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Abstrak 
Derau fasa adalah parameter paling penting dalam banyak osilator. Pada makalah ini, 

persamaan diferensial stokastik non-linear diusulkan untuk pendekatan analisis derau fasa. 
Selanjutnya diskusi dan perbandingan pengaruh dari dua sumber derau berbeda pada osilator 
Van Der Pol mengadopsi metode ini. Salah satu sumber derau adalah proses derau putih 
(white noise), yang mana adalah benar-benar proses stokastik, dan sumber derau lainnya 
adalah sistem deterministik sesungguhnya, yang menunjukkan perilaku khaotis di beberapa 
region. Perilaku osilator dalam kondisi yang berbeda diteliti secara numerik. Hasil penelitian 
menunjukkan bahwa derau fasa dari osilator lebih dipengaruhi oleh derau yang timbul dari 
khaotis daripada derau yang timbul dari proses stokastik asli pada intensitas derau yang sama. 

  
Kata kunci: derau khaotis, derau fasa, osilator, persamaan diferensial non-linear stokastik 

 
 

Abstract 
 Phase noise is the most important parameter in many oscillators. The proposed 

method in this paper is based on nonlinear stochastic differential equation for phase noise 
analysis approach. The influences of two different sources of noise in the Van Der Pol oscillator 
adopted this method are compared. The source of noise is a white noise process which is a 
genuinely stochastic process and the other is actually a deterministic system, which exhibits 
chaotic behavior in some regions. The behavior of the oscillator under different conditions is 
investigated numerically. It is shown that the phase noise of the oscillator is affected by a noise 
arising from chaos than a noise arising from the genuine stochastic process at the same noise 
intensity. 
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1. Introduction 

Phase noise and short term frequency stability are two representations of the same 
physical phenomenon. Short term frequency stability is a time domain description. Phase noise 
is a frequency domain description which describes stochastic fluctuation of oscillator phase. 
Phase noise is defined as the ratio of the single side-band power at a frequency offset of from 
the carrier with a measurement bandwidth of 1Hz to the carrier power. Signal contained phase 
noise is whether an emission excitation signal or local oscillation signal, noise will likewise 
appear in receiving end with signal. Thereby, Signal-to-noise ratio will be descended and error 
rate will be worsened as a result of the unwanted carrier modulation. So, it becomes 
increasingly important to research phase noise of oscillators. 

Although the topic of noise in oscillators has engaged classical investigations of a 
qualitative nature [1], [2], Leeson [3] was the first to propose a simple intuitive 
phenomenological model [4] relating the level of phase noise in a widely used class of 
resonator-based oscillators to voltage and current noise sources in the circuit elements. This 
model has been widely embraced, and serves well to predict oscillator phase noise induced by 
sources of white noise. However, while Leeson admits that device flicker (1/f) noise may 
determine the phase noise very close to the oscillation frequency, his model cannot explain 
why. Using a linear time variant (LTV) model for the oscillator, Hajimiri and Lee [5] has proposed 
a phase-noise analysis method, which explains this up-conversion phenomenon, but it cannot 
predict the phase noise at frequency offsets very close to carrier. Kaertner [6] and Demir [7], [8] 
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use perspective of a state-space trajectory to analyze phase noise of oscillators. In their works, 
the noise causing perturbation is decomposed into two parts. One part causes a deviation in the 
state-space solution along the unperturbed trajectory, effectually altering the phase of the 
solution. The other part results in a deviation considered an orbital perturbation. The orbital 
perturbation can be shown to remain small given a small noise.  And then analyze oscillator 
phase noise by a linearization of the oscillator equations around the noiseless periodic steady-
state solution. 

In fact, all of the previous approaches to oscillator phase noise analysis are based on 
some kind of explicit or implicit perturbation analysis, some linear and some nonlinear. 
However, oscillator system is essentially a nonlinear system. Any linearization method will 
change the essence of oscillator, so a new nonlinear stochastic analysis method is needed to 
analyze the phase noise without linearization operation. This paper directly describes oscillators 
by using nonlinear autonomous differential equation, and introduces noise signal as a term of 
nonlinear autonomous differential equation. Setting up nonlinear stochastic differential equation 
(NSDE) analyses phase noise of oscillators. And then adopt this method to compares the 
influence of two different sources of noise in the Van der Pol oscillator, one source of noise is a 
white noise process, which is a genuinely stochastic process; the other source of noise is 
actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior 
of the oscillator under different conditions is investigated numerically. It is shown that the phase 
noise of the oscillator is affected more by noise arising from chaos than by noise arising from 
the genuine stochastic process at the same noise intensity. 
 
 
2. Research Method 

As any ideal oscillator has an output form as follows 
 

)2cos( 00 ϕπ += ftAx                                                                                                    (1) 
 
where x is output of  oscillator, A0 is amplitude of oscillator, f is output frequency of 

oscillator, φ0 is initial phase, A0, f and φ0 are all constant. Oscillators’ output is a signal spectral 
line in frequency domain at this case. Carefully observe equation (1), it must satisfy differential 
equation as follows 

 

0)2( 2 =+
••

xfx π                                                                                                              (2) 

 
Considering the nonlinear essence of oscillator, introduce nonlinear term ),(

•
xxfε  to 

describe nonlinear active device of oscillator. Without loss of generality, without noise, the 
oscillator is described by the scalar, ordinary differential equation   

 

0),( =++
•••
xxfxx ε                                                                                                           (3) 

 
where ε is a real number. The function f is nonlinear so ε is a parameter that controls the 

degree of nonlinearity of the system. Introduced noise term, to describe oscillator with noise  
can be gotten the equation 

 

)(),( twxxfxx =++
•••

ε                               (4) 

 
where w(t) is the noise. 

 
 
3. Results and Analysis 

Using Van der Pol oscillator as example, although it may not be as completely 
applicable to modern transistor oscillators, it is often used as a example to illustrate features of 
nonlinear oscillators. Considering the general sense of nonlinear stochastic differential equation, 
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it is not loss of generality to explain problem by using Van der Pol oscillator. Figure 1 shows a 
schematic of a Van der Pol oscillator. 

 
 

 
 

Figure 1. Van der Pol oscillator 
 
 
Considering the situation of no noise, described Figure 1 equation can be written 
 

∫ =++ 0)(
1
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Ldt

dv
C               (5) 

 
Let 
 

∫= vdtx             (6) 
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Then, substituting the above expression into equation (5), it be obtained 
 

0)(
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••••
xxx

RC
x

LC
x            (8) 

 

In order to gain numerical solution for equation (8), let LC=1，1/RC=0.1, the equation is 
had 

 

0)(1.0 2 =−−+
••••
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Rewriting equation (9) as a system of equations, it is gotten 
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xyxy

yx
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                    (10) 

 

It exist only one equilibrium position (0,0), in this position, which has a pair of conjugate 
complex root with positive real part, so this equilibrium point is an unstable focal point. 
According to Lienard’s limit cycle theory [9], stable limit cycle exist in equation (9). 

Introduced noise term w(t), the equation for described Van der Pol oscillator with noise 
is 

 

)()(1.0 2 twxxxxx =−−+
••••

         (11) 
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3.1. The output of Van der Pol oscillator without noise 

Using four-order fix-step Runge-Kutta method to obtain numerical solution for  
equation (9), a stable periodic solution is gotten, whose phase diagram and solution is shown in 
Figure 2. 

 
 

 
 

Figure 2. Phase diagram and solution of equation (9). 
 
 
3.2. The output and phase noise of Van der Pol oscillator with chaos noise 

In order to produce chaos noise, considering the situation of nonlinear differential 
equation actuated by periodic signal without loss of generality is 

 

3

1

cos( )
n

i i
i

x x x x f tεδ ε ω
⋅⋅ ⋅

=

+ + − = ∑          (12) 

 
Where δ  is a damping coefficient, 0 1ε< << , n is number of periodic signal, fi is 

amplitude of periodic signal, iω  frequency of periodic signal. 

Rewriting equation (12) as a system of equations, it is gotten 
 

3

1

( cos( ))
n

i i
i

x y

y x x y f tε δ ω

⋅

⋅

=

 =


= − + + − +


∑
                           (13) 

 

When ε =0, system (12) is Hamilton system, whose Hamilton quantity is 
 

2 2 41 1 1
( , )

2 2 4
H x y y x x const= + − =        (14) 

 
Due to 

 

3

0

0

x y

y x x

⋅

⋅

 = =

 = − + =

                     (15) 

 

It is known that (1,0) and (-1,0) is saddle point of system (14), (0,0) is center of system (14). 
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When const=0.25, there are two heteroclinic orbits to connect (1,0) with (-1,0), two 
parameter equation of heteroclinic orbits are 

 

2
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         (16) 

 
The Melnikov function for equation (16) is 
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where 
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According to Melnikov theory, when , ,i ifδ ω  value make existed '
0t  to satisfy 
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System (12) produces chaos. 

It is selected n=3, (fi, ωi)={(35,1),(40,4),(10,13)}, according to the conditions mentioned 
above, produced chaos noise is shown in Figure 3. Adopting algorithm proposed by Wolf [10] 
for produced chaos noise by equation (12), it is gotten two Lyapunov exponents are λ1= 
0.089254, λ2= -0.189278 at t=500, whose time-evolvement curve is shown in Figure 4. By 
reason of maximal Lyapunov exponent greater than zero, it indicates that x’s values are 
determinately chaos data in Figure 3. 

 
 

 
 

Figure 3. Phase diagram and solution of produced chaos noise by equation (12). 
 
 

 
 

Figure 4. Time-evolvement curve of chaos noise Lyapunov exponents. 
 
 
Let w(t) is chaos noise in equation (11), using produced chaos noise by equation (12) 

and setting its variance is 0.01, obtained solutions by using stochastic Runge-Kutta method [11] 
are shown in Figure 5. 
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Figure 5. Phase diagram, solution and phase noise of Eqn (11) whose w(t) 
is chaos noise. (a) is phase diagram, (b) is x’s solution, (c) is phase noise 

 
 
3.3. The output and phase noise of Van der Pol oscillator with white noise 

Let w(t) is white noise in equation (11), setting its intensity is 0.01, obtained solutions by 
using stochastic Runge-Kutta method are shown in Fig. 6. 

 
 

 
 

Figure 6. Phase diagram, solution and phase noise of equation (11) whose w(t) 
is white noise. (a) is phase diagram, (b) is x’s solution, (c) is phase noise 

 
 

3.4. The output and phase noise of Van der Pol oscillator with combination noise 
Let w(t) is combination noise in equation (11), i.e. white noise add chaos noise. Setting 

its variance is 0.01, obtained solutions by using stochastic Runge-Kutta method are shown in 
Figure 7. 

 
 

 
 

Figure 7. Phase diagram, solution and phase noise of equation (11) whose w(t) 
 is combination  noise. (a) is phase diagram, (b) is x’s solution, (c) is phase noise 
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Compared phase noise produce by white noise, chaos noise with combination noise in 
NSDE is shown in Figure 8. 

 
 

 
 

Figure 8. Compared phase noise produce by white noise, chaos noise with combination 
noise in NSDE, (a) is compared phase noise within large offset frequency, (b) is compared 

phase noise within small offset frequency. 
 

 
4. Conclusion 

By setting up NSDE to describe oscillator, it can be conveniently used numerical 
methods to analyses phase noise of oscillator system. Analyzing Fig. 8, it can be discovered 
that phase noise produced by chaos noise has a larger value than that of by white noise and 
very close to phase noise by combination noise under the same intensity conditions. This is due 
to pseudo-random of chaos noise. Because chaos noise is produced by deterministic system, 
amongst chaos noise has a long-larger correlative degree than that of white noise, which results 
in a small stochastic averaging of NSDE, so produces a large phase noise output. Because of 
universality of the chaos phenomena, chaos noise determinately exists in oscillator system. 
Therefore, in order to reduce phase noise in output of oscillator, it should be used the chaos 
control method to reduce chaos noise as great as possible by the time it is designed the 
oscillator. It is also an important research direction to use analytic methods to obtain analytic 
solution of NSDE in some sense for guiding minimized phase noise in an oscillator design. 
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