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Abstract 
In wireless communication, channel estimation is a key technology to receive signal precisely. 

Recently, a new method named compressed sensing (CS) has been proposed to estimate sparse channel, 
which greatly improves the spectrum efficiency. However, it is difficult to realize it due to its high 
computational complexity. Although the proposed Orthogonal Matching Pursuit (OMP) can reduce the 
complexity of CS, the efficiency of OMP is still low because only one index is identified per iteration. 
Therefore, to solve this problem, more efficient schemes are proposed. At first, we apply Generalized 
Orthogonal Matching Pursuit (GOMP) to channel estimation, which lower computational complexity by 
selecting multiple indices in each iteration. Then a more effective scheme that selects indices by least 
squares (LS) method is proposed to significantly reduce the computational complexity, which is a modified 
method of GOMP. Simulation results and theoretical analysis show the effectivity of the proposed 
algorithms. 
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1. Introduction 

The performance of wireless communication considerably depends on wireless 
channel. Due to the complexity and variability of geographical environment, the propagation 
signal is likely to undergo multipath propagation and Doppler shift, generating frequency 
selective fading and time selective fading which distort the signal severely [1]. In order to obtain 
accurate receipt signal, it is necessary to acquire the exact channel state information (CSI). 
Therefore, we need to know the precise channel impulse response (CIR) firstly. So far, channel 
estimation using reference signals or pilots is the most common method to obtain CIR [2], which 
transmits a group of known signal, that is, reference signals or pilots, and then carries out 
channel estimation based on the variation between receiving signal and transmitting signal, 
lastly obtaining the CIR. 

Classical pilots based channel estimation methods include least squares (LS), minimum 
meansquared error (MMSE), and discrete Fourier Transform (DFT). Noteworthily, traditional 
methods don’t consider the sparsity of wireless channel, which result in huge waste of spectrum 
resource. With the development of research, a lot of literatures have shown that the wireless 
channels are generally sparse in practice. The CS based channel estimation utilizes the channel 
sparsity, reduces the number of pilots and improves the spectrum efficiency finally. Many 
researchers have proposed a lot of algorithms such as  1l -norm minimization based Basis 

Pursuit (BP) algorithm [3], greedy iteration based Matching Pursuit (MP) algorithm and 
Orthogonal Matching Pursuit (OMP) algorithm [4, 5]. BP algorithm has high reconstruction 
accuracy, but its computation cost is huge. Compared with BP algorithm, MP algorithm 
improves the computational complexity, but weakens its robustness. OMP is a modified method 
of MP algorithm, which executes an orthogonalization of the selected atoms. The OMP 
algorithm can bring a fast convergence and good robustness as well. In addition, OMP 
algorithm has advantages of high reconstruction accuracy and computation speed. 

Recently, most researchers have paid their main attention on the improvement of 
estimation accuracy. Aiming at Ultra Wideband (UWB) channel, A.H. Muqaibel proposed more 
practical dictionaries to enhance the sparsity of UWB channel, and then improved the accuracy 
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of received signal [6]. S. Pramono has improved the estimation accuracy through applying 
multiple input multiple output (MIMO) to channel estimation [7]. In literatures [8], a 
reconfigurable and sparse array antenna was proposed, which can also improve the estimation 
accuracy. Additionally, many other researchers have pursued high estimation accuracy by 
optimizing pilots’ settings [9, 10]. 

In fact, the channel estimation accuracy has reached a relatively high level by utilizing 
the existed algorithms. So the computational complexity of algorithms already becomes the 
main concern in practice. However, up to now, only a few literatures about reducing 
computational complexity have been released. A modified OMP (MOMP) was proposed in [11], 
it not only reduces the computational complexity effectively, but also has a good estimation 
accuracy. But it assumes all channel taps distributing adjacently, which limits its application in 
practice. In [12], an expander graph based CS was proposed to sparse channel, which is benefit 
to reduce the computational complexity to (( ) )O M N N , where M  and N  are the length of 

pilots and channel, respectively. But the method in [12] is sensitive to noise. 
Therefore, a further research is needed to solve the problem of high computational 

complexity. As mentioned previously, OMP algorithm has advantages of high reconstruction 
accuracy and computation speed, but for practical application, its computational complexity is 
still too high. Hence, in this paper, we do a further research on the basis of OMP algorithm to 
reduce the computational complexity and ensure the estimation precision at the same time. 
Firstly, we apply Generalized Orthogonal Matching Pursuit (GOMP) algorithm [13] to sparse 
channel estimation, which is a modified method of OMP. Owing to the selection of multiple 
atoms per iteration, the calculating speed is improved and the estimation accuracy is 
guaranteed at the same time. Then based on the idea of GOMP algorithm, a better algorithm 
named M-GOMP is proposed. M-GOMP selects atoms with a new perspective, avoiding 
repeating iterations of the greedy algorithm, which can greatly reduce the computational 
complexity. A number of computer simulations are conducted, showing a better computation 
speed and a good reconstruction accuracy of the both algorithms. 

The rest of this paper is organized as follows. Section 2 briefly depicts the CS theory 
and the problem is stated in Section 3. In Section 4, we propose the efficient schemes of index 
selection, namely, the GOMP and M-GOMP algorithms. Section 5 presents computer 
simulations and complexity analysis. The conclusion is drawn in Section 6 finally. 

In this paper, bold upper case and bold lower case letters denote matrices and vectors, 
respectively. TA  denotes the submatrix of A  restricted to columns indexed by the set T . HA , 

TA , and † 1( )H HA A A A  denote the hermitian transposition, transposition, and pseudo-inverse 

of matrix A , respectively. 
2

t  denotes 2l -norm of t . ,A h  denotes the inner product of matrix 

A  and vector h . ĥ  denotes the estimated value of h . 
 
 
2. Compressed Sensing Based Reconstruction 

The proposition of CS is a revolutionary breakthrough in signal processing. It breaks the 
restriction of the Nyquist sampling theorem and improves the spectrum efficiency greatly [14, 
15]. The premise of CS application is that the observed signal is sparse or compressible, which 
means there are only a few nonzero values or significant values in a group of observed signal. 
Fortunately, a lot of statistics and observation data indicate that the wireless channel is 
generally sparse, which lays foundation of the CS application. Standard CS measurement 
model is given as follows: 

 
 r t                                                                                                       (1) 

 
Where r  is a 1M   observed vector,   is a M N measurement matrix, t  is a 1N   K -sparse 
signal with K  nonzero values,   is a 1M   noise vector whose elements are additive white 
Gaussian variables. CS is mainly about how to reconstruct original signal t  from the known r  
and  . Since M N  for most of the compressive sensing scenarios, reconstructing t  directly 
from (1) is an underdetermined problem. Fortunately, that signal is sparse makes it possible to 
solve this problem. The literature [16] pointed out that if   satisfies Restricted Isometry 
Property (RIP), then t  can be reconstructed accurately. We write RIP as lemma 1. 
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Lemma 1: For any K -sparse signal t , if there exists a constant (0,1)K   such that: 
2 2 2

2 2 2
(1 ) (1 )K K    t t t                                                                                    (2) 

 
Then   satisfies RIP. 

In the algorithms proposed in this paper, the number of measurements M  is a very 
important factor. If M  satisfies: 

 

2( 1)( 1) log
1

N
M K K

K
  


                                                                                   (3) 

 
Where (0,1)   is a constant, then obeys the RIP condition with overwhelming probability 

[17]. This is the lower bound of M  on the premise of accurate reconstruction. However, the 
magnitude  is not given in [17], so the exact lower bound of M  is not determined either.  

With numerous experiment analyses, Tropp and Gilbert pointed out that we can recover 
t  from (1) with large probability if M  is expressed as follows [18]: 

 
logM K N                                                                                                                (4) 

 
 

3. Problem Statement 
Consider a M  pilots, N  length and K -sparse channel system. The positions of pilots 

are denoted by 0 1 1, , , Mk k k  . CS based sparse channel estimation can be expressed as: 

 

M N y XF h                                                                                                            (5) 

 
Where, 0 1 1[ ( ), ( ), , ( )]Mdiag x k x k x k  X  is the diagonal matrix of transmitted pilots. 

0 1 1[ ( ), ( ), , ( )]T
My k y k y k  y  and [ (0), (1), , ( 1)]Th h h N h are the 1M   received pilot vector 

and 1N  sparse channel vector, respectively. There are K nonzero values in h .   is a 1M   
complex additive white Gaussian noise vector. M NF  is a M N  partial Fourier matrix, which is 

obtained by selecting the rows of Fourier matrix with indices 0 1 1, , , Mk k k  . M NF  can be 

expressed as: 
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F                                                                          (6) 

 

Where exp( 2 / )pk q

V pf j k q V  , V  is a positive integer, 0 1p M   , 0 1q N   . Let 

M NA XF , (5) can be written as: 

 
 y Ah                                                                                                                   (7) 

 
Where, 1 2[ , , , ]N A a a a  is a M N  matrix. ia  is the column of matrix A . Comparing (7) with 

(1), we can see that y , A , h  are the observed vector, measurement matrix and sparse signal 

in CS, respectively. After obtaining the observed vector y , by adopting a certain algorithm, we 

can reconstruct the channel h  from y . 

The OMP algorithm is a commendable method for channel reconstruction. It is one of 
the greedy algorithms, which can efficiently and stably recover sparse signal from observed 
value. The following is the detailed steps of the OMP algorithm. 
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Algorithm 1: OMP Algorithm 
Input: received pilots y , measurement matrix A , sparsity K , noise variance 2 . 

Initialize: residual 0 r y , estimated support set 0  , iteration count 1t  . 

Repeat: Assume in the tht  iteration 

1: 1k k  . 

2: Identification: 1arg max , ,t t j j
j

  r a a A . 

3: Support Merger: t 1 { }t t    . 

4: Estimation: utilize the LS method: 1ˆ ( )
t t t

H H
t


  h A A A y . 

5: Residual Update: ˆ
tt t- r y A h . 

Until: 2

2t r  or t K . 

Output: output the estimated value ĥ . 
 
Carefully studying the OMP algorithm, we can find that the most important part of the 

whole algorithm is to find the K  atoms corresponding to nonzero values in channel h , which 
can be called as matching atoms. As long as the K  matching atoms are found, we can achieve 
the accurate reconstruction of h  through LS method given in step 4. At the same time, the most 
time of the OMP algorithm are spent on seeking matching atoms, namely, the identification step, 
whose efficiency is quite low. We illuminate it by (8): 

 

 1 2, , , arg , 1, 2,N i t iC i N      r a                                                              (8) 

 
Where C  is an collection of N  indices and one index in C correspond to one atom in A . 
Generally, the value N  is large, so obtaining C  by step 2 will cost plenty of time. However, 
even so, OMP algorithm doesn’t make full use of C . In each iteration, only one of the biggest 
indices is selected with the other indices abandoned completely, which not only wastes 
resource, but also makes the algorithm converge slowly. With the increase of iterations, the 
disadvantages of the OMP algorithm are more highlighted. 
 
 
4. Efficient Schemes of Indices Selection 

Before giving the proposed schemes, we firstly present two theorems as follows: 
Theorem 1: In the algorithm of this paper, the selected indices , ,i i t i N     will not 

be selected in the later iteration. 
Proof: The theorem 1 shows that when the iteration runs, we don't have to worry about 

the selected atoms to be selected again, including the non-matching atoms. 
For the convenience of description of theorem 2, we give an expression of the location 

of matching atoms at first. 
 

{ 0, }iT i h i N                                                                                                         (9) 

 
Where ih  is a tap of channel h . 

Theorem 2: (Assuming there has been executed K  iterations in total): The channel h  
can be perfectly reconstructed when the resulting support set K  and the matching atoms set 

T  satisfy relation as follows: 
 

KT                                                                                                                        (10) 

 
Specifically, (10) has two meanings: 1) The support set K  must contain all elements of 

the matching atoms set T . 2)	The support set K  may contain other elements besides the 

matching atoms set T . 
 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 14, No. 2, June 2016 :  538 – 547 

542

4.1. GOMP Algorithm 
The proposition of GOMP algorithm efficiently improves the deficiency of the OMP 

algorithm. Different from the OMP algorithm, the GOMP algorithm selects n ( 1n  ) atoms per 
iteration, that is, selecting n  indices from C . Then GOMP performs sparse estimation and 
residual update. In this way, we can not only make full use of the indices collection C , but also 
accelerate the convergence of algorithm, and improve the algorithm efficiency as a whole. We 
have lemma 2 with respect to the value n . 

Lemma 2: (GOMP algorithm): Suppose selecting n  atoms per iteration, then the GOMP 
algorithm. Can realize recovering the original sparse channel under condition: 

 

min{ , }
M

n K
K

                                                                                                          (11) 

 
Where K  and M  are the sparsity of channel and the number of pilots, respectively [13]. 

The whole procedure of the GOMP algorithm is sketched as follows: 
 

Algorithm 2: GOMP Algorithm 
Input: received pilots y , measurement matrix A , sparsity K , noise variance 2 , the 

number of indices selection per iteration n . 
Initialize: residual 0 r y , estimated support set 0  , iteration count 1t  . 

Repeat: Assume in the tht  iteration 

1: 1k k  . 
2: Identification: S   indices of the n  highest amplitude components of 1

T
tA r . 

3: Support Merger: t 1t S    . 

4: Estimation: utilize the LS method : 1ˆ ( )
t t t

H H
t


  h A A A y  

5: Residual Update: ˆ
tt t- r y A h . 

Until: 2

2t r  or t K . 

Output: output the estimated value ĥ . 
 

To make it easier to understand, we give the schematic representation of the GOMP 
algorithm in Figure 1. 

 
 

C

1( )
t t t

H H
  A A A y

1
T

tA r

ˆ
t tA h

y




1tr

tt̂h

ĥ

ˆ
t tA h
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EstimationRemeasurement

S

1t

t 1t S   
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Figure 1. Schematic representation of the GOMP algorithm 

 
 
Comparing the GOMP algorithm with the OMP algorithm, we find that the most different 

part is the step 2, which is the core component of the GOMP algorithm. Noteworthily, because 
more than one atom is selected in each iteration, we inevitably put the non-matching atoms in. 
Even so, considering theorem 2, we still can recover the sparse channel accurately. In addition, 
because the GOMP algorithm selects n  atoms per iteration, generally, the sparse channel can 
be reconstructed with /K n  loops, which greatly saves the running time of algorithm. 
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4.2. M-GOMP Algorithm 
Based on the idea of GOMP algorithm, we propose a more efficient scheme, that is, M-

GOMP algorithm. Comparing the GOMP algorithm with the OMP algorithm, we can see that the 
key of the two algorithms is to search the matching atoms. As long as all the matching atoms 
are acquired, we can achieve accurate reconstruction by the step 4 of the OMP algorithm or the 
GOMP algorithm. Hence, the most critical thing now is how to get all the matching atoms with 
no plentiful time costing at the same time. Considering the simplicity of LS algorithm, we use the 
LS algorithm to search atoms, and then estimate the sparse channel by the step 4 of GOMP, 
which generates the M-GOMP algorithm. The detailed implementation of the M-GOMP 
algorithm is shown as follows: 

 
Algorithm 3: M-GOMP Algorithm 
Input: received pilots y , measurement matrix A , sparsity K . 

Initialize: estimated support set   . 
Begin:  

1: Identification: solving a simple LS estimation 1
0

ˆ h A y , let   indices of the K   

highest amplitude components of 0ĥ . 

2: Estimation: utilize the LS method to reconstruct: 1ˆ ( )H H
  h A A A y  

End 

Output: output the estimated value ĥ . 
 

Comparing M-GOMP algorithm with the OMP and GOMP algorithms, we can see that 
the M-GOMP algorithm is quite different from the OMP and GOMP algorithms. The M-GOMP 
algorithm only has two steps with identification and estimation, and what’s more, there is no 
loops in M-GOMP. For the convenience to understand, we give the schematic representation of 
the M-GOMP algorithm in Figure 2. 
 
 

1A y

0ĥ

0

Choose Indices of  the

ˆLargest Values of K h


1( )H H

  A A A y

ĥy
LS Estimation Channel Reconstruction

 
 

Figure 2. Schematic representation of the M-GOMP algorithm 
 
 

From Figure 2 we can see the M-GOMP algorithm performs only one iteration from left 
to right. Hence it can greatly improve the efficiency of reconstruction. In terms of estimation 

precision, because we can acquire the required K  atoms from estimated 0ĥ , we are able to 

realize accurate reconstruction by the step 2 in M-GOMP.  
In this paper, we also adopt the commonly used LS algorithm and the high accuracy 

estimated MMSE algorithm as the references of performance analysis. Here, first of all, we put 
down their expressions as follows: 

 
1ˆ ( )H H

LS
h A A A y                                                                                                     (12) 

 
2 1 1 1ˆ ( ( ) )H

MMSE     HH HHh R R A A A y                                                                        (13) 

 
Where HHR  denotes the autocovariance matrix of channel vector H , H  is the frequency 

domain representation of h  and   denotes the standard deviation of noise. 
 
 
5. Simulations and Analyses 

In this section, the Mean Square Error (MSE) simulation, running time simulation and 
complexity analysis are described to verify the good performance of the proposed GOMP and 
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M-GOMP algorithms. The classical methods such as LS algorithm, MMSE algorithm, OMP 
algorithm are also applied for comparison at the same time. 
 
 
 
5.1. MSE Simulation 

In this simulation, we consider a sparse channel with length 496N  , sparsity 12K  , 
and utilize Gaussian pilots, whose number is determined by (4). In order to guarantee the 
accurate reconstruction, we choose 256M  . The noise is complex additive white Gaussian 
noise. Additionally, considering the lemma 2, we choose the number of indices selection with 

2,5,9n   in GOMP algorithm. In order to avoid the interference caused by randomicity of signal, 
we adopt the idea of taking average with multiple loops. In addition, normalized MSE is adopted 
in the simulation. The simulation results are shown in Figure 3 and Figure 4. 

Figure 3 is the MSE simulation under different SNR. As can be seen from Figure 3, the 
MSE curves of different algorithms decrease when the SNR increases, which means an 
improvement of channel reconstruction accuracy. Additionally, compared with the classical 
algorithms, the reconstruction accuracies of the proposed GOMP and M-GOMP algorithms are 
not only far better, but also very close to the OMP algorithm. Even when 2n  , the MSE curve 
of GOMP algorithm completely catches up with that of OMP algorithm. All of these demonstrate 
the effectivity of the proposed algorithms. 
 

 
Figure 3. The comparison on MSE with 

varying SNR 
Figure 4. The comparison on MSE with 

varying sparsity 
                                                 

 
Figure 4 is the MSE performance simulation with varying sparsity. From Figure 4, we 

can see that the channel reconstruction accuracy decreases with K  increasing. This 
phenomenon can be explained by the increase of channel density. When the channel density 
increases, the number of significant taps becomes larger. However, the number of pilots doesn’t 
increase at the same time, which makes us not able to get enough channel information and 
leads to the increase of estimated errors finally. It’s worth noting that with the increasing of 
sparsity K , although the performance of the proposed algorithms is declined, the MSE curves 
of the proposed algorithms have followed the OMP well all the time. It implies both of the 
proposed algorithms have robustness against different channel sparsity. In addition, from Figure 
3 and Figure 4, we can see that the estimation accuracy of the MMSE algorithm is the best. 
However, due to its high computational complexity, we generally can’t utilize it in practice. But 
we can take the MSE curve of MMSE algorithm as the lower bound of estimation accuracy. 

Combining Figure 3 with Figure 4, we can conclude that the MSE of the GOMP 
algorithm becomes worse with the increase of n . This is mainly because when n  is larger, the 
GOMP algorithm will involve more nonmatching atoms. Theoretically, we can utilize (16) to 
demonstrate. When the value n  is larger, the value 2  in (16) cannot be ignored, whose 
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existence leads to the decline of estimated accuracy. However, it is also likely to show up a 
special case. When the value n  is smaller, the corresponding MSE is higher, as shown in 
Figure 3. It is because the GOMP algorithm with smaller n  executes more times of iteration, 
and then puts more nonmatching atoms in. 
 
5.2. Running Time Simulation 

In this section, we mainly consider the running time simulation with varying channel 
length. The simulation parameters are set as SNR 5 dB , 512M  , 12K  , the simulation 

results are shown in Figure 5. Due to the high complexity of MMSE algorithm, we don’t consider 
the MMSE algorithm in the simulation. 

As is shown in Figure 5, compared with the OMP algorithm, the proposed algorithms 
have good performance. Among them, the GOMP algorithm with 5,9n   cost only about 1/ 2  
running time as much as that of the OMP algorithm, namely, they can save the running time by 
more than 50%. What’s more, the M-GOMP algorithm can save the running time by more than 
85% under different channel lengths, which proves the M-GOMP algorithm to be more superior. 
These significant improvements mainly owes to the efficient schemes of indices selection.  

Besides, the average iterations simulation with varying sparsity is also given in Figure 6. 
From Figure 6 we can see, the average iterations of the proposed algorithms are less than that 
of the OMP algorithm under different sparsity. The computational complexity of algorithm is 
closely related to the number of iterations, so the simulation results of Figure 6 not only verify 
the superiority of the GOMP and M-GOMP algorithms again, but also demonstrate the 
robustness of both algorithms at the same time. 

 

 

Figure 5. The comparison on running time with 
varying channel length 

 

Figure 6. The comparison on average 
iterations with varying sparsity 

 
 
5.3. Complexity Analysis 

In this section, we analyze the computational complexity of the GOMP and M-GOMP 
algorithms, to prove the superiority of the two algorithms quantitatively. The literature [13] 
pointed out that the computational complexity of GOMP algorithm can be approximately 
expressed as 2 22 (2 )GOMPC sMN n n s M   , where s  is the number of iterations. Because the 

OMP algorithm is a special case of the GOMP algorithm with 1n  , the complexity of the OMP 
algorithm can be expressed as 22 3OMPC KMN K M  . In [13], a multiplication and an addition 

are regarded as a basic operation, respectively. Based on the same principle, we discuss the 
computational complexity of the M-GOMP algorithm. 

Identification: This step has high complexity due to the involvement of matrix inversion, 
so we figure out the channel frequency response H  firstly, and then convert H  to time domain 

by IFFT. By this way, the total number of operations is 2 (2 1)M M N  . In addition, 0ĥ  needs to 

be sorted to find K  best indices, which requires ( ( 1)) / 2NK K K   operations. 
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Estimation: This step is also involved with matrix inversion, therefore, we utilize the QR 
factorization and modified Gram-Schmidt (MGS) algorithm to get a fast solution, which leads to 
a complexity with 2 3 22 5 4K M KM K K K    . 

The whole M-GOMP algorithm only has one iteration, so its total computational 
complexity can be approximately expressed as 22 2M GOMPC MN K M   . 

Now let’s discuss the computational complexity of the three algorithms. Noting that the 
value s  and n  of GOMP algorithm are small constants, so the complexity of the GOMP 
algorithm can be expressed as ( )O sMN , and the complexity of the OMP algorithm can be 

expressed as ( )O KMN . As can be seen from the Figure 6, the value s  usually tends to be 

smaller than K , that is to say, the GOMP algorithm has great advantages in terms of 
computational complexity. Additionally, because K<M, M<N, the computational complexity of M-
GOMP algorithm can be expressed as ( )O MN . Obviously, the M-GOMP algorithm that we put 

forward has a better performance. 
 
 
6. Conclusion 

In this paper, in view of the high computational complexity of existing channel 
estimation methods, we apply GOMP algorithm to sparse channel estimation. Meanwhile, a 
more effective scheme named M-GOMP algorithm is proposed based on the idea of GOMP 
algorithm, which selects multiple indices in each iteration. Compared with the OMP algorithm, 
computer simulations and theoretical analysis show that the proposed two algorithms not only 
have good estimation accuracy, but also can greatly reduce the running time required for 
channel estimation. Especially the M-GOMP algorithm, as a result of efficient scheme of indices 
selection, it can save more than 85% of the running time. Consequently, GOMP algorithm, 
especially the M-GOMP algorithm is expected to be a competitive candidate scheme for 
channel estimation in wireless communication. 
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