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Abstract 
 Uncontrolled environments have often required face recognition systems to identify faces 

appearing in poses that are different from those of the enrolled samples. To address this problem, 
probabilistic latent variable models have been used to perform face recognition across poses. Although 
these models have demonstrated outstanding performance, it is not clear whether richer parameters 
always lead to performance improvement. This work investigates this issue by comparing performance of 
three probabilistic latent variable models, namely PLDA, TFA, and TPLDA, as well as the fusion of these 
classifiers on collections of video data. Experiments on the VidTIMIT+UMIST and the FERET datasets 
have shown that fusion of multiple classifiers improves face recognition across poses, given that the 
individual classifiers have similar performance. This proves that different probabilistic latent variable 
models learn statistical properties of the data that are complementary (not redundant). Furthermore, fusion 
across multiple images has also been shown to produce better perfomance than recogition using single 
still image. 
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1. Introduction 
Face recognition technology has played an important role in various automatic tasks, 

e.g., access control [1, 2], security and surveillance [3, 4], human computer interaction [5], and 
multimedia annotation [6]. Faces in these tasks become central objects, based on which, human 
identities are confirmed. Compared to other biometrics, such as fingerprints or irises, faces 
provide a more natural, direct, friendly, convenient, and non-intrusive means of human 
identification. These biometrics therefore demonstrate a high level of acceptance and offer a 
wide potential application. 

While automatic face recognition has been carried out successfully in controlled exper-
iments, its practical use is still limited. Situations in real-world environments change unpredicta-
bly and might significantly degrade recognition performance. Pose variation is a major factor 
that critically affects face recognition. This variation induces non-convex facial shapes, self-
occlusion, and nonlinear changes of shapes and appearances that complicate classification. 
Furthermore, probe faces in real-world environments often appear in poses that are totally dif-
ferent from those in the enrollment databases. Identification in this case has to be performed by 
matching face images across poses.  

Two approaches have been proposed to address face recognition across poses: (1) 
recognition through resynthesis, and (2) matching in pose-invariant spaces. The first approach 
reconstructs probe faces and enrollment samples in a reference pose (target pose) and applies 
traditional classification methods afterward. Geometric shape models, such as ASMs, AAMs, 
and 3DMMs, have been employed to facilitate accurate reconstruction [7-9]. Statistical methods, 
particularly linear and nonlinear regressions, have also been used to recon-struct image 
patches [10-12], image features, e.g., Gabor jets [13], or other representations, e.g., mixture 
distributions [14], in the desired view. The second approach transforms faces of different poses 
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into some pose-invariant representations and infers face identities by matching these 
representations in the pose-invariant spaces. The 3DMMs are fitted to face images in [15] to 
produce 3D shape and texture parameters that serve as pose-invariant representations. Sta-
tistical methods, such as subspaces alignment [16] and kernel discriminant analysis [17], have 
also been employed for the same purpose. Recognition across poses is performed in [18] 
through the use of light-fields, i.e., the concatenation of face images of individuals from a 
number of poses. Probe faces and enrollment samples are viewed as light-fields with missing 
values whose least-square projections to the Eigenspace serve as pose-invariant 
representations. More recently, probabilistic latent variable models [19-21] have been applied to 
face recognition across poses with superior performance. These methods assume that there 
genuinely exists a multidimensional latent variable that uniquely represents the identity of an 
individual's faces irrespective of their poses. Using these models, the likelihoods that face 
images with different poses actually correspond to the same identity (latent variable) can be 
estimated. 

While probabilistic latent variable models have been successfully used in face recogni-
tion across poses, it is unclear whether richer parameters always lead to performance improve-
ment. It is yet to know, for example, that the use of pose-specific transformations (tied models) 
will make the generic transformations (non-tied models) completely void. Similarly, it is 
important to confirm that explicit modelling of within-class variations (discriminant analysis) will 
always be a better and complete substitute for non-explicit modelling (factor analysis). This work 
investigates this issue by comparing the performance of variants of probabilistic latent variable 
models as well as the fusion of these classifiers. More specifically, three classification models 
are evaluated: probabilistic linear discriminant analysis (PLDA) [19], tied factor analysis  
(TFA) [20], and tied probabilistic linear discriminant analysis (TPLDA) [21]. Unlike the existing 
work, the evaluation is performed not only on still images but also on videos. Videos differ from 
still images in the much larger number of images available for each individuals and the dense 
face samples within the pose space. It is therefore interesting to see how such rich data benefit 
the recognition. 
 
 
2. Research Method 

Figure 1 shows the proposed framework for face recognition across poses.  
The framework is composed of two components: front-end and classifier. The front-end serves 
to localize faces in videos, localize facial landmarks and estimate head poses, extract features, 
and group the features based on the estimated poses. The classifier matches probe faces, 
assumed to be non-frontal, against enrollment samples, which are frontal. Matching scores are 
computed based on probabilistic latent variable models that are constructed in the training 
stage. The rest of this section describes in more detail each of the processes involved in the 
proposed framework. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The proposed recognition method 
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2.1. Face and Facial Landmark Localization and Head Pose Estimation 
Given a video frame as input, facial ROIs (regions of interest, i.e., bounding boxes) are 

localized using a combination of three Viola-Jones face detectors [22]. These detectors have 
been trained for three discrete poses: frontal, left-profile, and right-profile. The frontal detector is 
applied first and is followed by the application of the left-profile detector. If the frontal detector 
successfully detects a face, the left-profile detector is applied only to a small area around this 
detection result. The right-profile detector is executed only when the left-profile detector does 
not give a positive result. This procedure is able to anticipate left-right head rotations and might 
return multiple detection results for one particular face. 

After facial ROIs have been detected, the process continues with the search of facial 
landmarks. We train a cascaded regression model that is able to perform simultaneous facial 
landmark localization and head pose estimation [23, 24]. Cascaded regression has been well 
known as an accurate and reliable method for facial landmark localization. In this work, the 
model has also been trained to handle occluded facial landmarks (for faces that rotate away 
from frontal). This model makes use of multiple facial ROIs as input to produce a single final 
output.  
 
2.2. Face Normalization and Feature Extraction 

Based on the estimated head poses, faces are classified into frontal, half-profile, and 
profile, which are defined as 0-20°, 20°-50°, and 50°-90° of left-right rotation, respectively. Note 
that faces facing to the left direction are flipped horizontally. Before appearance features are 
extracted, the faces are normalized and segmented. 

Piece-wise triangular warp is employed to normalize face images. This technique has 
been observed in this research to work better than the traditional procedures, i.e., similarity 
transforms. Piece-wise triangular warp employs point distribution models (PDMs) [25] to perform 
normalization. A PDM represents 2D facial meshes using a set of orthogonal basis shape-
vectors.  

Three PDMs are constructed for frontal, half-profile, and profile faces, respectively. 
Given a number of facial landmarks returned by the cascaded regression model, least square 
projection is performed to obtain the complete parameters of the PDMs as well as the 
corresponding 2D mesh. Figure 2 shows the estimated 2D meshes of different faces as well as 
the results of piece-wise triangular warp for the normalization. Note that a single reference mesh 
is used to deform (warp) all faces of a particular pose. Compared to similarity transforms, piece-
wise triangular warp produces better correspondences of facial parts at the cost of losing facial 
shape information. The warp faces are resized into 51×51 ROIs, whose intensity values are 
concatenated to form feature vectors of 2601 elements. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

Figure 2. Normalization using piece-wise triangular warp 
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2.3. Classification 
 As mentioned earlier, probabilistic latent variable models are employed in this work to 

match face images across poses. These include PLDA [19], TFA [20], and TPLDA [21], first 
proposed by Prince and colleagues. The tied models generalize the “original” models by 
introducing pose-specific generative transformations over the single latent identity space. More 
explicitly, PLDA can be described as 

 

xij = µ + Fhi + Gwij + εij                                                                                              (1) 
 

while TFA and TPLDA can be expressed as  
 

xijk = µk + Fkhi + εijk                                                                                                    (2) 
 

and 
 
xijk = µk + Fkhi + Gkwijk + εijk                                                                                       (3) 
 

respectively. The term xijk represents the j-th observation of class i in pose k. For each pose k, 4 
parameters are defined: the mean µk, the bases Fk and Gk, and the diagonal covariance matrix 
Ʃk of εijk. 

TFA and TPLDA models (analogous to PLDA) can be trained using an EM algorithm 
that executes two computation steps iteratively until it converges. In the expectation step, the 
expected values of latent variables hi and wijk are calculated for each individual i using data of 
the individual from all poses xij•. In the maximization step, model parameters Fk, Gk, and Ʃk are 
optimized for each pose k using data of the pose from all individuals x••k. Interested readers are 
encouraged to refer to the comprehensive discussion of this algorithm in[19-21, 26]. 

The trained models are used to recognize probe faces during the recognition phase. 
Prince and Elder [19] propose a Bayesian model comparison approach that assumes data 
points of the same class are generated from the same value of LIV. Given a probe xp and 
samples of M classes x1, x2, … , xM, there will be M generation models M1, M2, … , MM to 
consider. Mm represents the case where xp and xm are bound to the same LIV, which is hm, 
while the other samples are bound to their own LIVs. The likelihood P(xp, x1 … M |Mm, θ) can then 
be defined as  
 

P(xp, x1 … M |Mm, θ) = P(xp, xm |Mm, θ)×Πi = 1 … M, i ≠ m P(xi |Mm, θ)                                (4) 
 
where θ is the set of model parameters. The posterior of the generation model is obtained as 

P(Mm| xp, x1 … M , θ)=P(xp, x1 … M |Mm, θ)×P(Mm) which is  P(xp, x1 … M | Mm, θ)  P(xp, xm |Mm, θ) 
/ P(xm |Mm, θ) if the priors P(M1), P(M2), … , P(Mm) are assumed to be uniform. 

In this research, only closed-set identification is considered. Classification systems will 
thus not be probed by individuals who are not enrolled in the systems (impostors). Furthermore, 
multiple enrollment samples are available for each individual. Suppose that a model θ is 
employed for the classification. Given a test image xp, matching score of xp and class i is 
computed using S(xp, xi• |θ)=maxj P(xp, xij |Mi, θ) / P(xij |Mi, θ) (matching to the nearest sample). 
The identity of the probe xp can then be inferred as argmaxi = 1 ... M S(xp, xi•).  

In [19-21], high recognition rates have been achieved by fusing matching scores across 
different local areas. Inspired by this idea, this research investigates the possibility of improving 
performance by fusing matching scores from different classifiers. For a fusion to be successful, 
the fused classifiers must not be redundant. This research conjectures that PLDA, TFA, and 
TPLDA capture statistical properties of data that are complementary. Matching score of xp and 
xi under the fusion of classifiers can be expressed as:  

 
S(xp, xi |θ1, … , θS) = Πs = 1 … S S(xp, xi |θs)                                                                  (5) 
 

where θ1, … , θS are the fused classifiers. Later in the experiments, we also apply fusion across 
video frames f1, f2, … , fP which can be expressed as  

 
S(f1 … P, xi |θ) = Πp = 1 … P S(fp, xi |θ).                                                                            (6) 
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3. Results and Analysis 
Experiments are conducted to evaluate performance of different classification models. 

The experiments make use of enrollment samples that consist of frontal faces only. The probe 
faces include half-profile and profile faces.  
 
3.1. Datasets for Evaluation 

Two datasets are collected for the experiments: the VidTIMIT+UMIST dataset [27, 28] 
and the FERET dataset [29]. The VidTIMIT database [27] contains videos of 43 individuals who 
are asked to perform an extended sequence of head rotation. The rotation starts with the head 
facing forward, followed by facing to the right, to the left, back to forward, up, down, and finally 
return to forward. Three video sequences with a resolution of 512×384 are recorded from each 
individual in three sessions, respectively.  

The UMIST database [28] contains 20 individuals, each of whom appears in various 
poses ranging from profile to frontal. Faces are captured as grey-scale images with a resolution 
of 220×220. Eighteen individuals from the UMIST database are merged with those from the 
VidTIMIT database to yield a total of 61 individuals. Using the merged data, three pairs of 
training and test sets are constructed. The training sets contain 10+24 individuals from the 
UMIST and the VIDTIMIT databases, respectively (randomly selected). The test sets contain the 
remaining 8+19 individuals from the UMIST and the VIDTIMIT databases, respectively. 

The FERET database [29] contains 1199 individuals captured into 256×384 images. 
Each individual appears in 7 pose categories: frontal (fa/0), quarter left (ql/–22.5°), quarter right 
(qr/22.5°), half-profile left (hl/–67.5°), half-profile right (hr/67.5°), profile left (pl/–90°), and profile 
right (pr/90°). Among the 7 images of each individual, three (ql/–22.5°, fa/0, and qr/22.5°) are 
classified as “frontal”, two (hl/–67.5° and hr/67.5°) are classified as “half-profile”, and the other 
two (pl/–90° and pr/90°) are classified as “profile”. Note that faces facing to the left direction (ql, 
hl, and pl) are flipped horizontally. From the 1199 individuals, 319 are selected for experiments. 
Three pairs of training and test sets are constructed from the selected data. Each training set 
contains 219 individuals (randomly selected) and each test set contains the remaining 100 
individuals. 

 

3.2. Experiments using VidTIMIT+UMIST dataset 
The training and the test data for these experiments are described in Section 3.1. Note 

that individuals used for testing are completely different from those used for training. The test 
data are divided into enrollment samples and probe data. The enrollment samples consist of 
“frontal” faces while the probe data consist of “half-profile” and “profile” faces. To detect faces, 
facial landmarks, and head poses from face images, the front-end described in Section 2 is 
employed. 

Figure 3 and Figure 4 show results of the experiments, presented in the form of the 
number (in percentage) of the successfully recognized images. The Eigen light-fields method is 
used as the baseline. When only individual classifiers are considered, TFA demonstrates the 
best recognition rates, i.e., 94.46 ± 0.71% and 70.95 ± 2.68% for half-profile and profile faces, 
respectively. TPLDA demonstrates recognition rates of 88.81 ± 2.40% and 48.10 ± 6.79% and 
PLDA demonstrates recognition rates of 85.67 ± 1.47% and 51.38 ± 11.87% for half-profile and 
profile faces, respectively. The Eigen light-fields method has become the worst performer. It 
should be noted, however, that the superiority of TFA doesn't apply to experiments with the 
FERET database (Section 3.3). TFA has therefore simply better captured statistical properties 
of the data than other classifiers have for this particular dataset. 

Figure 3 also shows recognition results of half profile faces using fusion of classification 
models (Equation (5)). As can be seen from the figure, all fusion cases have better performance 
than the corresponding individual models, thus showing the finding that the fused models are 
complementary (not redundant). The highest recognition rate is achieved by the combination of 
the three classification models (95.57 ± 1.36%). The second highest recognition rate is achieved 
by the combination of TFA and PLDA, which are actually the best two individual models (95.25 
± 1.93%). Compared to recognition using individual classification models, peak performance 
increases from 94.46 ± 0.71% to 95.57 ± 1.36%. 
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Figure 3. Results of Recognition of Half-Profile Faces from the VidTIMIT+UMIST Dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Results of Recognition of Profile Faces from the VidTIMIT+UMIST Dataset 
 
 

For recognition of profile faces as shown in Figure 4, fusion significantly outperforms 
individual classification models only for the combination of PLDA and TPLDA. When the fusion 
combines TFA (the best individual classification model) and other classification models, it hardly 
outperforms the individual models or even degrades the performance. These results therefore 
highlight the second requirement for a fusion to be effective: The fused classifiers should have 
similar individual performance (as is the case with PLDA and TPLDA). When there is too much 
discrepancy between the fused classifiers, the gain produced by the fusion is not enough to 
compensate the discrepancy between the classifiers. Figure 4 shows that the best fusion case 
corresponds to the combination of the three classification models. This combination reaches 
peak performance of 72.13 ± 8.49% which is better than the peak performance of individual 
models (70.95 ± 2.68%). 
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3.3. Experiments using FERET dataset 
Data for these experiments are described in Section 3.1. Classification models are 

constructed using the training sets, each of which contains 219 individuals. Each test set 
contains 100 individuals that are further classified as enrollment samples (frontal faces) and 
probe data (non-frontal faces). To extract appearance features, faces are segmented from the 
background using an iterative graph-cuts procedure. The segmented faces are registered to 
standard templates and placed against a mid-gray background. The registration is performed 
using a piece-wise linear warp based on 21 manually annotated facial landmarks. 

Figure 5 shows recognition results of half-profile faces using frontal faces as samples. 
For matching to the mean of samples: S(xp, xi• | θ) = P(xp, average(xi•) | Mi, θ) / P(average(xi•) 
| Mi, θ) is used to compute matching scores since it produces better results than matching to the 
nearest sample. TPLDA has become the best performer with a peak recognition rate of 81.50 ± 
6.61%. TFA and PLDA become the second and the third best performer, respectively, 
demonstrating recognition rates of 73.67 ± 10.68% and 68.83 ± 2.47%, respectively. These 
results are thus different from those obtained from the VidTIMIT+UMIST dataset where TFA 
becomes the best performer followed by TPLDA and PLDA. Figure 6 shows recognition results 
of profile faces using frontal faces as samples. Similar to previous results, TPLDA, TFA, and 
PLDA have become the best, the second best, and the third best performers, respectively. 
TPLDA achieves a peak recognition rate of 55.50 ± 5.20%. TFA and PLDA achieve peak 
recognition rates of 54.50 ± 6.93% and 50.17 ± 8.28%, respectively. These results are again 
different from those obtained from the VidTIMIT+UMIST dataset, where TFA, TPLDA, and 
PLDA become the best, the second best, and the third best performers, respectively. 
 

 
 

Figure 5. Results of Recognition of Half-Profile Faces from the FERET Dataset 
 
 
Four combinations of classifiers are also evaluated in the experiments with the FERET 

database. Figure 5 shows recognition results of half-profile faces using the fused classifiers. As 
can be seen from the figure, all fusion cases give better performance than the corresponding 
individual models. The highest recognition rate is achieved by the combination of the three 
classification models (86.17 ± 3.82%). Figure 6 shows similar situations for recognition of profile 
faces. All fusion cases have better peak performance than the corresponding individual models, 
with the combination of the three models becoming the best performer (63.00 ± 5.66%). These 
results again highlight the finding that the tested classification models are complementary. It 
should also be noted that the three individual models have similar performance, explaining why 
the fusion is effective. Compared to recognition using individual classification models, the fusion 
increases peak recognition rates from 81.50 ± 6.61% to 86.17 ± 3.82% for recognition of half-
profile faces and from 55.50 ± 5.20% to 63.50 ± 5.66% for recognition of profile faces. 
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From experiments on the VidTIMIT+UMIST dataset as well as on the FERET dataset, it 
can be concluded that fusion of different classifiers effectively improves face recognition across 
poses. The combinations of classifiers, however, perform differently on different datasets. It 
appears that when the fused classifiers differ only slightly in performance, the fused classifiers 
have better performance than the individual classifiers. To choose the most optimal combination 
of classifiers for a particular deployment, the fusion can be tested on a validation data before it 
is employed in the real task. Another possibility is simply fusing the three classification models 
altogether. It has been observed that fusion of the three models outperform the three individual 
classifiers most of the time. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Results of Recognition of Profile Faces from the FERET Dataset 

 
 
3.4. Experiments on Videos 

Previous experiments compute recognition rates by counting the number of successfully 
recognized images from test videos. Even though frames of training videos have been 
collectively used to construct classification models, recognition in these experiments is still 
performed based on still images. The reported recognition rates thus indicate only the 
probability of correct recognition, given a single image as input. To actually employ videos in the 
recognition, identities need to be inferred based on multiple images. In this section, such 
recognition is performed by fusing matching scores across video frames, which is also known in 
the literature as the decision level fusion. Two fusion methods are considered: voting and 
product rule (multiplying matching scores, Equation (6)). 

Table 1 and Table 2 show results of the fusion on the VidTIMIT+UMIST dataset. Proba-
bilistic latent variable models are trained to include 42 basis vectors and matching to the nearest 
sample is used to compute matching scores of individual images. For recognition of half-profile 
faces as shown in Table 1, fusion across video frames has given a better peak performance 
than using a single still image (98.77 ± 2.14% vs. 95.57 ± 1.36%, Section 3.2). The best 
recognition rate is achieved when TFA or combinations of TFA and other classifiers are 
employed together with the product rule. Note that TFA seems to be dominant whenever it is 
combined with other classifiers. This can be seen from the performance of the combined 
classifiers, which is identical to the performance of TFA alone. For recognition of profile faces as 
shown in Table 2, fusion across video frames has also given a better peak performance than 
using a single still image (81.48 ± 11.11% vs 72.13 ± 8.49%, Section 3.2). The best 
performance is achieved by the combination of TFA and PLDA coupled with the product rule.  

Table 3 and Table 4 show results of the fusion on the FERET dataset. Compared to 
recognition using a single still image (Section 3.3), fusion across video frames has given better 
peak performance: 91.33 ± 3.21% vs. 86.17 ± 3.82% and 64.50 ± 3.54% vs. 63.50 ± 5.66% for 
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half-profile and profile faces, respectively. The best recognition rate is achieved when the prod-
uct rule is applied to matching scores obtained from the combination of the three classification 
models. Note that voting is not tested on this dataset since there are only two probe images for 
each individual.  

The improved performance given by fusion across multiple frames on the Vid-
TIMIT+UMIST and the FERET datasets highlights the advantages of using video over single still 
image. The multiple observations available in videos provide additional information that can be 
employed to solve ambiguity in recognition. 

 

 

Table 1. Frame Fusion on the Recognition of Half-Profile Faces from  
the VidTIMIT+UMIST Dataset 

Classification Model Fusion Method Recognition Rate (%) 
PLDA Voting 85.19 ± 3.71 
PLDA Product Rule 86.42 ± 2.14 
TFA Voting 97.53 ± 4.28 
TFA Product Rule 98.77 ± 2.14 
TPLDA Voting 95.06 ± 2.14 
TPLDA Product Rule 95.06 ± 2.14 
PLDA + TFA Voting 98.77 ± 2.14 
PLDA + TFA Product Rule 98.77 ± 2.14 
PLDA + TPLDA Voting 96.30 ± 0.00 
PLDA + TPLDA Product Rule 95.06 ± 2.14 
TFA + TPLDA Voting 97.53 ± 2.14 
TFA + TPLDA Product Rule 98.77 ± 2.14 
PLDA + TFA + TPLDA Voting 98.77 ± 2.14 
PLDA + TFA + TPLDA Product Rule 97.53 ± 2.14 

 
 

Table 2. Frame Fusion on the Recognition of Profile Faces from the VidTIMIT+UMIST Dataset 
Classification Model Fusion Method Recognition Rate (%) 

PLDA Voting 77.78 ± 9.80 
PLDA Product Rule 79.01 ± 8.56 
TFA Voting 55.56 ± 9.80 
TFA Product Rule 58.02 ± 13.01 
TPLDA Voting 62.96 ± 11.11 
TPLDA Product Rule 62.96 ± 9.79 
PLDA + TFA Voting 79.01 ± 11.31 
PLDA + TFA Product Rule 81.48 ± 11.11 
PLDA + TPLDA Voting 59.26 ± 12.83 
PLDA + TPLDA Product Rule 62.96 ± 12.83 
TFA + TPLDA Voting 72.84 ± 9.32 
TFA + TPLDA Product Rule 70.37 ± 9.80 
PLDA + TFA + TPLDA Voting 75.31 ± 10.69 
PLDA + TFA + TPLDA Product Rule 79.01 ± 11.31 

 

 

Table 3. Frame Fusion on the Recognition of Half-Profile Faces from the FERET Dataset 
Classification Model Fusion Method Recognition Rate (%) 

PLDA Product Rule 79.00 ± 11.53 
TFA Product Rule 74.33 ± 6.66 
TPLDA Product Rule 81.67 ± 4.93 
PLDA + TFA Product Rule 88.67 ± 3.79 
PLDA + TPLDA Product Rule 89.00 ± 1.00 
TFA + TPLDA Product Rule 88.33 ± 4.04 
PLDA + TFA + TPLDA Product Rule 91.33 ± 3.21 

 
 

Table 4. Frame Fusion on the Recognition of Profile Faces from the FERET Dataset 
Classification Model Fusion Method Recognition Rate (%) 

PLDA Product Rule 50.00 ± 18.38 
TFA Product Rule 41.50 ± 12.02 
TPLDA Product Rule 54.50 ± 6.36 
PLDA + TFA Product Rule 55.50 ± 6.36 
PLDA + TPLDA Product Rule 60.50 ± 4.95 
TFA + TPLDA Product Rule 61.50 ± 9.19 
PLDA + TFA + TPLDA Product Rule 64.50 ± 3.54 
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4. Conclusion 
This research evaluates the application of probabilistic latent variable models, namely 

PLDA, TPLDA, and TFA, as well as fusion of these classifiers, to face recognition across poses. 
Half-profile and profile faces are used as inputs to the recognition system, where frontal faces 
are used as enrollment samples. The evaluation is conducted using still images and videos, in 
particular, the VidTIMIT+UMIST and the FERET datasets are collected for this purpose. 

Results of the experiments have shown that fusion of classifiers (at the decision level, 
i.e., product rule) generally produces better recognition performance than individual classifiers. 
This proves that different probabilistic latent variable models learn and capture statistical 
properties of data that are complementary. There is an important note, though, that fusion 
seems to produce clear improvement when the fused individual classifiers only slightly differ in 
performance. The optimal combination of classifiers also seems to vary from dataset to dataset. 
For the VidTIMIT+UMIST dataset, the peak performance increases from 94.46 ± 0.71% to 95.57 
± 1.36% and from 70.95 ± 2.68% to 72.13 ± 8.49% for recognition of half-profile faces and 
profile faces, respectively. For the FERET dataset, the peak performance increases from 81.50 
± 6.61% to 86.17 ± 3.82% and from 55.50 ± 5.20% to 63.50 ± 5.66% for recognition of half 
profile and profile faces, respectively. 

To actually employ videos for face recognition, fusion has also been applied across 
video frames. Product rule and voting are used as the fusion method at the decision level. 
Results of experiments have shown that recognition using videos produces better performance 
than using single still image. For the VidTIMIT+UMIST dataset, the peak performance increases 
from 95.57 ± 1.36% to 98.77 ± 2.14% and from 72.13 ± 8.49% to 81.48 ± 11.11% for recognition 
of half-profile faces and profile faces, respectively. For the FERET dataset, the peak 
performance increases from 86.17 ± 3.82% to 91.33 ± 3.21% and from 63.50 ± 5.66% to 64.50 
± 3.54% for recognition of half-profile faces and profile faces, respectively. 
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