0.86%.  

 
  

Table 7. Experiments Results Using Naive Bayes and TF-IDF 

Number 
of 

Datasets 

Accuracy 
Accuracy 
Difference TF-IDF + 

Stemming 

TF-IDF + 
Without 

Stemming 
1500 85.33% 86.00% 0.67% 
1750 84.00% 84.57% 0.57% 
2000 84.00% 85.33% 1.33% 

Average 84.44% 85.30% 0.86% 

 
 
The results for Naive Bayes and Term Frequency also indicate the same condition. 

Stemming in pre-processing task does not help to raise the accuracy. The accuracy difference 
in this experiment is 2.34%. This achievement is higher than the previous experiments using 
TF-IDF. More detail about the results using Naive Bayes and Term Frequency is shown in Table 
8. 

 
 
 

Table 8. Experiments Results Using Naive Bayes and Term Frequency   

Number 
of 

Datasets 

Accuracy 

Accuracy 
Difference 

Term 
Frequency 

+ 
Stemming 

Term 
Frequency 
+ Without 
Stemming 

1500 88.00% 88.67% 0.67% 
1750 86.29% 89.14% 2.85% 
2000 85.50% 89.00% 3.50% 

Average 86.60% 88.94% 2.34% 

 
 
On the other hand, our experiments using SVM also denote that stemming in pre-

processing task does not enhance the accuracy. Table 9 depicts the experiment results using 
SVM and TF-IDF. 

 
 

Table 9. Experiments Results Using SVM and TF-IDF 

Number 
of 

Datasets 

Accuracy 
Accuracy 
Difference TF-IDF + 

Stemming 

TF-IDF + 
Without 

Stemming 
1500 89.56% 91.33% 1.77% 
1750 91.62% 92.00% 0.38% 
2000 91.50% 91.67% 0.17% 

Average 90.89% 91.67% 0.77% 

 
 
Table 10 shows the results accuracy using SVM and Term Frequency. Based on our 

experiments, the attainment of accuracy without stemming is better accuracy than when 
stemming is conducted in pre-processing. According to both experiments using SVM, the 
accuracy differences are almost the same. The accuracy difference using SVM and TF-IDF 
obtained 0.77%, whereas for SVM and Term Frequency obtained 0.87%. Based on our 
experiments, it is clear that pre-processing task without stemming has better accuracy than 
when stemming is conducted in pre-processing. 
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Table 10. Experiments Results Using SVM and Term Frequency 

Number 
of 

Datasets 

Accuracy 
Accuracy 
Difference TF-IDF + 

Stemming 

TF-IDF + 
Without 

Stemming 
1500 88.67% 89.11% 0.44% 
1750 91.05% 91.62% 0.57% 
2000 90.67% 92.00% 1.33% 

Average 90.13% 90.91% 0.78% 

 
 

4. Conclusion 
This paper has examined the stemming influence on tweet classification. To examine 

the stemming influence, this work has compared between the two approaches in pre-processing 
task. The first pre-processing steps involved stemming and the other one does not involve 
stemming. According to the experiments, it is observed that all accuracy results in tweet 
classification tend to decrease. Moreover, stemming task does not help to raise the accuracy 
either using SVM or Naive Bayes algorithm. Finally, this work summarized that stemming 
process does not affect significantly towards the accuracy performance.  
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