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Abstrak 
Makalah ini menyajikan metode perhitungan digit-demi-digit yang dioptimalkan untuk 

menyelesaikan perhitungan akar kuadrat yang rumit dalam perangkat keras, sebagai algoritma 
sederhana yang diusulkan untuk implementasi pada field programmable gate array (FPGA). 
Prinsip utama dari metode ini adalah operasi-operasi penggeseran dua-bit dan pengurang-
multipleks, untuk mendapatkan implementasi yang lebih sederhana dan perhitungan yang lebih 
cepat. Algoritma ini telah digunakan untuk implementasi akar kuadrat biner tak bertanda 32-bit 
dan 64-bit berbasis FPGA secara sukses. Hasil penelitian menunjukkan bahwa metode yang 
diusulkan paling efisien sumber daya perangkas keras, bila dibandingkan metode lainnya. 
Selain itu, strategi ini dapat dengan mudah dikembangkan untuk implementasi akar kuadrat 
yang lebih besar. 
 
Kata kunci: perhitungan angka-oleh-digit, FPGA, Square Root 

 
 

Abstract 
This paper presents an optimized digit-by-digit calculation method to solve complicated 

square root calculation in hardware, as a proposed simple algorithm for implementation in field 
programmable gate array (FPGA). The main principle of proposed method is two-bit shifting and 
subtracting-multiplexing operations, in order to achieve a simpler implementation and faster 
calculation. The proposed algorithm has conducted to implement FPGA based unsigned 32-bit 
and 64-bit binary square root successfully. The results have shown that proposed method is 
most efficient of hardware resource compare to other methods. In addition, the strategy can be 
expanded to larger number easily. 
 
Keywords: digit-by-digit calculation, FPGA, Square Root  

 
 

1. INTRODUCTION 
It is well-known that the direct torque control method (DTC) for AC motors has simple 

structure and good behaviors such as fast torque response, no requirements for PWM pulse 
generation, no requirements for coordinate transformation, no position encoder and current 
regulators [1-7].  

The DTC algorithm is usually implemented by serial calculations based on a 
Microcontroller or Digital Signal Processing (DSP) [8-11]. These are truly software-based 
platform and not adequate to implement a control methods which require very high speed 
response. As suitable solution, it is proposed FPGA to support execution very fast tasks [12-14]. 
However, it is not easy to implement DTC in FPGA hardware. One of problem has been 
addressed mainly in complicated square root calculation. It is hard to implement on  
FPGA [15-17].  

There many algorithms has proposed to solve square root, such as Rough estimation 
[18], Babylonian method [19], exponential identity [20], Taylor-Series Expansion Algorithm [21], 
Newton-Raphson method [22-24], and sequential algorithm (digit-by-digit calculation method) 
[25-29]. Nevertheless, the methods above usually do not focus to solve square root problem in 
DTC implementation based on FPGA. This paper proposes digit-by-digit calculation method as 
a simple strategy to solve complicated square root. The proposed implementation strategy is 
different compared to strategies in [25-29]. An optimization is also done by eliminates circuitry 
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that is not needed. It is addressed to support DTC implementation in FPGA hardware, and in 
hopes that it gives rise simpler implementation and faster calculation. 

 
 

2. DIGIT-BY-DIGIT CALCULATION METHOD 
In digit-by-digit calculation method, the each digit of the square root is found in a 

sequence where it only one digit of the square root is generated at each iteration [29]. It has 
several advantages, such as: every digit of the root found is known to be correct and it will not 
have to be changed later; if the square root has to expand, it will terminate after the last digit is 
found; and the algorithm works for any number base (of course the process depends on number 
base). 
 
 

 
 

(a) 

 
 

(b) 

 
Figure 1. The example of digit-by-digit calculation to solve square root: (a) restoring algorithm; 

(b) non restoring algorithm 
 
 

 
 

Figure 2. The example of using modified non restoring digit-by-digit calculation algorithm to 
solve square root 
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In general, this method can be divided in two classes, i.e. restoring and non restoring 
digit-by-digit algorithm [29]. In restoring algorithm, the procedure is composed by taking the 
square root obtained so far, appending 01 to it and subtracting it, properly shifted, from the 
current remainder. The 0 in 01 corresponds to multiplying by 2; the 1 is a new guess bit. The 
new root bit developed is truly 1, if the resulting remainder is positive, and vice versa is 0, which 
the remainder must be restored by adding the quantity just subtracted. It is different, in non 
restoring algorithm does not restore the subtraction if the result was negative. Instead, it 
appends a 11 to the root developed so far and on the next iteration it performs an addition. If the 
addition causes an overflow, then on the next iteration you go back to the subtraction mode 
[30]. The Figure 1 is the example gives to take the binary square root of 01011101 (equivalent 
with 93 decimal). 

A little different than non restoring digit-by-digit algorithm in Figure 1 (b), a modification 
as shown on Figure 2 can be conducted to give simpler implementation and faster calculation. 
In this modification, it only uses subtract operation and append 01, while add operation and 
append 11 is not used. This paper adopts this modification to implement unsigned 64-bit binary 
square root based on FPGA.  

 
 

3. PROPOSED SQUARE ROOT ALGORITHM 
Samavi, et al. [29] has improved classical non-restoring digit-by-digit square root circuit 

by eliminate redundant blocks. Their circuit is referred to as the reduced area non restoring 
circuit. However, it still based on constant digit of 01 or 11 and add-subtract as the main building 
block (still refer to Figure 1 b). This paper offers a simple alternative solution that it only uses 
subtracts operation and appends 01. As consequent, the subtract-multiplex is used as the main 
building block (refer to Figure 2). The principle of proposed algorithm can be described as 
shown in Figure 3. 
 
 
Step 0. Start 
Step 1. Initialization radicand (the n-bit number will be squared root), quotient 

(the result of squared root), and remainder. To calculate square root of a 
2n bit number, it needs n stage pipelines to implement the proposed 
algorithm. 

Step 2. Beginning at the binary point, divide the radicand into groups of two 
digits in both direction. 

Step 3. Beginning on the left (most significant bit), select the first group of 
one or two digit (If n is odd then the first groups is one digit, and vice 
versa)  

Step 4. Choose 1 squared, and then subtract. 
 Fist developed root is “1” if the result of subtract is positive, and vice 

versa is “0” 
Step 5. Shift two bits, subtract guess squared with append 01. 
 Nth-bit squared is “1” if the result of subtract is positive, and Because 

of subtract operation is done 
 else  
 Nth-bit squared is “0”, and not subtract 
Step 6. Go to step 5 until end group of two digits 
Step 7. End 

 
Figure 3. The principle of proposed algorithm to solve square root 

 
 

A simple hardware implementation of the non-restoring digit-by-digit algorithm for 
unsigned 6-bit square root by an array structure is shown in Figure 4. The radicand is P 
(P5,P4,P3,P2,P1,P0), U (U2,U1,U0) as quotient and R (R4,R3,R2,R1,R0) as remainder. It can 
be shown that the implementation needs 3 stage pipelines. The main building blocks of the 
array are blocks called as controlled subtract-multiplex (CSM). Figure 5 present the details of a 
CSM. Input of the building block is x,y,b and u, and as output is bo (borrow) and d (result). If 
u=0, then d<=x-y-b else d<=x. 

The generalization of simple implementation of the non-restoring digit-by-digit algorithm 
for unsigned n-bit square root by an array structure is shown in Figure 6. Each row (stage) of 



                     ISSN: 1693-6930
  

TELKOMNIKA  Vol. 8, No. 1,  April 2010 :  1 - 8 

4

the circuit in Figure 6 executes one-iteration of the non-restoring digit-by-digit square root 
algorithm, where it only uses subtracts operation and appends 01. 
 
 

 
 

Figure 4. A simple hardware implementation of the non-restoring 
digit-by-digit algorithm for unsigned 6-bit square root 

 

 

 
 

Figure 5. Internal structure of 
a CSM block 

 

 
 

 
 

Figure 6. A simple hardware implementation of the non-restoring digit-by-digit algorithm for 
unsigned n-bit square root 

 
 
To be optimizer hardware resource saving of the implementation above, specialized 

entities can be created as building block components. It will eliminate circuitry that is not 
needed. As example, the implementation in Figure 6 for unsigned 6-bit square root can be 
optimized become as shown in Figure 7 (in this case, the remainder is ignored, because in the 
DTC drive, it is not required). The specialized entities A, B, C, D and E are minimized CSM 
when input ybu=100, yu=00, u=0, yu=10, and y=0 respectively, and the remainder is ignored. 
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The generalization of optimized simple implementation of the non-restoring digit-by-digit 
algorithm for unsigned n-bit square root is shown in Figure 8. 

 
 

 
 

Figure 7. Optimized simple hardware implementation of the non-restoring digit-by-digit algorithm 
for unsigned 6-bit square root 

 
 

 
 

Figure 8. Optimized simple hardware implementation of the non-restoring digit-by-digit algorithm 
for unsigned n-bit square root 

 
 
4. RESULTS AND ANALYSIS 

In the previous sections, optimized simple hardware implementation method of the non-
restoring digit-by-digit algorithm for square root and the difficult task in DTC to calculate square 
root were explained. In this section, simulation results of 32-bit and 64-bit square root based on 
Altera APEX 20KE FPGA by using method above are presented, as shown in Figure 9. In this 
simulation, P is radicand and U is quotient. The results showed that the implementation has 
succeeded and worked properly. 

Based on compilation report, to implement 32-bit and 64-bit square root using optimized 
simple hardware implementation method of the non-restoring digit-by-digit algorithm are needed 
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256 and 1023 logic element (LE) respectively. The comparison of results obtained from different 
implementation method is shown in Table 1.  

 
 

 
 

(a) 
 

 
(b) 

 
 

(c) 
 

 
(d) 

 
Figure 9. Simulation result of n-bit square root using optimized simple hardware implementation 

method of the non-restoring digit-by-digit algorithm: (a) 32-bit in decimal display, (b) 32-bit in 
binary display, (c) 64-bit in decimal display, (d) 64-bit in binary display 

 
 

Table 1. The comparison of logic element usage 

No Method 
LE Usage 

32-bit square root 64-bit square root 
1 Classical-NR 1008 4092 
2 Reduced-Area-NR 632 2464 
3 Modular-NR 624 2468 
4 Simple-X-Module 648 2488 
5 Proposed  256 1023 

Note: Altera APEX 20KE & Xilinx Virtex-E, 1 LC = 1 LE, and 1 CLB = 4 LE [31] 

 
 
This comparison of LE or logic cell (LC) usage is listed based on references [29] and 

[30]. The number of employed LE indicates the size of the implemented circuit “hardware 
resource”. Table 1 showed that proposed method is most efficient of hardware resource. Based 
on Figure 8, the strategy is very easy to be expanded for larger number to solve complicated 
square root problem in FPGA implementation. 
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5. CONCLUSION 
This contribution presented digit-by-digit calculation method as a proposed simple 

strategy for implementation in field programmable gate array (FPGA) hardware mainly to solve 
complicated square root. The main principle of proposed method is two-bit shifting and 
subtracting-multiplexing operations. The proposed strategy has conducted to implement FPGA 
based unsigned 32 bit and 64-bit binary square root successfully. The results have shown that 
proposed method is most efficient of hardware resource compare to other methods. The method 
also can be expanded to larger number easily, to solve complicated square root problem in 
FPGA implementation. 
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