
ISSN: 1693-6930 1

An Optimized Square Root Algorithm for Implementation in FPGA Hardware (Tole Sutikno)

AN OPTIMIZED SQUARE ROOT ALGORITHM
FOR IMPLEMENTATION IN FPGA HARDWARE

Tole Sutikno
Department of Electrical Engineering, Universitas Ahmad Dahlan (UAD)

Jln. Prof. Soepomo, Janturan, Yogyakarta 55164, Telp. +62-274-379418, Fax. +62-274-564604
e-mail: tole@ee.uad.ac.id

Abstrak
Makalah ini menyajikan metode perhitungan digit-demi-digit yang dioptimalkan untuk

menyelesaikan perhitungan akar kuadrat yang rumit dalam perangkat keras, sebagai algoritma
sederhana yang diusulkan untuk implementasi pada field programmable gate array (FPGA).
Prinsip utama dari metode ini adalah operasi-operasi penggeseran dua-bit dan pengurang-
multipleks, untuk mendapatkan implementasi yang lebih sederhana dan perhitungan yang lebih
cepat. Algoritma ini telah digunakan untuk implementasi akar kuadrat biner tak bertanda 32-bit
dan 64-bit berbasis FPGA secara sukses. Hasil penelitian menunjukkan bahwa metode yang
diusulkan paling efisien sumber daya perangkas keras, bila dibandingkan metode lainnya.
Selain itu, strategi ini dapat dengan mudah dikembangkan untuk implementasi akar kuadrat
yang lebih besar.

Kata kunci: perhitungan angka-oleh-digit, FPGA, Square Root

Abstract
This paper presents an optimized digit-by-digit calculation method to solve complicated

square root calculation in hardware, as a proposed simple algorithm for implementation in field
programmable gate array (FPGA). The main principle of proposed method is two-bit shifting and
subtracting-multiplexing operations, in order to achieve a simpler implementation and faster
calculation. The proposed algorithm has conducted to implement FPGA based unsigned 32-bit
and 64-bit binary square root successfully. The results have shown that proposed method is
most efficient of hardware resource compare to other methods. In addition, the strategy can be
expanded to larger number easily.

Keywords: digit-by-digit calculation, FPGA, Square Root

1. INTRODUCTION
It is well-known that the direct torque control method (DTC) for AC motors has simple

structure and good behaviors such as fast torque response, no requirements for PWM pulse
generation, no requirements for coordinate transformation, no position encoder and current
regulators [1-7].

The DTC algorithm is usually implemented by serial calculations based on a
Microcontroller or Digital Signal Processing (DSP) [8-11]. These are truly software-based
platform and not adequate to implement a control methods which require very high speed
response. As suitable solution, it is proposed FPGA to support execution very fast tasks [12-14].
However, it is not easy to implement DTC in FPGA hardware. One of problem has been
addressed mainly in complicated square root calculation. It is hard to implement on
FPGA [15-17].

There many algorithms has proposed to solve square root, such as Rough estimation
[18], Babylonian method [19], exponential identity [20], Taylor-Series Expansion Algorithm [21],
Newton-Raphson method [22-24], and sequential algorithm (digit-by-digit calculation method)
[25-29]. Nevertheless, the methods above usually do not focus to solve square root problem in
DTC implementation based on FPGA. This paper proposes digit-by-digit calculation method as
a simple strategy to solve complicated square root. The proposed implementation strategy is
different compared to strategies in [25-29]. An optimization is also done by eliminates circuitry

 ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 1, April 2010 : 1 - 8

2

that is not needed. It is addressed to support DTC implementation in FPGA hardware, and in
hopes that it gives rise simpler implementation and faster calculation.

2. DIGIT-BY-DIGIT CALCULATION METHOD
In digit-by-digit calculation method, the each digit of the square root is found in a

sequence where it only one digit of the square root is generated at each iteration [29]. It has
several advantages, such as: every digit of the root found is known to be correct and it will not
have to be changed later; if the square root has to expand, it will terminate after the last digit is
found; and the algorithm works for any number base (of course the process depends on number
base).

(a)

(b)

Figure 1. The example of digit-by-digit calculation to solve square root: (a) restoring algorithm;

(b) non restoring algorithm

Figure 2. The example of using modified non restoring digit-by-digit calculation algorithm to
solve square root

TELKOMNIKA ISSN: 1693-6930 ■

An Optimized Square Root Algorithm for Implementation in FPGA Hardware (Tole Sutikno)

3

In general, this method can be divided in two classes, i.e. restoring and non restoring
digit-by-digit algorithm [29]. In restoring algorithm, the procedure is composed by taking the
square root obtained so far, appending 01 to it and subtracting it, properly shifted, from the
current remainder. The 0 in 01 corresponds to multiplying by 2; the 1 is a new guess bit. The
new root bit developed is truly 1, if the resulting remainder is positive, and vice versa is 0, which
the remainder must be restored by adding the quantity just subtracted. It is different, in non
restoring algorithm does not restore the subtraction if the result was negative. Instead, it
appends a 11 to the root developed so far and on the next iteration it performs an addition. If the
addition causes an overflow, then on the next iteration you go back to the subtraction mode
[30]. The Figure 1 is the example gives to take the binary square root of 01011101 (equivalent
with 93 decimal).

A little different than non restoring digit-by-digit algorithm in Figure 1 (b), a modification
as shown on Figure 2 can be conducted to give simpler implementation and faster calculation.
In this modification, it only uses subtract operation and append 01, while add operation and
append 11 is not used. This paper adopts this modification to implement unsigned 64-bit binary
square root based on FPGA.

3. PROPOSED SQUARE ROOT ALGORITHM
Samavi, et al. [29] has improved classical non-restoring digit-by-digit square root circuit

by eliminate redundant blocks. Their circuit is referred to as the reduced area non restoring
circuit. However, it still based on constant digit of 01 or 11 and add-subtract as the main building
block (still refer to Figure 1 b). This paper offers a simple alternative solution that it only uses
subtracts operation and appends 01. As consequent, the subtract-multiplex is used as the main
building block (refer to Figure 2). The principle of proposed algorithm can be described as
shown in Figure 3.

Step 0. Start
Step 1. Initialization radicand (the n-bit number will be squared root), quotient

(the result of squared root), and remainder. To calculate square root of a
2n bit number, it needs n stage pipelines to implement the proposed
algorithm.

Step 2. Beginning at the binary point, divide the radicand into groups of two
digits in both direction.

Step 3. Beginning on the left (most significant bit), select the first group of
one or two digit (If n is odd then the first groups is one digit, and vice
versa)

Step 4. Choose 1 squared, and then subtract.
 Fist developed root is “1” if the result of subtract is positive, and vice

versa is “0”
Step 5. Shift two bits, subtract guess squared with append 01.
 Nth-bit squared is “1” if the result of subtract is positive, and Because

of subtract operation is done
 else
 Nth-bit squared is “0”, and not subtract
Step 6. Go to step 5 until end group of two digits
Step 7. End

Figure 3. The principle of proposed algorithm to solve square root

A simple hardware implementation of the non-restoring digit-by-digit algorithm for
unsigned 6-bit square root by an array structure is shown in Figure 4. The radicand is P
(P5,P4,P3,P2,P1,P0), U (U2,U1,U0) as quotient and R (R4,R3,R2,R1,R0) as remainder. It can
be shown that the implementation needs 3 stage pipelines. The main building blocks of the
array are blocks called as controlled subtract-multiplex (CSM). Figure 5 present the details of a
CSM. Input of the building block is x,y,b and u, and as output is bo (borrow) and d (result). If
u=0, then d<=x-y-b else d<=x.

The generalization of simple implementation of the non-restoring digit-by-digit algorithm
for unsigned n-bit square root by an array structure is shown in Figure 6. Each row (stage) of

 ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 1, April 2010 : 1 - 8

4

the circuit in Figure 6 executes one-iteration of the non-restoring digit-by-digit square root
algorithm, where it only uses subtracts operation and appends 01.

Figure 4. A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned 6-bit square root

Figure 5. Internal structure of
a CSM block

Figure 6. A simple hardware implementation of the non-restoring digit-by-digit algorithm for
unsigned n-bit square root

To be optimizer hardware resource saving of the implementation above, specialized

entities can be created as building block components. It will eliminate circuitry that is not
needed. As example, the implementation in Figure 6 for unsigned 6-bit square root can be
optimized become as shown in Figure 7 (in this case, the remainder is ignored, because in the
DTC drive, it is not required). The specialized entities A, B, C, D and E are minimized CSM
when input ybu=100, yu=00, u=0, yu=10, and y=0 respectively, and the remainder is ignored.

TELKOMNIKA ISSN: 1693-6930 ■

An Optimized Square Root Algorithm for Implementation in FPGA Hardware (Tole Sutikno)

5

The generalization of optimized simple implementation of the non-restoring digit-by-digit
algorithm for unsigned n-bit square root is shown in Figure 8.

Figure 7. Optimized simple hardware implementation of the non-restoring digit-by-digit algorithm
for unsigned 6-bit square root

Figure 8. Optimized simple hardware implementation of the non-restoring digit-by-digit algorithm
for unsigned n-bit square root

4. RESULTS AND ANALYSIS

In the previous sections, optimized simple hardware implementation method of the non-
restoring digit-by-digit algorithm for square root and the difficult task in DTC to calculate square
root were explained. In this section, simulation results of 32-bit and 64-bit square root based on
Altera APEX 20KE FPGA by using method above are presented, as shown in Figure 9. In this
simulation, P is radicand and U is quotient. The results showed that the implementation has
succeeded and worked properly.

Based on compilation report, to implement 32-bit and 64-bit square root using optimized
simple hardware implementation method of the non-restoring digit-by-digit algorithm are needed

 ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 1, April 2010 : 1 - 8

6

256 and 1023 logic element (LE) respectively. The comparison of results obtained from different
implementation method is shown in Table 1.

(a)

(b)

(c)

(d)

Figure 9. Simulation result of n-bit square root using optimized simple hardware implementation

method of the non-restoring digit-by-digit algorithm: (a) 32-bit in decimal display, (b) 32-bit in
binary display, (c) 64-bit in decimal display, (d) 64-bit in binary display

Table 1. The comparison of logic element usage

No Method
LE Usage

32-bit square root 64-bit square root
1 Classical-NR 1008 4092
2 Reduced-Area-NR 632 2464
3 Modular-NR 624 2468
4 Simple-X-Module 648 2488
5 Proposed 256 1023

Note: Altera APEX 20KE & Xilinx Virtex-E, 1 LC = 1 LE, and 1 CLB = 4 LE [31]

This comparison of LE or logic cell (LC) usage is listed based on references [29] and

[30]. The number of employed LE indicates the size of the implemented circuit “hardware
resource”. Table 1 showed that proposed method is most efficient of hardware resource. Based
on Figure 8, the strategy is very easy to be expanded for larger number to solve complicated
square root problem in FPGA implementation.

TELKOMNIKA ISSN: 1693-6930 ■

An Optimized Square Root Algorithm for Implementation in FPGA Hardware (Tole Sutikno)

7

5. CONCLUSION
This contribution presented digit-by-digit calculation method as a proposed simple

strategy for implementation in field programmable gate array (FPGA) hardware mainly to solve
complicated square root. The main principle of proposed method is two-bit shifting and
subtracting-multiplexing operations. The proposed strategy has conducted to implement FPGA
based unsigned 32 bit and 64-bit binary square root successfully. The results have shown that
proposed method is most efficient of hardware resource compare to other methods. The method
also can be expanded to larger number easily, to solve complicated square root problem in
FPGA implementation.

REFERENCES
[1]. Takahashi I, Noguchi T. A New Quick-Response and High-Efficiency Control Strategy of

an Induction Motor. IEEE Transactions on Industry Applications. 1986; IA-22(5): 820-827.
[2]. Depenbrock M. Direct Self Control (DSC) of Inverter-fed Induction Machine. IEEE Trans.

on Power Electronics. 1988; 3(4): 420-429.
[3]. Habetler TG, Profumo F, Pastorelli M, Tolbert LM. Direct Torque Control of Induction

Machines Using Space Vector Modulation. IEEE Transactions on Industry Applications.
1992; 28(5): 1045-1053.

[4]. Zhong L, Rahman MF, Hu WY, Lim KW. Analysis of Direct Torque Control in Permanent
Magnet Synchronous Motor Drives. IEEE Transactions on Power Electronics. 1997;
12(3): 528-536.

[5]. French C, Acarnley P. Direct Torque Control of Permanent Magnet Drives. IEEE
Transactions on Industry Applications. 1996; 32(5): 1080-1088.

[6]. Yong L, Zhu ZQ, Howe D. Direct Torque Control of Brushless DC Drives with Reduced
Torque Ripple. IEEE Transactions on Industry Applications. 2005; 41(2): 599-608.

[7]. Yong L, Zhu ZQ, Howe D. Commutation-Torque-Ripple Minimization in Direct-Torque-
Controlled PM Brushless DC Drives. IEEE Transactions on Industry Applications. 2007;
43(5): 1012-1021.

[8]. Bose BK, Szczesny PM. A Microcomputer-based Control and Simulation of An Advanced
IPM Synchronous Machine Drive System for Electric Vehicle Propulsion. IEEE
Transactions on Industrial Electronics. 1988; 35(4): 547-559.

[9]. Lianbing L, Hexu S, Xiaojun W, Yongqing T. A High-Performance Direct Torque Control
Based on DSP in Permanent Magnet Synchronous Motor Drive. Proceedings of the 4th
World Congress on Intelligent Control and Automation. 2002; 2: 1622-1625.

[10]. Weijie L. Implementation of Direct Torque Control for Permanent Magnet Synchronous
Motor with Space Vector Modulation Based on DSP. 8th International Conference on
Signal Processing. 2006; 4: 101-104.

[11]. Cruz SMA, Toliyat HA, Cardoso AJM. DSP Implementation of The Multiple Reference
Frames Theory for The Diagnosis of Stator Faults in A DTC Induction Motor Drive. IEEE
Transactions on Energy Conversion. 2005; 20(2): 329-335.

[12]. Monmasson E, Cirstea MN. FPGA Design Methodology for Industrial Control Systems: A
Review. IEEE Transactions on Industrial Electronics. 2007; 54(4): 1824-1842.

[13]. Kowalski CT, Lis J, Orlowska-Kowalska T. FPGA Implementation of DTC Control Method
for the Induction Motor Drive. The International Conference on Computer as a Tool
(EUROCON). 2007:1916-1921.

[14]. Colli VD, Di Stefano R, Marignetti F, Scarano M. Design of a System-on-Chip PMSM
Drive Sensorless Control. IEEE International Symposium on Industrial Electronics (ISIE).
2007: 2386-2391.

[15]. Yamin L, Wanming C. Implementation of Single Precision Floating Point Square Root on
FPGAs. IEEE Symposium on FPGA for Custom Computing Machines. Napa, California,
USA. 1997: 226-232.

[16]. Piromsopa K, Aporntewan C, Chongstitvatana P. An FPGA Implementation of A Fixed-
Point Square Root Operation. Int. Symp. on Communications and Information Technology
(ISCIT 2001). ChiangMai, Thailand. 2001: 100-102.

[17]. Lachowicz S, Pfleiderer HJ. Fast Evaluation of the Square Root and Other Nonlinear
Functions in FPGA. 4th IEEE International Symposium on Electronic Design, Test and
Applications (DELTA). 2008: 474-477.

 ISSN: 1693-6930

TELKOMNIKA Vol. 8, No. 1, April 2010 : 1 - 8

8

[18]. Ercegovac MD. On Digit-by-Digit Methods for Computing Certain Functions. Conference
Record of the Forty-First Asilomar Conference on in Signals, Systems and Computers
(ACSSC). 2007: 338-342.

[19]. Kosheleva O. Babylonian Method of Computing The Square Root: Justifications Based on
Fuzzy Techniques and on Computational Complexity. Annual Meeting of the North
American Fuzzy Information Processing Society (NAFIPS). 2009: 1-6.

[20]. Ligon WB, Monn IG, Stanzione D, Stivers F, Underwood KD. Implementation and
Analysis of Numerical Components for Reconfigurable Computing. IEEE Proceedings
Aerospace Conference.1999; 2:325-335.

[21]. Taek-Jun K, Sondeen J, Draper J. Floating-Point Division and Square Root
Implementation Using A Taylor-Series Expansion Algorithm. 15th IEEE International
Conference on Electronics, Circuits and Systems (ICECS). 2008:702-705.

[22]. Kabuo H, Taniguchi T, Miyoshi A, Yamashita H, Urano M, Edamatsu H, Kuninobu S.
Accurate Rounding Scheme for The Newton-Raphson Method Using Redundant Binary
Representation. IEEE Transactions on Computers. 1994; 43(1): 43-51.

[23]. Allie M, Lyons R. A Root of Less Evil [Digital Signal Processing]. IEEE Signal Processing
Magazine. 2005; 22(2): 93-96.

[24]. Liang-Kai W, Schulte MJ. Decimal Floating-Point Square Root Using Newton-Raphson
Iteration. 16th IEEE International Conference on Application-Specific Systems,
Architecture Processors (ASAP). 2005: 309-315.

[25]. Tchoumatchenko V, Vassileva T, Gurov P. A FPGA Based Square-Root Coprocessor.
Proceedings of the 22nd EUROMICRO Conference Beyond 2000: Hardware and
Software Design Strategies. 1996: 520-525.

[26]. Takagi N, Takagi K. A VLSI Algorithm for Integer Square-Rooting. International
Symposium on Intelligent Signal Processing and Communications (ISPACS). 2006: 626-
629.

[27]. Yamin L, Wanming C. Parallel-Array Implementations of A Non-Restoring Square Root
Algorithm. IEEE International Conference on Computer Design: VLSI in Computers and
Processors (ICCD). 1997: 690-695.

[28]. Xiumin W, Yang Z, Qiang Y, Shihua Y. A New Algorithm for Designing Square Root
Calculators Based on FPGA with Pipeline Technology. Ninth International Conference on
Hybrid Intelligent Systems (HIS). 2009: 99-102.

[29]. Samavi S, Sadrabadi A, Fanian A. Modular Array Structure For Non-Restoring Square
Root Circuit. Journal of Systems Architecture. 2008;54(10): 957-966.

[30]. Comparing Altera APEX 20KE & Xilinx Virtex-E Logic Densities. Altera Corporation. 2010.

