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Abstract 
Galileo E1 Open Service (OS) signal is transmitted with the modulation of Composite Binary 

Offset Carrier (CBOC). CBOC has a main drawback that is the autocorrelation function has multiple side-
peaks, which will lead to ambiguous acquisition. The high rate of data bit and secondary code makes it 
very difficult to increase coherent integration time. This paper will propose a new scheme based on the 
delay-and-multiply concept. And also this scheme combines the data channel and pilot channel. Finally, 
the theoretical results will be given to prove that the new scheme will accomplish unambiguous acquisition 
and also eliminate the influence of bit transition. 
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1. Introduction 

European Galileo Satellite Navigation System have been supporting Galileo-only 
autonomous position fix for an aeronautical user since 2013 [1]. And there will be more satellites 
launched in the near future. The exploitation plan is to provide early Galileo services by early 
2015 and come to hand-over exploitation phase by the end of 2016. And by 2020 Galileo 
System will be of full operational capability. Therefore, Galileo System can play a crucial role 
among all of the navigation satellite systems, which also includes Chinese Beidou, American 
GPS and Russian GLONASS [2].  

CBOC has been chosen as the final choice of Galileo OS Service. CBOC is a result of 
multiplexing BOC (6,1) with BOC (1,1) and the proportion of the former to the latter is 10%. 
Therefore, the maximum degradation on the detection probability when acquiring CBOC signals 
like a BOC (1,1) is less than 0.8dB [3]. With the property of splitting spectrum, CBOC can 
reduce the intra-system interference and improve code delay tracking. 

Nevertheless, BOC-modulated signal will lead to a main drawback that is the 
autocorrelation function has multiple side-peaks, which will probably result in possible false 
acquisition. Several techniques have been proposed in the literature. 

The Sub Carrier Phase Cancellation (SCPC) method generates an in phase and 
quadrature sub-carrier signals, getting rid of the sub carrier. Therefore, this method doubles the 
number of correlators because it is necessary for two channels wiping off the carrier to generate 
two kinds of sub carrier signal [4]. Autocorrelation Side-Peak Cancellation Technique (ASPeCT) 
method combines two kinds of autocorrelation functions to formulate a new one. After that, the 
new autocorrelation function still has small side peaks [5]. 

The modernized navigation satellite system has a characteristic that there is not only 
data channel like traditional GPS L1 signals but also pilot channel without data modulation. 
Several possible join data/pilot acquisition strategies accompanying the non-coherent 
combination technique are analyzed. But the ambiguous problem caused by subcarrier is 
neglected through the article.  

The rate of data bit and secondary code is equal with the rate of spreading codes in 
data channel and pilot channel for Galileo E1 OS signal. It is very likely that bit transition will 
occur if the coherent integration time is longer than one period of spreading code, which will 
degrade the power of the coherent integration. Double Block Zero Padding Transition 
Insensitive (DBZPTI) presents a new method based on Double Block Zero Padding (DBZP). 
This method is capable of being insensitive to bit transition during one period of coherent 
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integration time. But when it comes to longer coherent integration time, the problem caused by 
bit transition still exists [6]. 
 In this paper, we will focus on a new acquisition scheme based on the delay-and-
multiply concept, which also combines data channel and pilot channel both. At first, the signal 
module will be introduced, and the problem of Galileo E1 OS signal acquisition will be 
discussed. Then, the new scheme will be proposed. Finally, the simulation results of detection 
probability will be given. 
  
 
2. Signal Model 

The Galileo E1 OS signal can be expressed as 
 

1 1 1 1 1( ) ( ( ) ( ) ( ) ( ))
2E E B E B E C E C

C
s t e t SC t e t SC t    

 
(1) 
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X is the kind of subcarrier, including BOC(1,1) noted as a and BOC(6,1) noted asb ; 

1
( )

E B
e t

 includes the data stream and primary code of data channel; 

1
( )

E C
e t

 includes the data stream and primary code of pilot channel. 

 
Figure 1 shows one period of the sub-carrier function for the 1E B signal component 

and one period of the sub-carrier function for the 1E C signal component. 
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b) 
 

Figure 1. One period of the CBOC sub-carrier for a)the E1-B signal component and b) the E1-C 
signal component 

 
 
3. Problem In E1 Acquisition 

A traditional acquisition scheme is shown in Figure 2[7].The receiver will launch a two-
dimensional search for onesatellite by generating local signals with different Dopplerfrequencies 
and code phases. 
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Figure 2. Traditional acquisition scheme 
 
 

Therefore, a two dimensional ( , )
D

S f  will be obtained. When one of ( , )
D

S f is 

abovethreshold, the acquisition will be finished. The acquisitionprocess must detect the 
incoming signal energy and estimatethe signal Doppler and code delay. The detection 
criterioncan be expressed as 
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( , )= ( ) ( ) ( )+ ( , )
4D e coh Q D

C
Q f R sinc f T sin n f                                             (7) 

 

( , )DI f and ( , )DQ f are the correlator outputs with certain code delay and Doppler 

frequency. ( )R  is the final correlation function ef is the difference between the real Doppler 

frequency and the local Doppler frequency Df ,   is the error on the carrierphase, ( , )I Dn f  

and ( , )Q Dn f  are the in-phase and quadrature correlator output noise. 

 
 
3.1 Ambiguous problem 

CBOC autocorrelation function can be expressed as: [8]: 
 

2 2
(' ') (1,1) (6,1) (1,1)/ (6,1)( ) ( ) 2 ( )CBOC BOC BOC BOC BOCR V R W R VWR        (8) 
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(' ')CBOCR  is the autocorrelation function of data channel and (' ')CBOCR  is the 

autocorrelation function of pilot channel. Two kinds of autocorrelationfunctions are shown in 
Figure 3. It can be seen that there is not only one peak any more in the autocorrelation function 
of CBOC. There are two more side peaks.  

 
 

 
 

Figure 3. Autocorrelation function of CBOC and BPSK 
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the threshold, it will lead to a false acquisition. After a false acquisition, the code tracking loop 
will lock on the side peak. 

 
 

3.2 Data transition problem 
Modernized navigation satellite systems has not only data channel, which is modulated 

with data, but also pilot channel, which is modulated without data and with secondary code. 
Secondary code, as the name implies, is a second code, which multiplies the primary code to 
form a longer code, called tiered code. The technique characteristics of the Galileo E1 OS 
signal, GPS L1C signal and GPS L1C/A signal are given in Table 1. 

 
 
Table 1. Characteristics of Galileo E1 OS signal, GPS L1C and GPS L1C/A 

GNSS system Galileo GPS GPS 
Signal Type E1 OS L1C L1C/A 
Spreading 
modulation 

CBOC(6,1,1/11) TMBOC(6,1,4/33) BPSK 

Primary code 
frequency 

1.023MHz 1.023MHz 1.023MHz 

Primary code length 4092 10230 1023 
Primary code period 4ms 10ms 1ms 
Signal component Data Pilot Data Pilot Data 

Data rate 250bps - 100bps - 50bps 
Secondary code rate - 250bps - 100bps - 

Secondary code 
length 

- 25 - 1800 - 

 
 
As it is shown in Table 1, the spreading codes’ periods have the same duration as a 

data or secondary code bit, which makes it difficult to perform the acquisition using multiple 
periods of primary codes for Galileo E1 signal and GPS L1C signal, which is different from GPS 
L1C/A signal. For GPS L1C/A signal, a data bit transition can occur every 20ms, compared to 
4ms for Galileo E1 OS signal and 10ms for GPS L1C signal. This characteristic will lead to short 
integration time for Galileo E1 OS signal and GPS L1C signal if the data bit transition occurs. 
When a bit transition occurs, it may lead to a high losses, which will result in the failure of 
acquisition as shown in Figure 4. 

 
 

 
 

Figure 4. Data transition problem 
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3.3 Large number of Doppler bins 

As we can see from above, the final correlator output contains a term of ( )e cohsinc f T . 

Then the correlator output will undergo a power loss if the difference between local carrier 
frequency and the Doppler frequency of input signals is big. For Galileo E1 OS signal, the 
coherent time is longer than that of GPS L1 C/A when one primary code period is used to 
perform acquisition.It is shown in Figure 5. When the difference between the Doppler frequency 
of input signal and local carrier frequency, the difference of power loss between Galileo E1 OS 
and GPS L1C/A signal is -3.22dB. Therefore, for the sake of reducing the loss due to the 
difference between local carrier frequency and the Doppler frequency, smallerDoppler search 
step will be chosen if the coherent integration time is longer. Consequently, there will be more 
Doppler bins and longer searching time for Doppler frequency. 

 
 

 
 

Figure 5. The degradation due to frequency difference 
 
 
4. Proposed Technique 

In this paper, a new technique will be proposed. The scheme of proposed technique is 
shown in Figure 6. 
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Figure  6. Proposed acquisition scheme of Galileo E1 OS signal 
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The band-pass signal at the output of RF front end can be expressed as 
 

1( ) ( ) (2 ( ) ) ( )E IF Dr t s t cos f f t n t                                                              (11) 

 
where ( )n t is the zero-mean, additive white Gaussian noise with variance。  
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IFf is the intermediate frequency and Df is the Doppler frequency. 

According to the scheme, 
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As it is shown above, there will four term in the result. Only the first term is useful.Then, 

the property of second and third term will be analyzed. Figure 7(a) shows the zero-mean 
additive white Gaussian noise and Figure 7(b) shows the distribution of the noise. Then the 
noise will be multiplied by Pseudo Random Noise (PRN) codes of Galileo E1 OS signal. Figure 
7(c) shows the product of zero-mean additive white Gaussian noise and PRN codes. Figure 7(d) 
shows the distribution of the product. Comparing the results before and after the multiplication, 
we can see that the multiplication by PRN codes will not change the distribution of the noise. 
The red line in Figure 7(c) and (d) shows the Normal distribution. 
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                                c)                                                                            d) 
 

Figure 7. Noise and the distribution 
 
 

The fourth term is the product of two zero-mean complex Gaussian distributions. The 
product of two independent normally distributed variates x and ywith zero means and variances

2
x and 2

y obeys a normal product distribution [9]. 
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where ( )x is the Dirac distribution and 0 ( )K x the modified Bessel function of the second kind 

and zero order, which is one of two solutions for the differential equation 
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The solution is  
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The normal product distribution is presented in Figure 8. 
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Figure 8. Normal product distribution 
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We can see that the primary codes in data channel and pilot channel will be multiplied 

by the delay of them. Figure 9 shows the autocorrelation of primary codes and the correlation 
between primary codes and the delay of them. If   is chosen above one code chip, the product 
of primary codes will remain the autocorrelation property of primary codes. 

 
 

 
              
                          a)                                                                                b) 

 
Figure 9. Correlation of primary codes 
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Through delay-and-multiply, the subcarrier will be wiped off also. There are two kinds of 
product. One is that of the subcarrier and delay of it. The other is that of the subcarrier and 
delay of the other kind of subcarrier. Figure 10 shows the autocorrelation and correlation of 
subcarriers. 

 
 

 
 

Figure 10. Autocorrelation and correlation of subcarriers 
 
 

Figure 10 shows that the autocorrelation function and cross-correlation function will both 
have a peak if the right is chosen. It is noted that is chosen to satisfy

(2 ( ) ) 1IF Dcos f f   . Furthermore, if IF Df f , just consider (2 ) 1IFcos f   . In thisway, 

the effect of Doppler frequency is removed. Finally,  is chosen to satisfy 
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5. Performance Analysis 

After the coherent integration, four terms will be obtained: 
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As it is discussed above, snn and nsn is the product of signal and noise, which is still the 

zero-mean additive white Gaussian noise with variance 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Code Offset[chip]

N
or

m
al

iz
ed

 C
or

re
la

ti
on

 F
un

ct
io

n

Subcarrier Correlation Function

 

 

Cross CF
Auto CF



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 4, December 2014: 950 – 962 

960

2 2 2
sn ns n   

 
 

nnn is the product of two additive white Gaussian noise. By applying [10] 
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where ( )x denotes the Gamma function and ( )K t the modified Bessel function of second 

kind and -th order, the variance of each zero-mean, normal product distributed summand is 
defined by 
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The final criterion is 
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In the GNSS case, there are two conditions of signal presence and absence correspond 

to the two hypotheses: 

The null hypothesis 0H : the signal is not present or not correctly aligned with the local replica; 

The alternative hypothesis 1H : the signal is present and correctly aligned. 

In particular, the detection and the false alarm probabilities are defined as: 
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0 0( ) ( ( ) ) ( ( ) )faP P S H P S                                                         (30) 

 

1 0( ) ( ( ) ) ( ( ) )dP P S H P S                                                            (31) 

 
By applying the central limit theorem, for sufficiently largeK , all noise term will 

converge to uncorrelated, zero-mean, Gaussian distributed variates.Therefore, the detection 
and the false alarm probabilities are: 
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whereK is periods of coherent integration. Figure 11 shows Receiver Operating 
Characteristic (ROC) curve with differentK . 
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e)                                                                            f) 

 

Figure 11. Receiver Operating Characteristic (ROC) curve with differentK  
 
 

It is shown that when =1K , the performance of traditional scheme is better than that of 
proposed method. However, based on the discussion above, the proposed method can improve 
its performance by increasing the periods of coherent integration. With the increase ofK , the 
performance of proposed method is obviously improved. It is also noted that it is very difficult to 
improve the performance when C/N0 of signal below 23dB by only increasing the periods of 
coherent integration. 

 
 

6. Conclusions 
In this paper, a new method is proposed to accomplish the unambiguous acquisition for 

Galileo E1 OS signal. At first, the problems existing in the process of acquisition are analyzed. 
Then, the new method is proposed and how the proposed method will solve the problem is 
discussed. Finally, Receiver Operating Characteristic (ROC) curves with different K are given. 
It is proved that the new method can performance as well as the traditional scheme in terms of 
probability of detection and false alarm. 
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