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Abstract
The previous study investigated the fiber parameters on the analytical one-pump fiber optical para-

metric amplifier (FOPA) gain spectrum of a loss-free highly-nonlinear dispersion-shifted fiber (HNL-DSF) and
got the optimum results for each parameter. However, the FOPA gain of the combination of all the optimum
values of the considered parameters was not reported. Hence, this paper intends to investigate the analyti-
cal FOPA gain of the combination of all the optimum values of the considered parameters from the previous
study. Later, the analytical gain was compared with the numerical gain from the fourth-order Runge-Kutta
(RK4) method and Matlab built-in function, ode45. Next, the effect of fiber loss and higher order dispersion
coefficients such as fourth and sixth-order dispersion coefficients were studied. It is found that RK4 gives
a smaller error and the gain reduces while the bandwidth remains same in presence of fiber loss. The
fourth-order dispersion coefficient broadens the bandwidth a bit while maintaining the gain and there are two
narrow-band gains generated to the left and right-side of the broad-band gain. The sixth-order dispersion
coefficient just shifts the two narrow-band gains toward or away from the broadband gain depending on the
positive or negative signs of the sixth-order dispersion coefficient.
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1. Introduction
Optical communication is used in handling the ever increasing demand of Internet traffic.

The propagation of an optical pulse through optical fiber at long haul distance will experience the
decay in amplitude because the nonlinearity cannot compensate the dispersion due to the fiber
loss. Hence, the optical pulse needs to be amplified. The commonly used amplifier is Erbium-
doped fiber amplifier (EDFA) which was invented in 1980. It amplifies light in C-band (wavelength1
ranges 1530nm-1565nm) where telecommunication fibers have a minimum loss. However, EDFA
adds noise and nonlinearity to the amplified signal. Another family of the optical amplifier is
Raman amplifier (RA) which uses stimulated Raman scattering (SRS) to transfer energy from
one or more pump sources to the transmitted optical signal. Although, Raman amplification can
operate at any wavelength depending on the pump wavelength, but, it needs high pump power
and has problems with double Rayleigh backscattering (DRB) which creates noise.

Fiber optical parametric amplifier (FOPA) is operated based on four-wave mixing (FWM)
process. FWM occurs when a signal light with angular frequency ωs is launched in an optical fiber
along with two strong pumps with angular frequencies ωp1 and ωp2. At the end of the fiber, the sig-
nal is amplified and an idler wave is generated with angular frequency ωi through phase-matching
condition, ωi = ωp1 + ωp2 − ωs. When the frequencies of these two pumping waves are identical,
the ”degenerated four-wave mixing” (DFWM) occurs such that ωi = 2ωp − ωs. FOPAs can be
classified into one-pump (1-P) where a single pump wave is used in fiber and into two pump (2-P)
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in which two pump waves are applied into the fiber. FOPA can perform similar functions compara-
ble to existing amplifiers on top of remarkable features that are not offered by existing amplifiers
such as wide bandwidth [1], adjustable gain spectra, adjustable center frequency, wavelength
conversion, phase conjugation, pulsed operation for signal processing and 0-dB noise figure [2].

The development of a dispersion-shifted fiber (DSF) with zero-dispersion wavelength
(ZDW) located in the C-band [3] and the same of a silica-based highly-nonlinear DSF (HNL-DSF)
[4] has sparked the researches of FOPA. A good FOPA needs to provide broad bandwidth and
high gain. The performance of a FOPA is dependent on fiber parameters. The influence of fiber
parameters such as fiber length, pump power and dispersion order towards a host lead-silicate
baased binary ulti-clad microstructure fiber was analyzed by [5]. Cheng et. al [6] studied the
effect of pump wavelengths and powers on dual-pump configuration of FWM on highly nonlinear
tellurite fibers with tailored chromatic dispersion. Maji and Chaudhuri [7] investigated fiber param-
eters such as fiber length, pump power and pump wavelength towards the analytical FOPA gains
of three ZDW in the near-zero ultra-flat photonic crystal fibers (PCF) around the communication
wavelength by tuning pumping condition. A study in [8] concluded that by changing temperature
of the fiber and tuning the chromatic dispersion profile and ZDW of the optimized PCF, then a wide
gain spectrum in the communication wavelength can be achieved .

Othman et.al [9] studied the influence of fiber parameters like fiber length, pump power,
pump wavelength and dispersion slope on the analytical FOPA gain of a single-pump loss-free
HNL-DSF. They showed that the long fiber length, the high pump power, the pump wavelength
close to ZDW and the small dispersion slope give a wider bandwidth and a high gain. However,
they did not plot the combination of the optimum cases for each of the above-mentioned parame-
ters and they considered HNL-DSF as lossless.

Pakarzadeh and Bagheri [10] investigated the gain spectrum and saturation behavior of
one-pump FOPA in the presence of the fourth-order dispersion coefficient. They concluded that
when the pump wavelength is near to or exactly at ZDW and when the difference between the
signal and pump waves is large enough, the fourth-order coefficient β4 is important to be taken
into account. Dainese [11] presented a scheme to optimize the PCF chromatic dispersion curve
and higher order dispersion coefficients up to β14 for a broadband FOPA.

Motivated with the work of [9] and the importance to include higher order dispersion when
the pump wavelength close to or exactly at ZDW and when the difference between the signal and
pump waves is large enough. Hence, hence in this paper, the optimum combination from [9] is
utilized and the analytical gain is compared with the fourth-order Runge-Kutta (RK4) method and
with Matlab built-in ordinary differential equation (ode) function, which is ode45. Practically, fiber
is not loss-free for which the fiber loss is added to the optimum combination case and the problem
is solved by using the RK4 method. Lastly, the higher dispersion coefficients β4 and β6 are added
slowly to see their effects on the FOPA performance.

2. Mathematical Model
The three coupled amplitude equations for pump Ap, signal As and idler Ai that describe

the propagation of three interacting waves in 1-P FOPA are given by [12] as

dAp
dz

= iγ
[
Ap
(
|Ap|2 + 2(|As|2 + |Ai|2)

)
+ 2AsAiA

∗
p exp (i4βz)

]
− 1

2
αAp = f1(z,Ap, As, Ai), (1)

dAs
dz

= iγ
[
As
(
|As|2 + 2(|Ap|2 + |Ai|2)

)
+A∗iA

2
p exp (−i4βz)

]
− 1

2
αAs = f2(z,Ap, As, Ai), (2)

dAi
dz

= iγ
[
Ai
(
|Ai|2 + 2(|Ap|2 + |As|2)

)
+A∗sA

2
p exp (−i4βz)

]
− 1

2
αAi = f3(z,Ap, As, Ai). (3)

The first term of the right-hand side of the equations represents the self-phase modulation (SPM),
whereas the second and third terms are cross-phase modulation (XPM). The fourth term acts as
power transfer due to FWM and fiber attenuation is represented at the last term.

Here α is the fiber loss, γ is the nonlinear parameter and ∗ represents complex conjugate.
Meanwhile,4β is the linear wave vector mismatch between the interacting waves of pump, signal
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and idler as given by [12]

4β = 2

∞∑
m=1

β2m
(2m)!

(4ω)2m, (4)

where 4ω = ωs − ωp is the frequency detuning, ωk = 2πc/λk for k ∈ {p, s} are the frequencies
of pump and signal in terms of wavelength, λk. The dispersion coefficients of odd order do not
contribute to the gain spectrum and hence only even order coefficients are taken into account
[12]. By taking m = 1, 2 and 3 in expression (4), the linear wave vector mismatch up to the sixth
order dispersion coefficient β6 is expressed as

4β = β2(4ω)2 +
β4
12

(4ω)4 + β6
360

(4ω)6. (5)

For m = 1, 2 and 3, β2, β4 and β6 are illustrated respectively by [5] as

β2m =

∞∑
n=2m

βn0
(n− 2m)!

(ωp − ω0)
n−2m, (6)

where βn0 = dnβ(ω)/dωn|ω=ω0 is the dispersion coefficients calculated at the zero dispersion
frequency, ω0. By combining (5) and (6) for m = 1 to 3, the 4β can be written as

4β = β2(4ω)2 +
β4
3

[
2(ωp − ω0)

2 +
1

4
(4ω)2

]
(4ω)2 + β6

24

[
(ωp − ω0)

4 +
1

15
(4ω)4

]
(4ω)2. (7)

Here β2, β4 and β6 are the second, fourth and sixth-order dispersion constants. Eq. (7) shows
the significance of β4 and β6 when pump wavelength approaches to or precisely at ZDW and 4ω
is large.

If the fiber loss is negligible in Eqs (1)-(3), the analytical parametric gain is written as [13]

G = 1 +

[
γPp
g

sinh(gL)

]2
, (8)

with L as fiber length, Pp as pump power and g is expressed as

g =

√
(γPp)2 −

κ

2

2
(9)

and the total phase-mismatch, κ is indicated by

κ = 4β + 2γPp. (10)

3. Fourth-Order Runge-Kutta (RK4) Method
If the fiber loss is included, the Eqs. (1)-(3) cannot be solved analytically to obtain the

analytical gain. Hence the spatial variable z in Eqs. (1)-(3) is made discrete into n segments with
a step size h such that z0 = 0, z1 = z0 + h, z2 = z1 + h,. . . , zn = zn−1 + h = L. With j = 0
and initial amplitudes for pump A0

p, signal A0
s and idler A0

i at z0 = 0, the amplitudes for pump A1
p,

signal A1
s and idler A1

i at next spatial z1 are given by the RK4 method as follows:

Aj+1
p = Ajp +

k1 + 2k2 + 2k3 + k4
6

, (11)

Aj+1
s = Ajs +

l1 + 2l2 + 2l3 + l4
6

, (12)

Aj+1
i = Aji +

m1 + 2m2 + 2m3 +m4

6
, for j = 0, 1, ..n (13)
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Where
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(14)

With amplitudes for pump A1
p, signal A1

s and idler A1
i at spatial z1, the amplitudes for pump

A2
p, signal A2

s and idler A2
i at next spatial z2 is calculated iteratively from Eq. (13). The process is

iterated till zj = zn = L. At the end of the fiber, let the output signal amplitude Ans = As, out. The
numerical gain G is calculated as Gnumerical = 10 log(Ps, out/Ps, in), where Ps, out and Ps, in are
output and input signal powers respectively. Ps, out = |As, out|2 while Ps, in = |A0

s|2.

4. Specification of HNL-DSF
In this numerical simulation, a HNL-DSF of OFS company with α = 0.82dB/km, γ =

11.5W−1km−1 and ZDW at λ0 = 1556.5nm were used as the parametric gain medium . Then, the
optimum case of fiber length L = 500m, pump power, Pp = 30dBm, pump wavelength, λp = 1559
and dispersion slope s = 0.01 from [9] were used in this simulation with signal wavelength from
1400nm to 1700nm. Next, the dispersion D from the fiber data sheet versus wavelength was
plotted. Subsequently, the second-order dispersion coefficient, β2 was calculated from

β2 = − λ2

2πc
D, (15)

where c is speed of light.
After that, a second-order degree polynomial fit, D = aλ2 + bλ + d, where a, b and d are

some coefficients was performed to obtain the quadratic equation for D. Later, D was differentiate
twice to get a first-order derivative, Dλ and second-order derivatives, dDλ

dλ in order to obtain the
fourth-order and sixth-order dispersion coefficients from the following respective equations:

β4 = − λ4

(2πc)3
(6D + 6λDλ + λ2

dDλ

dλ
), (16)

β6 = − λ6

(2πc)5
(120D + 240λDλ + 120λ2

dDλ

dλ
+ 20λ3

d2Dλ

dλ2
+ λ4

d3Dλ

dλ3
). (17)

The second, fourth and sixth-order dispersion coeeficients were obtained as β2 = −3.872 ×
10−2ps2/km , β4 = 6.327× 10−5ps4/km and β6 = 1.186× 10−8ps6/km.

5. Results and Analysis
The analytical gain of a lossless HNL-DSF was calculated by using Eqs.(8)-(10). Figure.

1(a) portrays the analytical gain of the above lossless HNL-DSF. It shows a gain spectrum from
1514nm to 1607nm with a peak gain of 43.9234dB which has a broader bandwidth if compared to
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[9]. Meanwhile, Eqs (1)-(3) with α = 0dB/km were solved numerically by using Eqs. (11)-(13) of
the RK4 method with a step size h = 0.1. The RK4 gain was plotted in Fig. 1(b). Intuitively, both
Figs. 1(a) and 1(b) are indistinguishable.
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Figure 1. (a) The analytical gain spectrum (b) The RK4 gain spectrum

Later, Eqs.(1)-(3) with α = 0dB/km were again solved numerically by using Matlab built-
in ode function, known as ode45. The ode45 gain was plotted in Fig. 2(b). Fig. 2(a) depicts the
analytical gain. Here also, both the Figs. 2(a) and 2(b) are identical.
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Figure 2. (a) The analytical gain spectrum (b) The ode45 gain spectrum

To check whether both the analytical gain (Fig. 1(a)) and RK4 gain (Fig. 1(b)) are abso-
lutely similar, they were plotted on the same graph as displayed in Fig. 3(a). Whereas, both the
analytical gain (Fig. 2(a)) and ode45 gain (Fig. 2(b)) were plotted on the same graph as displayed
in Fig. 3(b) to check if they are literally look-alike. It is noticed that both the analytical and RK4
gains are overlapped accurately. Similarly, both the analytical and ode45 gains are overlapped on
one another.
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Figure 3. (a) The overlapped analytical and RK4 gain spectrum (b) The overlapped analytical and
ode45 gain spectrum

Even though graphically both the analytical and RK4 gains are overlapped exactly, the
absolute errors between the analytical and RK4 gains were calculated and plotted in Fig. 4(a)
which reveals that still there are some small errors between the analytical and RK4 gains with the
maximum error of 0.02215. On the other hand, the absolute errors between the analytical and
ode45 gains were pictured in Fig. 4(b) and it exposes that there are some errors between the
analytical and ode45 gains with a maximum error of 0.9682. Comparatively, Fig 4 proves that the
RK4 method gives a smaller error if compared to ode45.

1400 1450 1500 1550 1600 1650 1700
0

0.005

0.01

0.015

0.02

0.025

Wavelength (nm)

G
ai

n 
(d

B
)

1400 1450 1500 1550 1600 1650 1700
0

0.5

1

1.5

Wavelength (nm)

G
ai

n 
(d

B
)

Figure 4. (a) Absolute error of analytical and RK4 gain spectrum (b) Absolute error of analytical
and ode45 gain spectrum

Furthermore, there is no analytical solution if fiber loss as α = 0.82dB/km is taken into
consideration in Eqs.(1)-(3). Hence, based on the smaller error given by the RK4 method in
comparison with ode45 in Fig. 4, Eqs.(1)-(3) were solved numerically by the RK4 method up
to the second order dispersion coefficient as expressed in vector mismatch Eq. (7). The FOPA
gains for both the loss-free fiber and lossy fiber with an attenuation coefficient of α = 0.82dB/km
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are shown in Fig. 5. It is found that the peak gain is reduced when the fiber loss is taken into
account, but the bandwidth remains the same. This pattern is similar with research work in [10]
that included fiber loss and the fourth-order coefficient. They compared their work with previous
research works without including fiber loss and the fourth-order coefficient and it was observed
that the peak gain spectrum with the fiber loss was reduced.
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Figure 5. The gain spectrum up to second-order dispersion coefficient of a loss-free and lossy
HNL-DSF

Lastly, to study the effect of higher-order dispersion coefficient such as the fourth order
and sixth order dispersion coefficients toward the performance of a lossy HNL-DSF FOPA, Eqs.(1-
3) were solved numerically by the RK4 method up to the fourth order and sixth order dispersion
coefficients given in vector mismatch Eq. (7) one by one. The FOPA gains of the second, fourth
and sixth order dispersion coefficients are given in Fig. 6. It is noticed that, the fourth-order
dispersion coefficient broadens the bandwidth a bit while maintaining the gain peak as reported
by [10]. Besides, there are two narrow-band gains at the left and right sides of the wide-band gain
due to the effect of the fourth-order dispersion coefficient. The narrow-band at the right side of the
wide-band gain was reported by [11] and [14] in their half range FOPA gain spectrum when the
negative sign of the fourth-order dispersion coefficient was present. It is observed that the positive
sign of the sixth order dispersion coefficient just moves the two narrow-band gain toward the wide-
band gain while the peak gain is unchanged and its broadband gain is overlapped exactly with
the broadband gain from the fourth-order dispersion coefficient.
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Figure 6. The gain spectrum up to second, fourth and positive sixth-order dispersion coefficients
of a lossy HNL-DSF

If the sixth-order dispersion coefficient takes negative sign as seen in Fig. 7, the two
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narrow-band gains will move away from the wide-band gain in comparison to the positive sign
of the sixth-order dispersion coefficient. The broadband gain of the negative sign of the sixth
order dispersion coefficient is overlapped exactly with the broadband gain from the fourth-order
dispersion coefficient too.
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Figure 7. The gain spectrum up to second, fourth and negative sixth -order dispersion coefficient
of a lossy HNL-DSF.

6. Conclusion
This paper has simulated the analytical gain spectrum of the combination of all the opti-

mum values of a lossless HNL-DSF parameters [9] and compared with the RK4 method as well
as Matlab built-in function ode45. It can be concluded that the RK4 method gives a smaller er-
ror if compared with ode45. In practical, fiber is lossy and it is important to include higher order
dispersion coefficients if the pump wavelength is close to or exactly at ZDW and when the differ-
ence between the signal and pump waves is large enough. Hence, fiber loss and higher-order
dispersion coefficients were added slowly to the simulation and were solved numerically by the
RK4 method. It can be concluded that fiber loss damps the peak gain of the FOPA while the
bandwidth is unchanged. On top of that, the fourth-order dispersion coefficient broadens the
bandwidth slightly and generates a narrow-band gain at the left and right sides of the broadband
gain. However, the sixth order dispersion coefficient just moves the left and right narrow-band
gains toward or away the broadband gain depending on its positive and negative signs.
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