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Abstract 
 Most face recognition algorithms are generally capable to achieve a high level of accuracy when 

the image is acquired under wellcontrolled conditions. The face should be still during the acquisition 
process; otherwise, the resulted image would be b lur and hard for recognition. Enforcing persons to stand 

still during the process is impractical; extremely likely that recognition should be performed on a b lurred 
image. It is important to understand the relation between the image b lur and the recognition accuracy. The 
ORL Database was used in the study. All images were in PGM format of 92 × 112 pixels from forty 
different persons, ten images per person. Those images were randomly divided into training and testing 
datasets with 50-50 ratio. Singular value decomposition was used to extract the features. The images in 
the testing datasets were artificially b lurred to represent a linear motion, and recognition was performed. 
The b lurred images were also filtered using various methods. The accuracy levels of the recognition on the 
basis of the b lurred faces and filtered faces were compared. The performed numerical study suggests that 
at its best, the image improvement processes are capable to improve the recognition accuracy level by 
less than five percent. 
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1. Introduction 
Face recognition has been widely used in the area of computer vision and machine 

learning. It is being used for criminal identification, credit card verification, security, forensic, 

monitoring system, and many more[1]. It is a means for a better biometric-based  
identification [2]. In addition, the facial features identified in the face recognition can provide high 
compatibility in a machine readable travel documents [3]. Not only in practical applications, face 

recognition has also undergone the theoretical development in a great extent [4].  Despite of 
those developments, the success of the face recognition is still strongly affected by many 
internal and external factors. For example, occlusion and poor illumination can drastically 

degrade the accuracy of the face recognition [5]. Blur image due to motion also has significant 
impact to the accuracy. Such an image is a result of relative movement between the camera 
and the scene during the image integration [6], and four conditions may exist on the process:  

moving object captured by a static camera, static object captured by a moving camera, motion 
of both object and camera, and the shutter movement [7]. 

For the reasons, a number of studies has been conducted to investigate motion blur 

and its effects on the face recognition. For example, Yitzhaky et al. [8]  proposed a method to 
estimate the blur function from a motion-blurred image. Vageeswaran and Mitra [9] formulated 
the motion-blurred image problem into a convex optimization problem and proposed a blur-

robust algorithm to rectify the image. The restoration of the blurred image is also an issue 
occurred in the medical imaging in which Kalotra and Sagar [10] has proposed the use of the 
improved Lucy-Richardson technique. Punnappurath et al. [11] proposed MOBILAP method that 

allows the face recognition to be performed on the basis of the blurred image due to poor 
illumination and pose. The method was demonstrated to be accurate at the level of 76 percents. 

Moghaddam and Jamzad [12] proposed a novel algorithm to estimate the direction and 

length of motion blur using Radon transform and fuzzy set. The algorithm was evaluated using 
images blurred with artificial movement in various directions (between 0 and 180 degrees) and 
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lengths (between 10 and 50 pixels). Their results suggested the method is still effective when 

the signal to noise ratio is slightly higher than 22 dB. The current study is focused on the face 
recognition of blurred images, particularly due to a linear motion. In addition, the focus is also 
directed to the effect of a number of image enhancement techniques on the accuracy of the face 

recognition. 
 
 

2. Research Method 
The procedure of this research is graphically shown in Figure 1. Firstly, face images 

were obtained from ORL database (website with the url:   

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html). This database has face 
images of 40 different persons with 10 images per persons. Those images were taken at 
various lighting conditions, facial expressions (open/closed eyes, smiling/not smiling) and facial 

details (glasses/no glasses). Each image has 92 112 pixels in gray scale. The image file format 
is portable gray map (pgm). These images are then divided into two groups (training and testing 

datasets) with the composition of 50-50. 
 
 

 
 

Figure 1. The research procedure. 
 

 
Secondly, the images in the training dataset are extracted for their features using the 

singular value decomposition (SVD) method. This process provides the basis functions and their 

associated weights. In the testing phase, any given face image is projected to the above SVD 
basis functions. It results in a coefficient vector which should be compared to the weight vector 
obtained in the training phase. The comparison is evaluated with respect to the Euclidian  

distance. 
The above procedure is repeated for artificially blurred images. The blurred image is 

obtained via a convolution process with a kernel function resembling a linear motion. The 

blurred images are also enhanced using various filters and face recognition. The various filters 
are Laplacian filter, median filter, Wiener filter and Richardson-Lucy algorithm. 

  

 
3. Theory 

In this research, singular value decomposition (SVD) is used to extract the feature 

components of face images. Assuming that we have   images where each has the size of 
      pixel. The training process subsequently is: Represent each image in a vector   , 

where        ; Calculate the image average  ̅  ∑     ; Subtract each image with the image 

average:        ;̅ Arrange the vectors    into a matrix:              ; Decompose the 

matrix into its singular vectors and values:       . The matrix   contains the eigen-face 



TELKOMNIKA  ISSN: 1693-6930  

 

Face Recognition on Linear Motion-blurred Image (Fergyanto E Gunawan) 

1251 

vectors           ; Select some of the first eigen-face vectors to become the base-face: 

           where      ; and finally, project each training image to the base-face:     
            

   . The projection completes the training process, which results the base-faces 
          and the weighting vector of each image in the database   . 

During the face recognition process, we subtract a given face    with the face average, 

    ̅, and project the face into the base-faces:            
 (    ̅)    . The face is 

reconized as the  -person, if ‖     ‖
 
 is the smallest among‖     ‖

     . In the current 

research, the blur on the face images is introduced artificially with the following procedure. The 
image degradation process is achieved via a convolution process:  

 
  (   )   (   )  (   )  (1) 

 
where  (   ) is the degraded image,  (   ) is the point spread function (PSF) for image 

blurring due to a linear motion,  (   ) is the original image, and   is the convolution operator. 
The PSF represents the degree that an image spreads around a point [13]. The PSF for image 

blurring due to a linear motion is written 
 
 

 (   )  {
 

 
    (|             |     )  

          

  (2) 

 

where   is the blur level in pixel and   is the motion direction. The motion blur occurs when an 
object or a camera moves during light 80 exposure. Motion blur can be in the form of translation, 

rotation, and sudden change of the scale or some combination of these forms. When the 
recorded scene translates relative to the camera at a constant velocity under an angle o  α      
respect to the horizontal axis during the exposure interval. Figure 2 shows the effects of the 

motion blur of various blur levels L. 
 
 

 
 

Figure 2. Effect of the blur level/length L to a face image. 
 

 
Four image enhancement methods are discussed in the current work: Laplacian filter, 

median filter, Richardson-Lucy algorithm, and Wiener filter. The Laplacian filter is widely used to 

emphasize texture and image viewer focus and to enhance image contrast [14]. The Laplacian 
filter has a     kernel matrix. The matrix has three types: 4, 8, and 9 cores. The kernel 

matrices of the three types are respectively: 
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The first two types is implemented via: 

 

     (    
)  (4) 

 

where   is the enhanced image,   is the degraded image, and    is the Laplacian kernel. The 
last type is implemented via: 

 
         (5) 

 

The second filter is median filter. The filter is best known as order-statistic filter. It is one of the 
powerful non-linear order-statistic filter [15]. The median filter replaces the center pixel of the 
window with the media of all pixel values in the window [16]. The median filter is given by: 

 
  (   )        (   )    

 (   )  (6) 

 
where     is the sliding window. For certain types of random noise, media filter provides 

excellent noise reduction capabilities, with considerably less blurring than that of the linear 
smoothing filters of similar size [17]. 
The third filter is Richardson-Lucy algorithm. This algorithm is well-known as non-blind 

deconvolution algorithm, which is good at image de-blurring. However, if the used PSF does not 
exactly match with the PSF of the blurring process, the enhanced image will have undesired 
ringing artifacts at the smooth region around edges [18]. The formulation of Richardson-Lucy 

algorithm can be defined as the superscript   denotes the iteration index, and   is the PSF  
value [18]. 

 
      ( 

 

    
)     (7) 

 
The last considered filter is Wiener filter. The use of this filter is popular in many signal 
enhancement methods [19]. Wiener filter could be applied to a wide variety of problems, such 

as for signal processing, image processing, image deconvolution, or noise reduction. The input 
of Wiener filter is an image degraded by noise, while the output is calculated by using 

 

     (    )  (8) 
 

where    is the original image and   is the noise and   is the response of Wiener filter [20-23]. 
Finally, the accuracy of the face recognition is calculated by 

 
 

         
           o   o         o     o 

           o           
      (9) 

 
In the current numerical trials, the number of all cases is 200.  

 
 
4. Results and Analysis 

Firstly, we discuss the baseline case where the face recognition is directly  applied to 
images in the testing dataset. This results is essential for two reasons.  First, to understand to 
which extend the use of blur image reduces the level of accuracy. Second, to understand to 

which extend the use of standard image enhancement methods is capable to improve the 
quality of the blurred image in the context of face recognition. 

The baseline of the level of accuracy is shown in Figure 3. This results means that at its 

best, the utilized recognition method is capable only to correctly identify nine out of ten persons. 
However, this result is affected by the number of singular value components, as expected. For 
the cases where the number of SVD components are below 30, the accuracy is strongly 
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affected by the number of the SVD components. Above that threshold, the effect is small; and 

above 50, the effect is negligible.  
 
 

 
 

Figure 3. The level of the accuracy of face recognition as a function of the number of singular 
value decomposition components. 

 
 
When the face image is blur, for example, due to linear motion, we would expect that 

the accuracy would drop. The higher blur level would result the lower accuracy. Numerical 
results, as depicted in Figure 4 and Table 1, strongly support the hypothesis with high 
coefficient determination    values within the range of 0.963 and 0.987. These results show that 

the blur level is inversely proportional with the accuracy level. The regression model:         
      is statistically significant with  -Value much lower than the significance level     . 
What interesting is that the accuracy drops at higher rate when the face recognition is 

performed using more SVD components. However, this relationship is well maintained for the 
blur level in the range of 0 and 40 pixels. Above 40 pixels, the accuracy is relatively not affected 
by the blur level. 

 
 

 
 

Figure 4. The effects of the blur level to the face recognition accuracy for the number of SVD 
components of 5, 10, and 80. The regression model is depicted as solid line. The model 

coefficients are provided in Table 1 
 
 

Traditionally, we rely on image enhancement methods prior applying face recognition 
algorithms when dealing with blurred face images. The improvement in the level of accuracy by 
this approach is discussed the following. We only evaluate four image enhancement methods, 

namely, Laplacian, median, Richardson-Lucy, and Wiener filters. The numerical experiments 
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indicate that only the Laplacian filter is able to provide a visible improvement in the level of 

accuracy. The improvements by the remaining filters are negligible. The improvement on the 
level of accuracy is about 4% when the image recognition is performed using 80 SVD 
components for images with blur level in the range of 0 to 40 pixels as shown in Figure 5.  

The average improvement is very small for 5 SVD component case. The relation between the 
level of improvement and the number of SVD components is rather strong at 0.87 with respect 
 o     P    o ’  correlation coefficient. There is no conclusive relation between the accuracy 

improvement and the blur level. 
 

 

Table 1. The results of the simple regression analysis for the blur level (independent variable) 
and the level of accuracy (dependent variable). The regression model is:                

          . The blur level is limited to the range of 0 and 40 pixels. The number of SVD 
components   is varied as 5, 10, 20, 40, and 80.    denotes the coefficient of determination 

 Estimate SE  -Stat  -Value    

         
(Intercept) 68.250 2.729 25.012 2.689E-07 0.973 

   -1.583 0.108 -14.651 6.350E-06  

          

(Intercept) 98.071 3.111 31.528 6.765E-08 0.982 
   -2.248 0.123 -18.244 1.747E-06  

          

(Intercept) 100.680 2.715 37.076 2.569E0-08 0.987 
   -2.302 0.108 -21.408 6.777E-07  

          
(Intercept) 108.360 3.924 27.616 1.491E-07 0.977 

   -2.471 0.155 -15.903 3.923E-06  

          
(Intercept) 109.040 4.899 22.258 5.379E-07 0.963 

   -2.441 0.194 -12.579 1.546E-05  

 
 

 
 

F      5. I p o       o                                p             : ‘’     o              ‘’ 
with filter 

 

 
5. Conclusion 

An acceptable level of accuracy of face recognition is achievable only on well controlled 

environment. The accuracy level degrades quickly when the face image is taken on moving 
object, bad illumination, bad face position, or from improper distance. This study intends to 
quantify how the accuracy level drops when the image acquisition is performed on faces 

undergoing linear motion. This work is important for some areas of applications. The face 
recognition is performed using the SVD method and the linear motion is introduced artificially.  
The results suggest that the accuracy level drops linearly with increasing the blur level. Applying 
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an image enhancement method prior face recognition does not improve much the accuracy 

level. 
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