
TELKOMNIKA, Vol.15, No.1, March 2017, pp. 421~429 
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013 
DOI: 10.12928/TELKOMNIKA.v15i1.3546   421 

  

Received October 16, 2016; Revised December 30, 2016; Accepted January 19, 2017 

Local Model Checking Algorithm Based on Mu-calculus 
with Partial Orders 

 
 

Hua Jiang*
1
, Qianli Li

2
, Rongde Lin

3 

1,2
Key Lab of Granular Computing, Minnan Normal University, Zhangzhou 363000, Fujian, China 

3
School of Mathematical Science, Huaqiao University, QuanZhou 362021, Fujian, China 

*Corresponding author, e-mail: sg_jh@126.com 

 
 

Abstract 
The propositionalμ-calculus can be divided into two categories, global model checking algorithm 

and local model checking algorithm. Both of them aim at reducing time complexity and space complexity 
effectively. This paper analyzes the computing process of alternating fixpoint nested in detail and designs 
an efficient local model checking algorithm based on the propositional μ-calculus by a group of partial 
ordered relation, and its time complexity is O(d

2
(dn)

d/2+2
) (d is the depth of fixpoint nesting, n  is the 

maximum of number of nodes), space complexity is O(d(dn)
d/2

). As far as we know, up till now, the best 
local model checking algorithm whose index of time complexity is d. In this paper, the index for time 
complexity of this algorithm is reduced from d to d/2. It is more efficient than algorithms of previous 
research. 
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1. Introduction 

Propositional  -calculus [1-4] model checking technique is widely used in the design 

and verification of the finite-control concurrent system. Model checking algorithms can be 
segmented into two categories. One is global model checking that obtains all the sets of states 
which satisfy a given logic expression in a finite-control concurrent system. The other is local 
model checking, which is not always necessary to examine all the states. As we know, the state 
space explosion problem is the main problem that the propositional  -calculus model checking 

algorithm faces with, so it is one of the hot topics to reduce time complexity and space 
complexity effectively. 

For global model checking, according to Tarski Fixpoint theory [5] and the fixpoint 
operator of formula, it can be computed by iteration. A number of global algorithms have been 
devised, for global propositionalμ-calculus, Emerson and Lei [6] presented a global algorithm 

that time complexity of the global algorithm was
1( )dO n 

, then Andersen, Cleaveland and 

Steffen, et al., [7] improved the algorithm in [6], but the time complexity was still
1( )dO n 

. In 

1994, Long, Browne and Clarke, et al., [10] got a group of partial ordered relation by Tarski 
fixpoint theory and designed a global algorithm, both time complexity and space complexity 

were
/2 1( )dO n 

. In 2010, Hua Jiang [11] got two groups of partial ordered relation by Tarski 

fixpoint theory and designed a global algorithm, the time complexity of the global algorithm was
/2 1((2 1) )dO n  , and the space complexity is ( )O dn , at present, this is the best study result of 

global model checking algorithm. Because the global algorithms can not solve some practical 
problems perfectly, the local model checking was necessary. 

Some efficient local methods have been proposed. And the local algorithm of [12-16] 
were proposed by propositional μ-calculus, but the local algorithm in [17-20] were proposed in 
other ways. J. F. Jensen et al [17] described a local algorithm for evaluating minimal fixpoint on 
symbolic dependency graphs that was an extension of dependency graphs in pseudo code and 
proposed a local algorithm for this framework. However, they did not consider the evaluation of 
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alternating fixpoints. Though reference [17] improved the complexity of the local algorithm, its 
efficiency did not achieve the desired results. 

Related work can be found in [19] which presented global and local algorithms for 
computing fixpoint in linear time. In this way, the occurrence of the state exponential explosion 
problem is delayed, global algorithm is compared with local algorithm in [20], Jiang Hua [21] 
described an improved algorithm of global model checking for propositional μ-calculus. Modal μ-
calculus are also important for studying probabilistic systems, Liu Wangwei, et al., [22] 
presented a natural and succinct probabilistic extension of μ-calculus, called PμTL, Castro 
Pablo, et al, [23] presented a probabilistic μ-calculus by using probabilistic quantification as an 
atomic operation and showed that PCTL and PCTL* can be captured in μ-calculus. 

In this paper, we obtain a group of partial order relation by Tarski Fixpoint theory and 
the fixpoint operator of formula, then we present the bound algorithm which is based on the 
group of partial order relation. In this way, we can reduce the complexity and improve the 
computational efficiency. Our main result is a new efficient local algorithm that makes extensive 
use of monotonicity considerations to reduce the complexity of evaluation for evaluating 
partitioned dependency graphs [15] fixpoints. And the index for time complexity of this algorithm 

is reduced from d  to / 2d . 

The structure of the rest of this paper is organized as follows. In section 2, the 
equivalence between semantics of propositionalμ-calculus and Partitioned Dependency 
Graphs(PDGs) is introduced, and the basic algorithm for evaluating PDG fixpoint is analyzed in 
detail. Section 3 gives the partial order relation in the evaluating PDG fixpoint firstly, and then 
presents a new algorithm based on partial orders, shows the time and space complexity of the 

algorithm is 
2 /2 2( ( ) )dO d dn   and 

/2( ( ) )dO d dn , and finally gives some experimental results. 

This paper ends with a detailed discussion of some conclusions and directions for future 
research in section 4. 
 
 
2. Partitioned Dependency Graphs and Fixpoint Evaluating Algorithm 

The syntax of propositional μ-calculus formulas and the semantics under the transition 
system are refer to [24]. To guarantee the existence of the fixpoints, formulas with positive 
normal form (PNF) [1] are considered only, where each propositional variable is restricted to a 
fixpoint operator at most and the operator   only acts on the atomic proposition. 

 
2.1. Partitioned Dependency Graphs 

Let transition system ( , , )M S T L , where S  is a non-empty set of states, L  is a 

mapping each atomic proposition to a subset of S  , and T  maps 1 2 { , , , ,...}a a b a a   to a 

tuple of state, : ( , )T a S S . For given a PNF fixpoint formula .R    or .R  , the semantics 

denotes as . ( )
M

R S   or . ( )
M

R S    respectively, which is the least fixpoint or greatest 

fixpont of the predicate transformer  respectively. So the mapping between two subset 

of states defined by predicate transformer is a dependency, and thus the computation 
sequences of fixpoint evaluatings is equivalent to a partitioned dependency graphs [15].  

Definition 1. A partitioned dependency graph ( PDG ) is a tuple 1( , , ... , )nV E V V  , 

where V  is a set of vertices, 2VE V   is a set of hyper-edges, 1... nV V  is a finite sequence of 

subsets of V  such that 1{ ,..., }nV V is a partition of V , and 1:{ ,..., } { , }nV V    is a 

function that assigns   or   to each block of the partition [15]. Let { , }   . We shall 

subsequently write ( )x   if ix V  and ( )iV  . 

G  is a PDG , 1( , , ... , )nG V E V V  . Xinxin Liu, et al., [15] regarded G  as a nested 

boolean equation system [13], ( , ),i x S E y Sx V x y     . And ( )iV  are nested in 1... nV V , 

where 1V  and nV  are the outermost block and innermost block respectively. 
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Example 1. G is a PDG  and 1 2 3 4( , , , )G V E VVVV  , where 

1 2 3 4 5 6{ , , , , , }V x x x x x x , 1 1 2{ , }V x x , 2 3{ }V x , 3 4 5{ , }V x x , 4 6{ }V x , 

1 3 4 2 6 2 5 3 1 5 4 1 5 3 6 6 1{( ,{ , }),( ,{ }),( ,{ }),( ,{ , }),( ,{ }),( ,{ , }), ( ,{ }),E x x x x x x x x x x x x x x x x x 6 4( ,{ })}x x , 

1( )V  , 2( )V  , 3( )V  , 4( )V  . Thus, the corresponding nested boolean 

equation system consists of: 
 

1 3 4

2 5 6

=x
:

x x
v

x x x




 
, 3 1 5:{x x x   , 

4 1

5 3 6

=x
:

x
v

x x x




 
, 6 1 4:{x x x    

 
2.2. Algorithm for PDG fixpoint Evaluatings 

In reference [15] a local algorithm for evaluating PDG fixpoint, namely LAFP is 

proposed, where the search space is constructed as a subset of V which is divided into three 

blocks, and computes the fixpoints iteratively. 

Given a PDG, let b  denote the out-to-in sequence 1 2, ,..., db b b , where d

(  mod  2  0d  ) is fixpoint nesting depth. There are in  nodes in ib , and the fixpoint types are 

2 1 2 1( )k kV    , 2 2( )k kV  , 1,2,...k  , respectively. So all the sequences of b  are as 

follows: 
 

0

1

( 1)

1 1 10 11 1 1 1

2 2 20 21 2 2 2

1 1 ( 1)0 ( 1)1 ( 1) 1 1

0 1

: { , ,..., },                           ( )

: { , ,..., },                          ( )

: { , ,..., },    ( )

: { , ,...,

d

n

n

d d d d d n d d

d d d d dn

b V x x x V

b V x x x V

b V x x x V

b V x x x

 

 

 
      

 

 

 

 },                        ( )
d d dV 








 

    (1) 

 

Let’s divides iV  into three blocks, denoting 
' '' '''

i i i iV V V V   (1 )i d  , where 
'

iV  

saves nodes waiting for computing, 
''

iV saves nodes which have been identified, 
'''

iV  saves 

nodes which have not been identified. A assume that the initial value of state of each node of iV  

are True  or False , then 1( )V val True , 2( )V val False , 3( )V val True , 

4( )V val False , …, 1( )dV val True  , ( )dV val False  respectively, ( )iV val  means the 

initial value of state of each node. 

Let 1 2 1, ,..., ,d dg g g g  be the computation function of the corresponding node of b  in 

PDG, then the iteration formulas is as follows: 
 

1 1 1 1 1

1 2 1 1 2 1 2 1 2

1 2 1 1 2 1 1 2 11 1 2

1 2 1

1 ... ...

1 1 1 2 1

( 1) ... ..

2 2 1 2 1

...( 1) ... ...

1 1 1 2 1

... ( 1)

1

( , ,..., , )

( , ,..., , )

( , ,..., , )

(

d d d

d d

k k k k k

d d

k k k k k k k k k

d d

k k k k k k k k kk k k

d d d d

k k k k

d d

V g V V V V

V g V V V V

V g V V V V

V g V

    

 

  













  









 1 2 1 1 2 11 1 2 ... ...

2 1, ,..., , )d d dk k k k k k kk k k

d dV V V 

      (2)

 

 
The computing process of fixpoint nesting of LAFP is as follows. The computation 

sequence of nodes of 1V  is 
0 1 2 1

1 1 1 1 1, , ,..., ,V V V V V 
. If 1V  reaches the fixpoint with  , then 
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1 1.V val V , 1.V val  means the iteration value of the nodes of 1V . When 1

1 1. kV val V , then the 

computation sequence of 2V  is 1 1 1 1 10 1 2 ( 1)

2 2 2 2 2, , ,..., ,k k k k kV V V V V 
. When 1

1 1. kV val V , 

1 2

2 2. k kV val V , then the computation sequence of 3V  is 1 2 1 2 1 2 1 2 1 20 1 2 ( 1)

2 2 2 2 2, , ,..., ,k k k k k k k k k kV V V V V 
. 

When 1

1 1. kV val V , 1 2

2 2. k kV val V ,…, 1 2 1...

1 1. dk k k

d dV val V 

  , then the computation sequence of 

dV  is 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1... 0 ... 1 ... 2 ... ( 1) ..., , ,..., ,d d d d dk k k k k k k k k k k k k k k

d d d d dV V V V V     
.  

Therefore we can obtain 1 2 1 1 2 1 1 2 1 1 2 1... ... ... ...' '' '''i i i i i i i ik k k k k k k k k k k k k k k k

i i i iV V V V      . 

Thus, for given a PDG, the nesting computation sequence of Equation (1) descripted 
as:  

 
00...00 00...01 00...02 00...0 00...1 00...10 00...11 00...12 00...1 00...2

1 1, , ,..., , , , , ,..., , ,d d d d d d d d d dV V V V V V V V V V 
   

00...( 1)0 00...( 1)1 00...( 1)2 00...( 1) 00... 01
1 2

01...00 01...01 01...02 01...0 01...1 01...10 01...11 01...12 01...1 01...2

1 1

, , ,..., , ,...... ,

, , ,..., , , , , ,..., , ,

d d d d d

d d d d d d d d d d

V V V V V V

V V V V V V V V V V

     

 

   


 

 (3)

 

01...( 1)0 01...( 1)1 01...( 1)2 01...( 1) 01... 02 0 1
1 2 2 1

10...00 10...01 10...02 10...0 10...1 10...10 10...11 10...12 10...1 10..

1 1

, , ,..., , ,...... ,..., , ,

, , ,... , , , , ,... ,

d d d d d

d d d d d d d d d d

V V V V V V V V

V V V V V V V V V V

      

 

   


 

.2,  

10...( 1)0 10...( 1)1 10...( 1)2 10...( 1) 10... 11 11...00 11...01 11...0
1 2

11...1 11...10 11...11 11...12 11...1 11...2 11...
1 1 1

, , ,..., , ,...... , , ,..., ,

, , , ,..., , ,......, ,

d d d d d d d d

d d d d d d d

V V V V V V V V V

V V V V V V V

      

 

   


  
12 1 2
2 2 1 1...... ,......, , ,...,V V V V 

 

 
 
3. Local Model Checking Algorithm based on Partial Orders 
3.1. Partial Ordering Relation of Computing Node Set 

Let ( , , )i

val
i rN   denotes data structure of computing nodes of V , (1 )i i ir r n   is free 

variable, { , }val True False , { , }   , i  is nesting level. We will superscript relation names 

with vectors of iteration indices to show various approximations. We will let (0 )i ik k n   and 

ik  denote vectors of iteration indices. For example, 
0ik

iV  denotes 1 2 ... 0ik k k

iV , 1 20 ... 0i ik k k k . If 

0 00...00ik  , then 
0ik

iV  means 
00...00

iV . The notation ( )tCas k  means that tk  is the closest 

antecedent sequence. That is to say, if t tk h , and 1i ih k   , where 1 i t  , then we have 

( )=t tCas h k . 

Let A  and M  be node sets which consist of ( , , )(1 )
i

val
i rN i d   , and satisfy both of the 

following criteria, (1) | | = | |A M . (2) if ( , , )i

False
i rN  A , then ( , , )i

True
i rN  A . if ( , , )i

True
i rN  A , then 

( , , )i

False
i rN  A；M  is similar. where ( , , )i

val
i rN   is the data structure of computing nodes and 

(1 )i i ir r n   is free variable. 

Definition 2. F(A,M)= A M  is one-way, if A  and M  satisfy both of the 

following criteria  

(1) ( , , ) ( , , ) ( , , )  
i i i

False False True
i r i r i rN N N       A    M    M . 

(2) ( , , ) ( , , )  
i i

True True
i r i rN N    A    M . 



TELKOMNIKA  ISSN: 1693-6930  

 

Local Model Checking Algorithm Based on Mu-calculus with Partial Orders (Hua Jiang) 

425 

Clearly, F  satisfies reflexive, antisymmetrical and transitive, that is to say, F  is a 

partial ordering relation of computing node set. 

For the iteration formulas (2), when 1

1 1. kV val V , 1 2

2 2. k kV val V ,…, 1 2 1...

1 1. dk k k

d dV val V 

 

, then the computation sequence of dV is 

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1... 0 ... 1 ... 2 ... ( 1) ..., , ,..., ,d d d d dk k k k k k k k k k k k k k k

d d d d dV V V V V     
； 

Because ( )d dV  , the val  of each node of dV  is False  orTrue . If val  is 

changed from False  toTrue , then storing the corresponding node of val  in
''

dV . If 

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1... 0 ... 1 ... 2 ... ( 1) ..., , ,..., ,d d d d dk k k k k k k k k k k k k k k

d d d d dV V V V V     
 never change, by the Definition 4.2, 

the sequence satisfies the formulas F , that is to say, the sequence is one-way, at the same 

time, 1 2 1, ,..., ,d dg g g g  is monotonous, then:  

 
1 2 1 1 2 1 1 2 1 1 2 1 1 2 1... 0 ... 1 ... 2 ... ( 1) ......d d d d dk k k k k k k k k k k k k k k

d d d d d dV V V V V     F :  ； 

 

For 1 1( )d dV    , we have: 

 
1 2 2 1 2 2 1 2 2 1 2 2 1 2 2... ... ( 1) ... ( 2) ... 1 ... 0

1 1 1 1 1 1...d d d d dk k k k k k k k k k k k k k k

d d d d d dV V V V V       

     F : ； (4) 

 

For 2 2( )V  , we have 1 1 1 1 10 1 2 ( 1)

2 2 2 2 2 2...k k k k kV V V V V F : ； 

For 1 1( )V  , we have 
( 1) ( 2) 1 0

1 1 1 1 1 1...V V V V V   F : . 

Definition 3. 1 2... tk k k  and 1 2... thh h  are non-negative integer sequence, and both of 

them have t  integers. 1 2... tk k k  is antecedent than 1 2... thh h , if they satisfy both of the following 

criteria:  

(1) Exiting an odd (even) bit  j  of 1 2... tk k k  and 1 2... thh h , s.t. j jk h , where 

1 ,   mod 2  0j t j   .  

(2) m mk h , where 1 m t  , m j ； 

1 2... tk k k  is antecedent than 1 2... thh h , denoted 1 2... tk k k 1 2... thh h ； 1 2... tk k k

1 2... thh h  denotes that 1 2 ... tk k k

iV  has been computed when 1 2 ... th h h

iV  is computed. 

Definition 4. 1 2... tk k k  is the antecedent sequence of 1 2... thh h , if they satisfy both of the 

following criteria:  

(1) 1 2... tk k k 1 2... thh h . (2) 1i ih k   , where 1 i t  ； 

 1 2... tk k k  is the closest antecedent sequence of 1 2... thh h , denoting 1 2( ... )tCas hh h =

1 2... tk k k . 

Lemma 1 If i  , 1 2( ... )tCas hh h = 1 2... tk k k , then 1 2 ... ih h h

iV  and 1 2 ... ik k k

iV  satisfy F , 

denoting 1 2 ... ih h h

iV  1 2 ... ik k k

iV . 

Proof. (abbreviated) 

Definition 5. 1 2,..., tk k k  is an generalized antecedent sequence of 1 2,..., thh h , if they 

satisfy both of the following criteria:  

(1) The even sequence of 1 2,..., tk k k  is equal to the even sequence of 1 2,..., thh h , 

denoting 1 2 1 2( ,..., ) ( ,..., )t tes k k k es hh h . (2) The odd sequence of 1 2,..., tk k k  and the odd 
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sequence of 1 2,..., thh h  satisfy the lexicographic order, denoting 

1 2 1 2( ( ,..., )) ( ( ,..., ))t tlo os k k k lo os hh h . 

1 2,..., tk k k  is an generalized antecedent sequence of 1 2,..., thh h , denoting 

( )t tGas h k , where tk  is 1 2,..., tk k k  and th  is 1 2,..., thh h . 

Lemma 2. If i  , ( )t tGas h k , then ik

iV  and ih

iV  satisfy F , denoted i ih k

i iV V . 

Proof. (abbreviated) 
 
3.2. Local Model Checking Algorithm based on Partial Orders 

As described above, LAFP presents an efficient local model checking algorithm, 
however, in the nested process, inner value of fixpoint is affected by outer value of fixpoint. If 
the value of outer iteration does not change, then the outer value of fixpoint starts computing 
with the value of inner iteration. When the value of outer iteration is changed, then all the inner 
value need to update, that is to say, a lot of computing processes is repeated. 

For arbitrary sequence ik , i  mod 2 = 1, by Lemma 1 and Lemma 2, we only need to 

start the computing from the antecedent sequence ( )iCas k  without affecting the correctness of 

result. Thus, let 
( )i ik Cas k

i iV V  instead of ik

iV True , then the iteration time can be reduced 

and the computing efficiency can be improved. The Local Model Checking Algorithm based on 
Partial Orders is as follows: 

 

Algorithm 1  Local Model Checking Algorithm based on Partial Orders 

1. for ( i = 1; i <= d; i ++ ) do 

2.    
' '' '''

i i i iV V V V  ， ， ； // initialize  

3. end for 
4. i = d; // begin to compute from the innermost layer 
5. while ( i > 0 ) do 
6.      if ( i == d ) then 
7.          Do 

8.          dequeue a node 
*

iV  from 
'

iV ; 

9.          
' ' *

i i iV V V  ;  //remove 
*

iV  

10.          1 1 1 111

1 1 1( ,..., , , )i i i i i i ik k k k k k nk

i i i i iV g V V V V 

 
- - -=（ ）

; 

11.          if ( val of 1 1i ik k

iV -（ ）
 changed ) then 

12.               
'' '' *

i i iV V V  ; 

13.          else 
'' '' *

i i iV V V  ; 

14.          end if 

15.          until 
'

iV  ; 

16.          i = i -1; 
17.       end if 
18.       if ( i != d ) then 
19.           Do 

20.           dequeue a node 
*

iV  from 
'

iV ; 

21.           
' ' *

i i iV V V  ; 

22.           1 1 1 111

1 1 1( ,..., , , )i i i i i i ik k k k k k nk

i i i i iV g V V V V 

 
- - -=（ ）

; 

23.           if ( val of 1 1i ik k

iV -（ ）
 changed ) then 

24.               
'' '' *

i i iV V V  ; 



TELKOMNIKA  ISSN: 1693-6930  

 

Local Model Checking Algorithm Based on Mu-calculus with Partial Orders (Hua Jiang) 

427 

25.               for ( t > i && t <= d ) do  // update the value of all the inner layer 
26.                   if ( t % 2 == 0 ) then 

27.                        
0tk

tV False ;  // the initial value is False 

28.                   else if ( ( 0) 0ios k  ) then 

29.                          
0tk

tV True ; // the initial value is True 

30.                       else 
0 ( )t tk Cas k

t tV V  ;  //the initial value is 
( )tCas k

tV 
 

31.                       end if 
32.                   end if 
33.                end for 

34.           else 
'' '' *

i i iV V V  ; 

35.           end if 

36.           until 
'

iV  ; 

37.           i = i – 1; 
38.       end if 
39. end while 

 
 

3.3. Time Complexity Analysis 

When 1i  , according to 3.2, the computation sequence of the corresponding node is 
0 1 2

1 1 1 1, , ,...,V V V V
 in block 1b , 1n  is the total number of computing node of block 1b . The initial 

value of val  is True  in each node by 1 1( )V  . When the value of val  turns into False  

from True , by the monotonicity of function 1g , the value of the node no longer changes in the 

whole computing process, so the node is deposited in 
''

1V . The worst case is that the value of 

val  turns into False  from True  after computing each node of 
'

1V , so the greatest computing 

times of corresponding node in block 1b  are 
2

1 1 1| | 1 2 ...g n n     . 

When 2i  , 1.V val = 1

1

kV , the computation sequence of the corresponding node is 

1 1 1 10 1 2

2 2 2 2, , ,...,k k k kV V V V 
 in block 2b , the computing times of the corresponding node are 

21 2 3 ... n     in block 2b , the number of different values of 1.V val  is 1n , so the greatest 

computing times of corresponding node in block 2b  are 
2

2 1 2 1 2| | (1 2 3 ... )g n n n n       . 

When 3i  , according to Algorithm 1, if 1 0k  , 3 0k  , 3V  starts to compute from 
'

3V . 

In this case, the times are 2n  at most. The changing times of corresponding node value are 

2 3n n  in block 3b , and the computing times are not more than 
2

2 3n n . When 1 0k  , 3 0k  , 3V  

starts to compute from 1 2 3

3

x x xV . In this case, the times are 1 2n n  at most, when it reaches the 

fixpoint, the computing times are 1 2 3n n n  at most, so the greatest computing times of 

corresponding node in block 3b  are 
2

3 2 3 1 2 3| |g n n n n n     . 

Summarily, when 2i  , 
2

2 2 4 6 2 2 2 1 2| | ...i i i ig n n n n n n  , 

2
2 1 2 4 6 2 2 1 2 4 6 2 1 2 2 1| | ... ...i i i i i ig n n n n n n n n n n n                . 

Thus, we have 1 2
1

| | | | | | ... | |
d

i d
i

g g g g


  

 
2 2 2 2 2
1 1 2 2 3 1 2 3 2 3 4 2 4 5 2 3 4 5( ) ( ) ...n n n n n n n n n n n n n n n n n n                     
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2 2
2 4 6 2 1 2 4 6 3 2 1 2 4 6 2 1   ( ... ... ) ...d d d d d d d dn n n n n n n n n n n n n n n n n                  

2
2 4 6 2... | |dn n n n V      /2 2 2 /2+2(2 ( / 2) / ) | | = ( )d dn d d V O d n     . 

Assume the alternative nesting depth  mod  2  0d  , through the analysis of the 

above, then the time complexity analysis Algorithm 1 is 
2 /2+2( )dO d n . 

 
3.4. Space Complexity Analysis 

By Algorithm 1, if ( )=i iV  , 1 2 2 1 1 2 2 1...( +1) 0 ...=i i i ix x x x x x x x

i iV V     , then save intermediate 

results, 
'

iV  and 
''

iV  (1 )i d   account for 2d  storage units. When 3i  , it accounts for 22n  

storage units. When 5i  , it accounts for 2 42n n  storage units. When i d , it accounts for 

2 4 62 ... dn n n n     storage units, therefore, the total numbers of storage units in Algorithm 1 

are: 
  

2d + 22n + 2 42n n +…+ 2 4 62 ... dn n n n    2 2 4 2 4 62( ... ... )dd n n n n n n n            

/2 /2 /2 /2 /22( | | | | ... | | ) 2( / 2(| | )) ( ( ) )d d d d dd V V V d d V O d d n           

 
3.5. Comparison of Time Complexity 

According to Algorithm 1, we assume that the number of node of each layer is 30, then 
we can obtain the time of iterative computation of all functions by computing. When the 

alternation depth d  takes a different value, the number of iteration is as Table 1. Table 1 shows 

that our algorithm is more efficient. 
 
 

Table 1. Times of Fuction Iterative Computing 
d Algorithm 1 LAFP [15] 

1 9.61*10
2
 9.61*10

2
 

2 3.07*10
4
 3.07*10

4
 

3 9.54*10
5
 9.54*10

5
 

4 2.80*10
6
 2.97*10

7
 

5 6.01*10
7
 9.15*10

8
 

6 1.75*10
8
 2.84*10

10
 

7 6.62*10
9
 8.81*10

11
 

8 1.21*10
10

 2.74*10
13

 

 
 
4. Conclusion 

In this paper, we present a new efficient algorithm for evaluating PDG fixpoints. As we 
know, [26] presented a local model checker forμ-calculus, as a tableau system, but it did not 
analyze the computational complexity. Then [15] presented a new local algorithm for evaluating 
PDG fixpoints, and time complexity of the LAFP algorithm was exponential relationship with 
nesting depth. After a detailed analysis, we present a new algorithm by[11]. And our algorithm 

takes about 
2 /2+2dd n  steps. Clearly, the time required by our algori thm is only about the 

square root of the time required by LAFP algorithm. Furthermore, when  mod  2 1d  , we only 

need to design the algorithm in the same way as  mod  2 0d  . The nested bound algorithm 

reduces repetitive computation and improves the computational efficiency. The research in this 
paper is very important to theoretical research and practical application [25, 27], it can improve 
the efficiency for verifying hardware and software designs. 

As we know, two groups of partial ordered relation were presented by Tarski fixpoint 
theory, our next work is to design a local algorithm by obtaining two groups of partial ordered 
relation and improve the space complexity.  
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