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Abstract 
Searching of digital images in a disorganized image collection is a challenging problem. One step 

of image searching is automatic image annotation. Automatic image annotation refers to the process of 
automatically assigning relevant text keywords to any given image, reflecting its content. In the past 
decade many automatic image annotation methods have been proposed and achieved promising result. 
However, annotation prediction from the methods is still far from accurate. To tackle this problem, in this 
paper we propose an automatic annotation method using relevance model and scene information. CMRM 
is one of automatic image annotation method based on relevance model approach. CMRM method 
assumes that regions in an image can be described using a small vocabulary of blobs. Blobs are 
generated from segmentation, feature extraction, and clustering. Given a training set of images with 
annotations, this method predicts the probability of generating a word given the blobs in an image. To 
improve annotation prediction accuracy of CMRM, in this paper we utilize scene information incorporate 
with CMRM. Our proposed method is called scene-CMRM. Global image region can be represented by 
features which indicate type of scene shown in the image. Thus, annotation prediction of CMRM could be 
more accurate based on that scene type. Our experiments showed that, the methods provides prediction 
with better precision than CMRM does, where precision represents the percentage of words that is 
correctly predicted. 
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1. Introduction 

In the past decade, the digital images have been increasing dramatically with the rapid 
development of digital cameras and smartphones that can easily capture images. Hence, there 
is a critical demand for an efficient and effective method that can help users to manage their 
large volume of image. In order to organize and search images efficiently, content-based image 
retrieval (CBIR) [1, 2] was proposed. CBIR approach utilizes visual features of the image such 
as color, texture or shape to obtain relevant images based on user query using query-by-
example technique. However, this query technique is less popular for some users. In the other 
hand, semantic search with a text-based search (eg. document search) still being user’s 
preferred way to search images. 

The problem when searching images using text-based search approach is an image 
that we capture with digital cameras or smartphones doesn’t have textual semantic information. 
To accommodate text-based search, an image requires textual annotation that defines its 
semantic content information. Image annotation can be done manually or automatically. The 
manual annotation is not preferable because of involving a lot of efforts. There were several 
approaches to automatic image annotation e.g. classification approach [3, 4] nearest neighbour 
approach [5, 6] and statistical approach called relevance model [7-10]. Compared to other 
methods, relevance model was fairly robust method used in automatic image annotation. 

In this paper we propose an automatic annotation method using relevance model and 
we utilize scene information to improve annotation prediction accuracy. Relevance model 
assumes that image description pairs are generated by independently chosing visual features 
for images and words for description. Using a training set of annotated images, joint distribution 
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of visual features and words is estimated. If we use contextual information of visual features, 
there is a better chance of predicting correct words for description. One of the contextual 
information is scene. Human vision can easily identify image scene like ‘forest’, ‘beach’, etc [11]. 
Using that scene information, text annotation from detail image objects can be more specifically 
obtained. For example, object ‘tree’ would be more suitable annotation of scene ‘forest’, and 
object ‘sand’ or ‘sea’ would be more suitable annotation of scene ‘beach’. Tariq et al. proposed 
the automatic image annotation model that utilizes scene information [12]. However, they use 
block-based segmentation for describing image, which is intuitively poor choice for describing 
objects. Our model is inspired by the model proposed by Tariq et al., but instead of using block-
based image regions we use object-shaped regions using automatic image segmentation [13]. 

This paper is organized as follows. Section 2 explains the image description. Section 3 
explains automatic image annotation method. Section 4 explains experiment result and 
analysis. Section 5 explains conclusion and future works. 
 
 
2. Image Description 

Image is described from local regions using blobs representation [7]. To obtain blobs, 
firstly image is divided into several regions. Then, its region visual features such as color, 
texture, and shape, are extracted and clusterred. Figure 1 shows the process to obtain blobs. 

 
 

Image Segmentation Clustering

Preprocessing
Features 

Extraction
Blobs

 
 

Figure 1. The process of obtaining image blobs 
 
 
2.1. Image Preprocessing 

Image preprocessing aims to address lack of contrast between objects and noise 
problems that cause poor image segmentation result. The problem of lack of contrast between 
objects is solved using histogram equalization method. Histogram equalization is a method that 
improves the contrast in an image, in order to stretch out the intensity range. The purpose of 
histogram equalization is to obtain a wider and more uniform distribution of intensity values 
histogram. The noise problem is solved by performing median filter to image. Median filter has 
the same functionality as the mean filter on reducing the noise. However, different from median 
filter mean filter also reduces the detail of the image which is not a noise. 
 
2.2. Image Segmentation 

Segmentation algorithm used in this paper is meanshift color segmentation [13]. 
Meanshift image segmentation algorithm is similar with k-means image segmentation algorithm. 
Different from k-means, meanshift does not require the initiation number of clusters and only 
requires one input parameter. In general, each image has a varying number of different regions, 
such that for segmenting image meanshift is more suitable than k-means techniques that 
require the initiated number of segment. Moreover, meanshift is a very robust technique used to 
image segmentation. L*a*b* color space and Local Binary Pattern [14] image feature is used to 
get better representation of image pixels. Image segmentation process using meanshift is 
shown in Figure 2. 
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Figure 2. Meanshift image segmentation process 

 
 

2.3. Feature Extraction 
We have implemented a set of features to describe image regions comprising color, 

texture, and shape. We will describe and discuss the reasons of selecting each image features 
as the followings. 

 
2.3.1. Color Histogram 

Histogram from RGB, Opponent, HSV, and Transformed Color Distribution color space 
[15] is used to describe color of image regions. The histogram is quantized uniformly in 16 bins 
and the resulting feature vectorper region has dimension of 48. The histogram is normalized 
and equalized in order to get invariant property to image scale and illumination. 

 
2.3.2. Local Binary Pattern 

Circular uniform Local Binary Pattern [14] is used to describe texture of image regions.  
There are two parameters for extracting this features that are pixel number and radius. In this 
reaserach we use 24 pixel numbers and 8 radius based on several experiment conducted. The 
feature is represented as of histogram of unique label values of each pixel local binary pattern. 
Similar to the color histogram features, the histogram is normalized in order to get it invariant to 
image scaling. 

 
2.3.3. Moments 

Hu-moments [16] are used to describe the shape of image regions. Hu-moments 
consist of seven invariant moments. To perform moments feature extraction, firstly we calculate 
three types of moments: raw moments, central moments, and normalized central moments. 
Then, we calculate seven invariant moments from normalized central moments. 
 
 
3. Automatic Image Annotation Method 

In this paper, in order to describe objects, we use CMRM method to automatic image 
annotation [7] instead of using MBRM [9] that uses block-based regions. The following is a brief 
explanation of the CMRM method we used. 

 
3.1. CMRM Automatic Image Annotation 

CMRM is a method of automatic image annotation using relevance model approach. To 
annotate unlabelled image in this method we estimate joint probability between image region 
and text annotation. For example, we have the training data of labelled images and test data of 
unlabelled image. Firstly, each training image is segmented, and then its features such as color, 
texture and shape are extracted. In order to get blobs representation, the features are 
clusterred. Thus, each training image in the training dataset is represented as a set of blobs and 
words. For each unlabelled test images, the image segmentation and blobs generate are also 
performed. At the training stage, words probability and blobs probability are calculated for each 
image in the training data T using equations (1) dan (2) [7]. 
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Where,  (     denotes the number of times word w occurs in the caption of J, and  (     
denotes the number of times word w occurs in the caption of all image in T.  (     is the number 

of times blob b occurs in image J, and  (     is the number of times blob b occurs in all image 

in T. | | is the sum of all the keywords and blobs in image J, and | | is the sum of all the 
keywords in all image in T.   and   are smoothing parameters. 

To annotate unlabeled test image is to estimate conditional probability  ( |   
 ( |             . Training data T is used to estimate the joint probability  (                as 
shown in equation (3) [5]. 

 
  (                ∑  (      ( |  ∏  (  |  

 
        (3) 

 
 (   is considered to have a uniform distribution for all the images in T. The process for 
obtaining annotation words of unlabeled images using CMRM method is shown in Figure 3. 
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Figure 3. Image annotation using CMRM method 
 
 
3.2. Scene-CMRM Automatic Image Annotation 

In this subsection, we show how to utilize scene information to enhance the prediction 
accuracy of CMRM. Our automatic image annotation method is called scene-CMRM. Similar to 
CMRM, in order to annotate unlabeled image using scene-CMRM we estimate the joint 
probability between image region and text annotation. However, this estimation is calculated 
based on scene type of that image. The process of image annotation using scene-CMRM is 
illustrated in Figure 4. 
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Figure 4. Proposed image annotation method 
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Mathematical explanation of the proposed automatic image annotation system is as 
follows. Assume that each image is described from n number of visual unit called blobs 

                . Each image also has a number of textual descriptions                 . In 
addition we assume there are various types of scene                  and selection of blobs 
and text annotation depends upon the type of scene at the time of generation of image pairs 
and their descriptions. Thus, the annotation process of this method is to estimate the joint 
probability of b and w conditional on the variable θ, where   is test image scene description. 
The estimation is shown in equation (4). 
 

  (   |   ∑  (  |      ∑  (  |       
 ( |   ∏  (  |   

 
       (4) 

 
 ( |  and ( |   from CMRM method changes as shown in (5) dan (6). 
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We replace | | in the equation (2), which is the sum of all training set is replaced, with 

|  | which is the sum of all image on a cluster scene   . The final stage is sorting words in 
descending order based on the probability value. Text annotations are obtained by taking n top 
number of words with highest probability value or above a certain threshold. 

Scene is used as prior knowledge in this proposed automatic image annotation system 
obtained from scene feature extraction of image. Descriptor is used for scene detection is GIST 
[11]. GIST feature is able to describe the image scene without going through the process of 
objects detection in the image. GIST features describe the spatial layout of the image derived 
from the global feature that is spatial envelope. 

After extracting GIST feature, all images are clustered using k-means clustering 
algorithm to form k clusters. For each cluster i consist of images J represented as    with the 

size of cluster    for each scene type   . Thus, for each     the probability of selecting image J 
conditional    is shown in (7). 

 

  (      {

 

  
        

           
        (7) 

 
For each unlabeled test image, GIST featurea are also extracted from it. This feature is 

variable   for the unlabelled image. The probability of selecting scene    considered uniform for 
all scene type. 
 
 
4. Experiments 

This section explains the details of the dataset as well as the experiment scenarios and 
evaluation measures. 

 
4.1. Dataset 

The dataset used for the experiment is image dataset from Microsoft Research in 
Cambridge (MSRC) [17]. This dataset contains 591 images in 20 categories, and about 80% of 
the image has more than one label annotation with an average 3 words per image. In total, the 
vocabulary in this dataset contains 23 words.  

In the experiments, image dataset is divided into three parts: 256 images for training, 40 
images for evaluation, and 295 images for testing. The evaluation is a process of estimating 
smoothing parameters. Once the parameters fixed, evaluation data and training data are 
merged into new training data with 296 images or 50% of the entire dataset. Thus, at the end, 
the dataset is divided into two parts: 50% for training data and 50% for testing data, as done in 
[18]. Each image is manually assigned as part of training dataset or testing dataset such that 
the images are proportionally distributed into the two dataset with respect to their category. 
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4.2. Evaluation Measures 
In order to measure the performance of the proposed method, we used word precision, 

recall, and f-measure described as the followings. 
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Where    is the number of word i that correctly predicted,    is the number of word i that wrongly 

predicted, and    the number of word   in test images. 
 
 
5. Results and Analysis 

In this section we will discuss the experimental results of our automatic image 
annotation called Scene-CMRM compared to CMRM [7] as the baseline annotation method.  
For both methods, the experimental results show that the increasing of word prediction increase 
the precision but decrease recall. The precisions produced by scene-CMRM is slightly better 
than the precision of CMRM in various number of word prediction as shown in Figure 5. 
However, the recall of scene-CMRM is less than those of CMRM when the number of word 
prediction is more than 3 words as shown in Figure 6. This is because the estimation of 
predicted word in scene-CMRM narrowed down to specific types of scene, where the images 
and words that are similar are grouped together so the percentage to predict the correct word 
becomes higher. 

As shown in Figure 7, we highlight that the f-measures of both methods achieve the 
highest value when the number of predicted word per image is 4. As commonly knowns, the f-
measure represents the harmonics value between precision and recall. We also note that the f-
measure of scene-CMRM is higher than those of CMRM. 

 
 

 
 

Figure 5. Precision of various number 
predicted word 

 
 

Figure 6. Recall of various number predicted 
word 

 

 

 
 

Figure 7. F-Measure of various number predicted word 
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The detail results of per word precision and recall are shown in Figure 8 and Figure 9. 
 
 

 
Figure 8. Per word precision 

 
 

 
Figure 9. Per word recall 

 
 

The average of per word precision, recall and f-measure of few words with high 
frequency on Scene-CMRM and CMRM shown in Table 1. The examples of annotation results 
from both methods are shown in Table 2. 

 
 

 Table 1. Performance comparison of automatic image annotation method 

Method CMRM [5] Scene-CMRM 

Per word Precision 0.333 0.353 
Per word Recall 0.611 0.584 
Per word F-Measure 0.410 0.438 

 

 
 

Table 2. Annotation examples 

Images Manual Annotation CMRM [5] Scene-CMRM 
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6. Conclusion and Future Works 
In this paper we proposed an alternative method to perform automatic image 

annotation. In the proposed method, we modify the CMRM method by utilizing scene 
information. Based on the experimental results, the proposed automatic image annotation 
method called scene-CMRM provides better precision than CMRM but provides worse recall 
than CMRM. This is because the estimation of predicted word in scene-CMRM narrowed down 
to specific types of scene, where similar images and words are grouped together so the 
percentage to predict the correct word becomes higher. 

In the future, in addition to the scene information as prior knowledge we can consider 
the relationship between words by utilizing lexical database like WordNet to enrich words 
annotation results. Image description can be improved especially in image segmentation to get 
image regions that close to ideal conditions. The use of more complex visual features like 
SHIFT should be considered in further works in order to get better representation of regions. 
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