
TELKOMNIKA, Vol.14, No.2, June 2016, pp. 665~673
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v14i1.3113 665

Received January 10, 2016; Revised April 10, 2016; Accepted April 26, 2016

Analysis of Stemming Influence on Indonesian Tweet
Classification

Ahmad Fathan Hidayatullah*1, Chanifah Indah Ratnasari2, Satrio Wisnugroho3
Department of Informatics, Universitas Islam Indonesia,

Jl.Kaliurang km 14.5 Sleman Yogyakarta Indonesia, Telp. (0274) 895297/Fax. (0274) 895007
*Corresponding author, e-mail: fathan@uii.ac.id1, chanifah.indah@uii.ac.id2,

wisnugrohosatrio@gmail.com3

Abstract
Stemming has been commonly used by some researchers in natural language processing area

such as text mining, text classification, and information retrieval. In information retrieval, stemming may
help to raise retrieval performance. However, there is an indication that stemming does not hand over
significant influence toward the accuracy in text classification. Therefore, this paper analyzes further
research about the influence of stemming on tweet classification in Bahasa Indonesia. This work examines
about the accuracy result between two conditions by involving stemming and without involving stemming in
pre-processing task for tweet classification. The contribution of this research is to find out a better pre-
processing task in order to obtain good accuracy in text classification. According to the experiments, it is
observed that all accuracy results in tweet classification tend to decrease. Stemming task does not raise
the accuracy either using SVM or Naive Bayes algorithm. Therefore, this work summarized that stemming
process does not affect significantly towards the accuracy performance.

Keywords: stemming, pre-processing, tweet classification, text classification

Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Stemming has been commonly used by researchers in natural language processing
area such as text mining, text classification, and information retrieval. The purpose of stemming
is to obtain the root of words by removing affixes and suffixes. Nevertheless, stemming process
in every language is different depends on the formation of words in it. For example, English
stemming reduces the words “plays”, “player”, “players”, and “played” to the word “play”. To
obtain the root of words in English, there are some stemming algorithm such as Lovins,
Dawson, and, Porter. On the other hand, Indonesian language has different characteristics from
English. The words in Bahasa Indonesia have the special and complex morphological structure
compared with the words in other languages. In Bahasa Indonesia, the words composed of
inflectional and derivational structure. Inflectional is a collection of suffixes which does not alter
the form and does not affect the meaning of the root word. Derivational structure consists of
prefixes, suffixes, and also a couple of combination of the two. In Indonesian language, there
are various algorithms for stemming like Vega, Nazief-Adriani, Arifin-Setiono, and Enhanced
Confix Stripping Stemmer.

However, some previous research has shown different result regarding to the influence
of stemming in text mining. Several research clarified that stemming could enhance the
accuracy and the others claimed that stemming did not hand over significant influence toward
the accuracy.

Basnur and Sensuse [1] have classified news article in Indonesian Language using
ontology by observing two aspects, stop words and stemming. They declared that stemming in
classifying text documents could enhance the accuracy. Ramasubramanian and Ramya [2]
made an effective pre-processing step using improved stemming algorithm. The research
concluded that improved Porter’s stemming with the Spell-check utility has increased the
accuracy level of output content. Porter’s stemming algorithm also utilized by [3] to evaluate
stemming and stop word techniques in classification problem. This paper revealed that
stemming techniques have a significant affect to the size of the feature set with a different
sparsity value.

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 2, June 2016 : 665 – 673

666

Gaustad and Boume [4] conducted the investigation about the use of stemming for
classification of Dutch email texts. This research also used Porter’s algorithm for stemming
process. It was found that stemming does not consistently improve classification accuracy. Yu
[5] evaluated the effect of stemming on classification performance. The research examined
whether the overall classification accuracies change significantly after stemming. In addition, it
also compared the contribution of individual features before and after stemming toward
classification. According to the experiment, the accuracy did not change significantly before and
after stemming.

Torunoglu, et al., [6] analyzed the effect of preprocessing methods in text
classification on Turkish texts. They concluded that stemming has very little impact on
accuracies. Toman, et al., [7] compared between various lemmatization and stemming
algorithms using English and Czech datasets to examine the influence of the word normalization
on general classification task. This research summarized that lemmatization and stemming in
word normalization did not affect significantly in text classification. Wahbeh, et al., [8] examined
the effect of stemming as part of the pre-processing tasks on Arabic text classification. Their
experiment referred that stemming has decreased the accuracy. Hidayatullah [9] clarified that
stemming does not raise the accuracy as well. This research uses Nazief and Adriani algorithm
in stemming process to obtain the root of the words. Nazief and Adriani Indonesian stemming
algorithm is choosen because it has better accuracy than any other stemming algorithms [10].

This paper addresses the issue of text classification in Bahasa Indonesia. Furthermore,
this research conducts further investigation about the influence of stemming on text
classification using tweet dataset in Indonesian Language. Moreover, this work examines about
the difference effect between two conditions by involving stemming and without involving
stemming on pre-preprocessing task. According to previous research by Hidayatullah [9], the
number of datasets in this research also increased to obtain more valid result.

The rest of this paper is organized as follows. Section 2 describes the research method
in this work. Section 3 explains the result and discussion of this research. Finally, the conclusion
of this work is described in Section 4.

2. Research Method
Figure 1 depicts the detail experimental design in this work. In data collection, tweet

datasets were gathered using Twitter Search API v1.1. Secondly, pre-processing step is
conducted to clean the tweet from noisiness. The third step is feature selection which aims to
get the influential feature and remove the uninfluential feature. This research uses two term
weighting methods in feature selection task, term frequency and TF-IDF (Term Frequency-
Inverse Document Frequency). The tweet datasets will be classified using Naive Bayes
Classifier and Support Vector Machine (SVM) method.

Figure 1. Experimental design

Finally, performance evaluation is carried on to evaluate the proposed method. The
objective of performance evaluation is to measure how precise the method in classifying text.
The confusion matrix model is chosen for two class prediction which can be seen in Table 1.

Table 1. Confusion Matrix for Two Classes Prediction

Actual Class
Class-1 Class-2

Predicted
Class

Class-1 True positive (TP) False negative (FN)
Class-2 False positive (FP) True negative (TN)

TELKOMNIKA ISSN: 1693-6930

Analysis of Stemming Influence on Indonesian Tweet… (Ahmad Fathan Hidayatullah)

667

The confusion matrix above is used to calculate the accuracy of the proposed methods.
Accuracy is the total validity of the model that calculated as the sum of true classifications
divided by the total number of classifications. The formula to obtain accuracy is described
below:

 (1)

2.1. Datasets

Tweet datasets were gained from the previous datasets used by Hidayatullah [9].
Moreover, this research also increase the number of tweet datasets and examined 2000 tweets.
Those tweets were labelled manually into two sentiment polarities, positive and negative. The
datasets contain 1074 positive tweets and 926 negative tweets as shown in Table 2.

Table 2. Distribution of Tweet Polarity
Tweet Polarity Quantity
Positive 1074
Negative 926

2.2. Text Pre-processing

This research proposes several steps in text pre-processing, such as:
1. Removing URLs task handles the URLs in tweet, for example

http://www.website.com.
2. Changing emoticon step replaces the emoticons that present in tweet by

transforming the emoticon into representative words which shown in Table 3.

Table 3. Emoticon Conversion
Emoti

con
Conversion

:) :-) :)) :-)) =) =)) Senyum (smile)
:D :-D =D Tawa (laugh)

:-(:(Sedih (sad)
;-) ;) Berkedip (wink)

:-P :P Mengejek (stick out tongue)
:-/ :/ Ragu (hesitate)

3. Removing special characters of Twitter such as #hastags, @username, and RT
(retweet).

4. Removing symbols or numbers (e.g.!, #, $, *, 1234, etc.)
5. Normalize lengthening words, for example the word ‘semangaaaaatttt’ will be

normailzed into ‘semangat’ which means spirit.
6. Tokenization separates a stream of text into parts called tokens.
7. The public figure name which appears in the tweet will be omitted in this step.
8. Case folding transforms words into similar form (lowercase or uppercase).
9. Change slang words into standard word based on dictionary.
10. Stemming is used to reduce the affixes and suffixes in the word.
11. Removing stopword task removes the stopword.
12. Concatenate negation recognizes negation in tweet for example when there is a

term ‘tidak’ (not) then the word ‘tidak’ will be concatenated with the next word.

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 2, June 2016 : 665 – 673

668

Figure 2. Two different approaches in pre-processing

Two different approaches were conducted to compare the result accuracy between
involve stemming and the second do not involve stemming in pre-processing steps. The
stemming rules in the first approach utilized Nazief and Adriani algorithm. Figure 2 shows the
two different approaches in pre-processing task.

2.3. Nazief and Adriani’s Algorithm

The steps of Nazief and Adriani’s Algorithm are described as follows [11]:
1. Firstly, find the current word in the dictionary. The word will be considered to be a

root word if it found and the process stops.
2. The inflection suffix (“-lah”, “-kah”, “-ku”, “-mu”, or “-nya”) will be omitted. If it

succeeds and the suffix is a particle (“-lah” or “-kah”), then remove the inflectional possessive
pronoun suffix (“-ku”, “-mu”, or “-nya”).

3. Remove the derivation suffix (“-i” or “-an”). If this succeeds, then go to the step 4.
Otherwise, if step 4 does not succeed, do these steps :

a. If “-an” was removed, and the last letter of the word is “-k”, then the “-k” is also
removed and try again Step 4. If that fails, Step 3b will be carried out.

b. The removed suffix (“-i”, “-an”, or “-kan”) is brought back.
4. Remove the derivation prefix, as “di-”,“ke-”,“se-”,“me-”,“be- ”,“pe”, “te-” by attempting

these steps:
a. If a suffix was eliminated in Step 3, then check the dissalowed prefix-suffix

combinations which is listed in Table 4.

Table 4. Dissallowed Prefix-Suffix Combinations
Prefix Dissallowed Suffixes

be- -i
di- -an
ke- -i, -kan
me- -an
te- -i, -kan
se- -an

b. The algorithms returns if the latest word appropriates with any previous prefix.
c. The algorithms returns if three prefixes have previously been deleted.
d. The prefix type is recognized by one of these following actions :

1) If the prefix of the word is “di-”, “ke-”, or “se-”, then the prefix type is “di”, “ke”, or
“se” successively.

2) When the prefix is “te-”, “be-”, “me-”, or “pe-”, an extra process of extracting
character sets to determine the prefix type is needed. For example, the word
“terlambat” (late) will be stemmed. After the prefix “te-“ removed to obtain “-
rlambat”, the first collection of characters are extracted from the prefix as initiated
by the “Set 1” rules in Table 5. This example the letter after the prefix “te-“ is “r”
and this is appropriate with the first five rows of the table. The letter “r” is followed

TELKOMNIKA ISSN: 1693-6930

Analysis of Stemming Influence on Indonesian Tweet… (Ahmad Fathan Hidayatullah)

669

by “l” and match with third to fifth rows (Set 2). The next after the letter “l” is
“ambat” and this is exactly with the fifth row (Set 3), so the prefix type in the word
“terlambat” is “ter-“.

Table 5. Determining the prefix type for words prefixed with “te–”
Following Characters

Prefix Type
Set 1 Set 2 Set 3 Set 4
“-r-” “-r-” - - None
“-r-” Vowel - - Ter-luluh
“-r-” not (“-r-” or vowel) “-er-” vowel Ter
“-r-” not (“-r-” or vowel) “-er-” not vowel None
“-r-” not (“-r-” or vowel) not “-er-” - ter

not (vowel or “-r-”) “-er-” vowel - None
not (vowel or “-r-”) “-er-” not vowel - Te

3) The algorithm returns when the first two characters do not match with “di-”, “ke-”,
“se-”, “te-”, “be-”, “me-”, or “pe-”.

e. If the prefix type is “none”, then the algorithm returns. For not “none” prefix type, it is
found in Table 6 and the prefix will be removed from the word.

Table 6. Determining the prefix from the prefix type
Prefix type Prefix to be removed

di di-
ke ke-
se se-
te te-
ter ter-

ter-luluh ter-

f. Step 4 will recursively endeavoured when the root word has not been found until the
root word found.

g. Perform the recoding step which is depending on the prefix type. It is only shown the
prefix type “ter-luluh” in Table 5 and 6. In this case, the letter “r-“ is added to the
word after removing the prefix “ter-“. If the new word is not found in the dictionary,
then Step 4 is carried out again. The “r-“ is removed and “ter-“ restored when the
root word is still not found. The prefix is is set to “none” and the algorithm returns.

h. The algorithm will return the original word after failed in all steps.

2.4. Feature Selection Methods

1. Term Frequency
Term frequency is the standard idea of frequency in corpus-based natural language

processing (NLP). It calculates the quantity of times that a type (term/word/n-gram) shows up in
a corpus [12]. The term frequency of a term t in a document d can be utilized for record
particular weighting and denoted as , .

2. TF-IDF
TF-IDF combines both TF and IDF to determine the weight of a term [13]. The TF-IDF

weight scheme of a term t in a document d given by [14]:

 , , (2)

The weight of term t in document d is denoted as , , whereas is inverse document
frequency of term t which derived from:

 log (3)

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 2, June 2016 : 665 – 673

670

In the Equation (2), the number of all document represented as N and is the quantity of
document d which contains term t.

2.5. Classification Method

1. Naive Bayes
Naive Bayes is a probabilistic learning approach [14]. The likelihood of a document d

being in class c is processed as:

 | ∝ ∏ | (4)

| is the probability of term occuring in a document of class c whereas is
the prior probability of a document occurring in class c. Variable is the number of token in
document d. The best class in Naive Bayes classification is the most probability that procured
from Maximum a posteriori (MAP) class	 :

 ∈
|

∈
∏ | (5)

The value of is calculated using Equation (6) by dividing the number of document
in class c () with all number of document in training data (N’).

 =
′
 (6)

2. Support Vector Machine (SVM)
SVM finds a hyperplane with the highest possible margin to separate between two

categories. Hyperplanes with larger margin are less likely to overfit the training data. Suppose
that, we have datasets , , … , whereas 	 ∈ 	 1, 1 as the class label of . Figure 3
shows the hyperplane with the largest margin, which separate between two classes. The
hyperplane can be written as:

 . 0 (7)

In Equation (7), w is a weight vector , , … , and b is an additional weight.

According to Figure 3, there are two hyperplanes that define the sides of the margin. Both of
hyperplanes can be written as:

 . 1	 	 	 1 (8)

 	 . 1	 	 	 1 (9)

Figure 3. Hyperplane with the largest margin

TELKOMNIKA ISSN: 1693-6930

Analysis of Stemming Influence on Indonesian Tweet… (Ahmad Fathan Hidayatullah)

671

2.6. Experiment
This work uses Rapidminer 5.3.000 to conduct the experiment. Moreover, this research

proposes four combinations in the experiment such as TF-IDF with stemming, TF-IDF without
stemming, term frequency (TF) with stemming, and term frequency (TF) without stemming.
Each combination will be classified using Naive Bayes Classifier and SVM. The main process
using Rapidminer can be seen in Figure 4 below.

Figure 4. Main Process in Rapidminer

The main process in Rapidminer uses four operators such as read database, process
document, set role, and split validation. Read database operator retrieves tweet data from
database. Process document operator generates word vectors from string attributes using term
frequency or TF-IDF. Set role operator is used to change the attribute role (e.g. regular, special,
label, id, etc). Split validation operator randomly splits up the data into training and test set then
evaluates the model.

The training and testing process are conducted in the sub process of the split validation
operator. Three operators choosen in the sub process, modeling operator, apply model, and
performance. In modeling operator, the experiment uses Bayesian Modeling for Naive Bayes
method. For SVM method, it uses Support Vector Modeling. Figure 5 depicts the training and
testing process using Naive Bayes method.

Figure 5. Training and testing process using Naive Bayes

The scenario for training and testing process using SVM can be seen in Figure 6 below.

Figure 6. Training and testing process using Naive Bayes

3. Results and Analysis
To examine the influence of stemming in tweet classification, our experiments compare

the accuracy based on the number of datasets. The datasets are divided into three different
subset size (1500, 1750, and 2000).

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 2, June 2016 : 665 – 673

672

The experiments using Naive Bayes and TF-IDF can be seen in Table 7. The accuracy
results with stemming are lower than without stemming. However, the accuracy difference
between both treatments are not too high with the average 0.86%.

Table 7. Experiments Results Using Naive Bayes and TF-IDF

Number
of

Datasets

Accuracy
Accuracy
Difference TF-IDF +

Stemming

TF-IDF +
Without

Stemming
1500 85.33% 86.00% 0.67%
1750 84.00% 84.57% 0.57%
2000 84.00% 85.33% 1.33%

Average 84.44% 85.30% 0.86%

The results for Naive Bayes and Term Frequency also indicate the same condition.

Stemming in pre-processing task does not help to raise the accuracy. The accuracy difference
in this experiment is 2.34%. This achievement is higher than the previous experiments using
TF-IDF. More detail about the results using Naive Bayes and Term Frequency is shown in Table
8.

Table 8. Experiments Results Using Naive Bayes and Term Frequency

Number
of

Datasets

Accuracy

Accuracy
Difference

Term
Frequency

+
Stemming

Term
Frequency
+ Without
Stemming

1500 88.00% 88.67% 0.67%
1750 86.29% 89.14% 2.85%
2000 85.50% 89.00% 3.50%

Average 86.60% 88.94% 2.34%

On the other hand, our experiments using SVM also denote that stemming in pre-

processing task does not enhance the accuracy. Table 9 depicts the experiment results using
SVM and TF-IDF.

Table 9. Experiments Results Using SVM and TF-IDF

Number
of

Datasets

Accuracy
Accuracy
Difference TF-IDF +

Stemming

TF-IDF +
Without

Stemming
1500 89.56% 91.33% 1.77%
1750 91.62% 92.00% 0.38%
2000 91.50% 91.67% 0.17%

Average 90.89% 91.67% 0.77%

Table 10 shows the results accuracy using SVM and Term Frequency. Based on our

experiments, the attainment of accuracy without stemming is better accuracy than when
stemming is conducted in pre-processing. According to both experiments using SVM, the
accuracy differences are almost the same. The accuracy difference using SVM and TF-IDF
obtained 0.77%, whereas for SVM and Term Frequency obtained 0.87%. Based on our
experiments, it is clear that pre-processing task without stemming has better accuracy than
when stemming is conducted in pre-processing.

TELKOMNIKA ISSN: 1693-6930

Analysis of Stemming Influence on Indonesian Tweet… (Ahmad Fathan Hidayatullah)

673

Table 10. Experiments Results Using SVM and Term Frequency

Number
of

Datasets

Accuracy
Accuracy
Difference TF-IDF +

Stemming

TF-IDF +
Without

Stemming
1500 88.67% 89.11% 0.44%
1750 91.05% 91.62% 0.57%
2000 90.67% 92.00% 1.33%

Average 90.13% 90.91% 0.78%

4. Conclusion
This paper has examined the stemming influence on tweet classification. To examine

the stemming influence, this work has compared between the two approaches in pre-processing
task. The first pre-processing steps involved stemming and the other one does not involve
stemming. According to the experiments, it is observed that all accuracy results in tweet
classification tend to decrease. Moreover, stemming task does not help to raise the accuracy
either using SVM or Naive Bayes algorithm. Finally, this work summarized that stemming
process does not affect significantly towards the accuracy performance.

References
[1] Basnur PW, Sensuse DI. Pengklasifikasian Otomatis Berbasis Ontologi untuk Artikel Berbahasa

Indonesia. MAKARA of Technology Series. 2010; 14(1): 29-35.
[2] Ramasubramanian C, Ramya R. Effective Pre-processing Activities in Text Mining Using Improved

Porter’s Stemming Algorithm. International Journal of Advanced Research in Computer and
Communication Engineering. 2013; 2(12): 4536-4538.

[3] Sharma D, Jain S. Evaluation of Stemming and Stop Word Techniques on Text Classification
Problem. International Journal of Scientific Research in Computer Science and Engineering. 2015;
3(2): 1-4.

[4] Gaustad T, Bouma G. Accurate Stemming of Dutch for Text Classification. Language Computing.
2002; 45(1): 104-177.

[5] Yu B. An Evaluation of Text Classification Methods for Literary Study. Literary and Linguistic
Computing. 2008; 23(3): 327-343.

[6] Torunoğlu D, Çakırman E, Ganiz MC, Akyokuş S, Gürbüz MZ. Analysis of Preprocessing Methods on
Classification of Turkish Texts. In Innovations in Intelligent Systems and Applications (INISTA), 2011
International Symposium on IEEE. 2011: 112-117.

[7] Toman M, Tesar R, Jezek K. Influence of Word Normalization on Text Classification. Proceedings of
InSciT (2006). 2006; 4: 354-358.

[8] Wahbeh A, Al-Kabi M, Al-Radaideh Q, Al-Shawakfa E, Alsmadi I. The Effect of Stemming on Arabic
Text Classifiation:An Empirical Study. International Journal of Information Retrieval Research. 2011;
1(3): 54-70.

[9] Hidayatullah AF. The Influence of Indonesian Stemming on Indonesian Tweet Sentiment Analysis.
Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics
(EECSI 2015). Palembang, Indonesia. 2015; 2(1): 182-187.

[10] Agusta L. Perbandingan Algoritma Stemming Porter dengan Algoritma Nazief & Adriani untuk
Stemming Dokumen Teks Bahasa Indonesia. In Proceeding Konferensi Nasional Sistem dan
Informatika. Bali, Indonesia. 2009: 196-201.

[11] Asian J, Williams HE, Tahaghoghi SMM. Stemming Indonesian. Proceedings of the Twenty-eighth
Australasian conference on Computer Science. 2005; 38: 307-314.

[12] Yamamoto M, Church KW. Using Suffix Arrays to Compute Term Frequency and Document
Frequency for All Substrings in A Corpus. Computational Linguistics. 2001; 27(1): 1-30.

[13] Srividhya V, Anitha R. Evaluating Preprocessing Techniques in Text Categorization. International
Journal of Computer Science and Application. 2010; 47(11): 49-51.

[14] Manning C, Raghavan P, Schutze H. Introduction to Information Retrieval. Cambridge University
Press. 2009.

