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Abstrak 
Mekanisme “price responsive demand shifting bidding” dibahas sebagai solusi alternatif untuk 

menangani intermitansi dalam pembangkit tenaga angin. Makalah ini mengusulkan sebuah formulasi 
persamaan pengurangan harga dan pembatasan emisi ekonomi dengan aksentuasi pada integrasi tenaga 
angin. Analisis ini didasarkan data pembangkitan sistem uji bus IEEE 30 pada pembangkit konvensional 
dan tenaga angin selama periode 24 jam. Hasil penelitian menunjukkan bahwa pendekatan yang 
diusulkan dapat mereduksi harga dan menangani intermitansi dalam pembangkit tenaga angin. 

  
Kata kunci: pembangkit tenaga angin, price responsive demand shifting bidding, sistem uji bus IEEE 30 

 
 

Abstract 
Price responsive demand shifting bidding mechanism is discussed as an alternative solution to 

deal with intermittency in wind generation. This paper proposes a formulation of social welfare equation 
with price responsive demand shifting bidding and economic emission dispatch with emphasis on 
integration of wind power. The analysis is based on the IEEE 30 bus test system generation data, with 
conventional and wind generation plant over a period of 24 hours. It has been demonstrated that the 
proposed approach leads to reduction in emission as well deal with intermittency in wind generation. 

  
Keywords: IEEE 30 bus test system, price responsive demand shifting bidding, wind power generation 
  
 
1.  Introduction 

Due to environmental and energy security benefits there is a positive shift towards the 
production of electrical energy from renewable sources of energy especially from wind which 
are clean and abundantly available in nature. On regulatory side in India and many other 
countries, there are necessities to generate a certain amount of electrical energy from 
renewable sources. China is the country with the largest installed wind power capacity in the 
world at the end of year 2010 whereas India’s total installed wind power capacity is fifth in the 
world. It is reported by the Global Wind Energy Council (GWEC) that global installed wind power 
capacity increased by 24.1% during the year and stands at 197.0 GW in 2010 [1]. Large 
capacity wind power generators are connected to transmission or sub-transmission systems. At 
the end of 2010, India had 13.1 GW of installed wind capacity, with 40% operating in the 
southern state of Tamil Nadu and wind power potential estimated by the Centre for Wind Energy 
Technology (C-WET) is 49.13 GW [2].  

The generation of electric power by conventional sources produces mainly sulfur 
dioxide, carbon, NOx, and mercury emissions causing acid rain, urban smog, and eventually 
global climate change in addition to posing significant health risks. Renewable electricity 
generations mainly from Wind farms help to prevent release of emissions into the atmosphere 
preventing environment damage. On the other hand, unpredictable, intermittent and volatile 
nature of wind energy may threaten power system characteristics such as voltages, frequency 
and generation adequacy which can potentially enlarge the weakness of power systems.  

Demand side management (DSM) incorporates energy efficiency (EE), Energy 
Conservation (EC) and Demand Response (DR). In the most electricity markets; the consumers 
play a much more limited role than producers. It is widely acknowledged that a more active 
participation in the market by the demand side could have significant benefits [3]. A good deal of 
research has been reported on measurement of load elasticity, presuming that industrial, 
residential and commercial consumers will respond to price signals [3]-[8]. DR at end user’s 
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premises can reduce generation, transmission and distribution capacity of utility at relatively 
fractional cost as compared to investment required to provide new capacity. The appropriate 
demand management in modern interconnected power system with dispersed generation may 
also result in reduced associated CO2 emissions in day-ahead electricity markets through price 
responsive demand shifting bidding (PRDS). Su and Kirschen [9] proposed the PRDS bidding 
for market clearing mechanism of day-ahead markets. PRDS bidding quantify the demand 
response in day-ahead market, and some responsive customers are able to shift the demand 
from periods of high locational marginal price (LMP) to the periods of low LMPs. However, the 
market clearing mechanisms developed in [9] do not take into account the operational and 
security constraints of transmission networks. Kanwardeep Singh et al. [10] discussed the 
influence of PRDS bidding on congestion and LMP in Pool-Based Electricity Markets. Impacts of 
availability based tariff on wind power trading option were analyzed in [11].  

This paper investigates these unmatched challenges caused by wind power plants to 
the optimization problem. PRDS bid, emissions constraints, and fuel costs are considered in the 
realization of most favorable generation mix for a system with wind power generation. Fuel 
costs, environmental costs and emissions are considered in the implementation of optimal 
generation mix for a system with wind generation along with PRDS bid to maximize social 
welfare. The rest of the paper is organized as follows: Next section 2 describes wind power 
scenario reduction and PRDS biding mechanism. Section 3 describes research method. Results 
are presented and discussed in section 4. Finally, section 5 concludes the paper. 

 
 

2. The Proposed Method 
The wind power participation into total production of electrical energy depends upon the 

forecast of wind momentum. A principal difficulty with modeling wind power production is that 
the relationship of wind speed to wind power production is extremely nonlinear. The wind power 
generators require no fossil sources hence, the operational cost of wind units has been 
assumed to be zero. Different forecasting approaches available can be studied in [12]-[13]. 
Result of wind power unpredictability can be studied by applying different scenarios into the 
model. Monte Carlo simulation was popularized by scientist in the 1950s. Monte Carlo 
simulation is a method that can model thousands of scenarios and helps to model uncertainties 
of wind power output. It provides a range of possible outcomes together with there probability. 
Modeling all main and possible scenarios determined by the uncertain variables can be done by 
Monte Carlo simulation. These scenarios are defined by the probability distributions and their 
simulation parameters. Many types of probability distributions are used in different situations 
such as normal, uniform and triangular distributions. 

There are many sampling techniques such as Importance sampling, Sobol numbers 
sampling, Midpoint sampling, Latin hypercube sampling (LHS), and LHS Monte Carlo sampling 
to eliminate scenarios with very low probability.  These techniques are engaged to reduce the 
computational requirement to simulate large number of scenarios. LHS has the benefit of 
generating a set of stratified samples that more precisely reflect the shape of a sampled 
distribution and reduces the number of runs. The general effect is that the mean of a set of 
simulation results more quickly approaches the ‘true’ value, particularly for models that are 
simply adding or subtracting a number of variables. The tradeoff between the number of 
reduced scenarios and the simulation precision is possible by choosing the number of reduced 
scenarios so that the objective function would not change much or the relative distance between 
original scenarios and reduced scenarios is within an acceptable level [14], [15]. In this model 
the number of reduced scenarios is chosen to be ten since the value of objective function at this 
number does not change much. The scenarios taken were having the higher probabilities. The 
deviations in wind power have been taken in to account by considering different scenarios. The 
forecasted wind power generated and reduced scenarios data are taken from [16].  

Not all consumers have the facility or the incentive to adjust their demand when prices 
change. Large part of the power requirement will therefore totally inelastic. In price taking bids, 
the demand aggregator is ready to accept a specified amount of power at prevailing market 
price, and its power consumption remains constant irrespective of variations in market price. 
This kind of bid is required to meet necessary daily services to industrial, residential and 
domestic loads. In price responsive bids, the price to be paid by a bidder decreases consistently 
decreasing with respect to increase in power use. Details of PRDS bidding scheme has been 
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formed in [9]. In PRDS bids, an aggregator on behalf of consumers is able to increase or 
decrease its certain percentage of demand in response to market price. Key factor in PRDS 
bidding scheme is price responsive consumer who can transfer its demand from peak demand 
periods of high market price to off peak demand periods in which market price is somewhat low. 

The scope of present paper is to study the influence of PRDS bidding in a hybrid 
system with volatile Wind Power Generation in day-ahead markets.A usual PRDS bid is shown 
in [10]. Main dissimilarity between PRDS bidding scheme and price responsive demand bidding 

is that in PRDS bidding during a particular tht period, maximum demand limit can be greater 
than earlier, to include the fall of load occurred during peak periods due to soaring electricity 
rate, whereas in price responsive bidding scheme loss of load during peak hours can not 
recovered in off peak hours. In PRDS bidding aggregator’s on behalf of responsive consumers 

specifies for particular tht period, its maximum, and minimum price bids and maximum power 
demand which in simplest form can be sum of entire energy need of responsive part. Due to 
negative slope of PRDS bidding responsive part of demand can be less than its maximum value 
because aggregator would accept only that part of demand for which its willing price is less than 
or equal to market declared price. In PRDS bidding aggregator’s price responsive part of energy 
of scheduling period can be consumed in few sub-intervals. In simplest form it can be consumed 
in a single period. Mathematically, it can be represented as: 

 
, max, ,0       k t k t

RS RSD D t T≤ ≤ ∀ ∈  
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where: 

,k t
RSD Consumption of  thk  demand shifting consumer at period t ; 
max, ,k t
RSD Maximum consumption of

thk demand shifting consumer at period t ; 
,  T t∀ Set of scheduling sub-intervals and duration of one sub-interval; 

,RS kE Maximum limit on energy consumed under demand  shifting bid of 
thk  DistCo during entire 

scheduling  period; 
 
Price taking consumers have infinite marginal value due to vertical curve with respect to 

power so it can not be included in consumer gross surplus. In optimization problem gross 
surplus of this type consumers are not included and assumed constant. Thus equations (4) and 
(5) shows how the consumer gross surplus is calculated based on the accepted demand-side 
bids and the marginal value that consumers attach to these bids: 
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where: 
, ,k j t

RSMB  Marginal benefit of
thj segment of 

thk demand shifting  bidder  during 
tht period; 

 J  Number of segment of the bid of bidder; 
, ,

RS

k j tD
 Demand of 

thk bidder during 
tht hour on 

thj segment of its bid; 
,k tGS   thk demand shifting consumer gross surplus at period t ; 
 
In this model certain percentage of power for each hour which is price taking can be 

procured by consumers regardless of market-clearing prices. For a complete and compact 
formulation of the PRDS bidding mechanism the reader is referred to [9], [10]. In the 
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optimization program used for market-clearing, the bid specifications are translated into 
constraints:  (i) on the demand during each period and (ii) on the total demand over the 
optimization horizon. This last specification is implemented as an inequality rather than an 
equality constraint because a demand-side bid below the lowest price at which generators are 
willing to produce would otherwise prevent the market from clearing. The price responsive bids 
are converted into a form suitable for mixed-integer linear programming such as in [9]. 
 
 
3.  Research Method 

The objective is to maximize the social welfare, i.e., the difference between the value 
that consumers attach to the electrical energy that they buy and the cost of generation that has 
been formulated based on classical ELD with emission.  Equation (6) as proposed in [9] is used 
to consider economic load dispatch with emission. The proposed social welfare equation after 
modification is represented as: 
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where: 

φ  
Optimal social welfare; 

,i tF C  Fuel cost of 
thi generator at time t ; 

,i t
Gu  Status of 

thi generator at time t  (1:on, 0:off); 
,i tEEC  Blended emission cost of 

thi generator at time t ; 
,i t

upSt
 Start up cost of 

thi generator at time t ; 

gN
 

Total number of generators in the network; 

K  Total number of demand side bidders; 
 

Fuel cost of thi generator in terms of real power output ,gi tP can be expressed as: 
 

, 2
, , $/hri t

i gi t i gi t iFC a P b P c= ⋅ + ⋅ + (7) 
 
where: 

,gi tP
 Real power output of an 

thi generator at time t ; 

,  ,i i ia b c  
Fuel cost curve coefficients; 

 

The thi generator startup cost is described in term of the number of hours the generator 
has been down: 

 
,
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where: 

iκ  The 
thi unit fixed start-up cost part in $; 

iρ  Start-up cost of 
thi unit at 

tht hour from cold condition in $; 
,i t

offH
 The number of hour’s 

thi unit down at 
tht hour; 

iτ  Rate of cooling of 
thi unit 
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In this optimization problem, for the sake of simplicity, the start-up costs are taken 
constant, which can be given as: 

 

( ), , , 1i t i i t i t
up G GSt u uκ −= ⋅ −

 
(9) 

, 0i t
upSt ≥ (10) 

 

Emission of thi unit can be expressed as: 
 

, 2
, , lb/hri t

i gi t i gi t iEC P Pα β γ= ⋅ + ⋅ + (11) 
 
where: 
 

,  , i i iα β γ  
are emission coefficients; 

 
The fuel cost curves and emission curves of the power plants are modeled as step-wise 

linear function, in order to approximate the typical quadratic shaped cost curve of a power plant. 
The dual-objective combined economic emission dispatch problem is converted into single 
optimization problem by introducing price penalty factor h  which convert emission output into 
equivalent emission cost as follows: 

 
, ,  $/hri t i tEEC h EC= ⋅  

(12) 
 

 
The price penalty factor h merge the emission with fuel cost and sum of merged 

emission cost, fuel cost and start up cost gives total production cost in $/hr [17]. Modified price 
penalty factor approach was proposed in [18] to give exact total operating cost. The price 

penalty factor ih  is the ratio between maximum fuel cost and maximum emission of thi  
generator: 

 
,max ,max  $/lb          1,2, 3 ........i i

i gh FC EC i N= = (13) 
 
where: 

,maxiFC  Fuel cost of an 
thi unit at maximum power output; 

,maxiEC  Emission of an 
thi unit at maximum power output; 

 
To find out the modified price penalty factor for a particular load demands following 

steps are proposed in [18]. 

• The price penalty factor ih  is calculated. 

• Price penalty factors ih are arranged in ascending order. 

• Add the maximum capacity of each unit ,maxgiP  one at a time, starting from the smallest 

value ih  until ,maxgi dP P≥∑ . 

• Then the modified price penalty factor mh  is computed by interpolating the values of ih  for 
the last two units by satisfying the corresponding load demand. 

In this paper shifted price penalty factor approach is used to accommodate load shifting 

behavior. The inequality constraint on real power generation ,gi tP  of thi generator is: 
 

,min , ,maxgi gi t giP P P≤ ≤
 

(14) 
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where: 
,mingiP  Minimum value of real power generation of thi generator; 
,maxgiP  Maximum value of real power generation of thi generator; 
 
If a unit must be “on” for a certain number of hours before it can be shut down, then a 

minimum up-time (
i

UPT ) is imposed. On the contrary, the minimum down-time (
i

DNT ) is the 
number of hour(s) a unit must stay off-line before it can be brought on-line again. 

Mathematically, the minimum up/down time constraints for 
thi  unit can be expressed as: 

 

( ) ( ), 1 , , 1 0i i t i t i t
UP in G GT H u u− −− ⋅ − ≥ (15) 

( ) ( ), 1 , 1 ,. 0i i t i t i t
DN off G GT H u u− −− − ≥ (16) 

 
where: 

,i t
inH  Amount of time 

thi unit has been running; 
 
Equations (13), (14) are nonlinear. It can be linearized using the method presented by 

Chang et al. [20]. The UC schedule should provide the exact amount of power to meet the 
consumer’s demand. Therefore: 
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where: 
,

T

m tD
 Consumption of  thm price taking bidder at period t ; 

M  Maximum value of real power generation of thi generator; 

,Pnw t  Forecasted generation of thnw wind power unit at time t ; 

NW  Number of wind power units; 
 
 
4.  Results and Analysis 

Mathematically social welfare equation is a decision problem with an objective to be 
maximized with respect to a series of prevailing equality and inequality constraints. The 
equation is a mixed-integer non linear problem and includes a large number of integers and 
continuous variables. Non linear part is converted into piecewise linear function using the 
technique given in [9]. The market-clearing algorithm described in Section-3 has been applied to 
several scenarios to assess economic viability of demand shifting and evaluate its impact on 
emission dispatch and on wind scenarios. The platform used for the implementation of this 
proposed approach is on INTEL[R], Pentium [R] 4 CPU 3.06 GHz, 512 MB of RAM. Many 
commercial packages such as CPLEX, LINDO, OSL and XPRESS-MP exist in the market place 
have been successfully applied to UC problems. In this paper, we use XPRESS-MP to solve the 
problem [19].  

The test system used in the studies consists of IEEE 30 bus system with a total 
capacity of 435 MW. The IEEE 30 bus system has six generating units. The characteristics of 
generators, unit constraints and the emission coefficients are given in Table I. The maximum 
and minimum loads are 396.76 MW and 183.4 MW, respectively, while the total system 
forecasted energy demand is 6934.76 MWh. The study period is 24-hours. The 24-hour system 
load and forecasted wind power are presented in Table 2. The proportion of the demand that 
responds to prices affects the shape of the demand curve. Load participation factor (LPF) is 
defined as the ratio of the price responsive demand to the total possible demand [9].  
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The simulated wind power scenarios are assumed to follow a normal distribution with a 
standard deviation (volatility) of 10% of expected values which is the forecasted value and in the 
following studies, the number of reduced scenarios is chosen to be ten, taken from [16]. The 
following three cases are discussed in this paper: 

 
Case 1: Case 1 is the base case without PRDS bidding which applies 11 commitment and 

dispatch for the forecasted wind power and the other ten simulated wind power 
scenarios, without considering the correlation between scenarios.  

Case 2: In this case, we observe the impact of PRDS on system operation and compare 
generation dispatch and total system operating cost with and without PRDS. 

 
Case 3: Demonstrate the relationship between LPF and emission at different value of load 

participation factor from 0 to 0.1. 
 

4.1.  Social Welfare without PRDS bidding  
  With forecasted wind power given in Table 2, we solve the social welfare equation 

without inclusion of demand shifting and determine the dispatch of non-wind units given in Table 
3(a). The cheapest Unit 1 and 2 are always committed. The more expensive Unit 3 and 4 are 
committed between Hours 1 and 22. Unit 5 is committed between Hours 16 and 21. Unit 6 is 
committed between Hours 2-7 and 15-21. The system generation cost is $16080.296. To 
observe the impact of wind power scenarios, we solve ten social welfare equations. The 
operation costs are shown in Figure 1(a) which range from $16185.804 for Scenario 5 to 
$15837.475 for Scenario 9. Table 4(a). shows the social welfare equation solutions for the 10 
scenarios. Each value in the table shows the number of times certain units are ON in the 10 
scenarios. Here, Unit 3 and 4 are ON mainly between Hours 1–22, while Unit 5 is ON mainly 
between Hours 16–21, while Unit 6 is ON mainly between Hours 3-7 and Hours 15–21. 
 
4.2. Social Welfare with PRDS bidding 

To observe the impact of demand shifting we take LPF 0.1. The load and wind profile 
are same as Case 1. Table 3(b). presents the dispatch of non-wind units for 24 hours. The 
system generation cost reduces to $15657.407. In all 10 scenarios operation costs are shown in 
Figure 1(b) which range from $15773.616 for Scenario 5 to $15330.454 for Scenario 10. In this 
case, for forecasted and all ten scenarios the expensive unit 5 is not dispatched as shown in 
Table 4(b). These results show the lower cost of using PRDS bidding for supplying the load in 
the system. 

 
 

Gen No 1 2 3 4 5 6
Max (MW) 200 80 50 35 30 40
Min  (MW) 50 20 15 10 10 12

γ 0.013 0.02 0.027 0.029 0.029 0.027
β -0.9 -0.1 -0.01 -0.01 -0 -0.01 1 232.4 44 13 238 84
α 22.98 25.31 25.51 24.9 24.7 25.3 2 274.4 70.2 14 259 80
c 0 0 0 0 0 0 3 320.6 76 15 291.2 78
b 2 1.7 1 3.25 3 3 4 373.8 82 16 324.8 32
a 0.004 0.018 0.063 0.008 0.025 0.025 5 396.8 84 17 344.4 4

Min Up Time (Hrs) 1 2 1 1 2 1 6 380.8 84 18 337.4 8
Min Down Time (Hrs) 1 2 1 2 1 1 7 344.4 100 19 330.4 10

Shut Down cost 50 60 30 85 52 30 8 298.2 100 20 315 5
Cold start  (Hrs) 2 1 1 1 1 1 9 268.8 78 21 285.6 6
Initial unit status -1 -3 2 3 -2 2 10 225.4 64 22 254.8 56
Hot Start up cost 70 74 50 110 72 40 11 205.8 100 23 225.4 82

Cold Start up cost 176 187 113 267 180 113 12 224 92 24 183.4 52

Table 1. Data for IEEE-30 bus system

Load 
(MW)

Wind 
(MW)

Table 2. Hourly load and forecast 
wind power

Period Load 
(MW)

Wind 
(MW) Period
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Figure 1. System operation cost 
 
 

Table 3. Generation Dispatch (MW) with Forecasted Wind Power 

Hour U1 U2 U3 U4 U5 U6 Hour U1 U2 U3 U4 U5 U6
1 100 40 26.67 21.73 0 0 1 100 40 26.67 0 0 0
2 100 40 24.53 18.33 0 21.33 2 100 50.09 26.67 0 0 0
3 100 60 26.67 27.27 0 30.67 3 100 40 26.67 26.67 0 21.33
4 139.5 60 26.67 35 0 30.67 4 102.1 60 26.67 35 0 30.67
5 150 60 37.09 35 0 30.67 5 120.8 60 26.67 35 0 30.67
6 144.5 60 26.67 35 0 30.67 6 106.4 60 26.67 35 0 30.67
7 100 60 26.67 27.07 0 30.67 7 100 40 26.67 26.67 0 21.33
8 100 44.87 26.67 26.67 0 0 8 100 40 26.67 26.67 0 21.33
9 100 40 26.67 24.13 0 0 9 100 40 26.67 26.67 0 21.33

10 100 36.4 15 10 0 0 10 100 40 26.67 26.67 0 21.33
11 60.8 20 15 10 0 0 11 100 40 26.67 26.67 0 21.33
12 87 20 15 10 0 0 12 100 40 26.67 26.67 0 21.33
13 100 29 15 10 0 0 13 100 40 26.67 26.67 0 21.33
14 100 40 20.67 18.33 0 0 14 100 40 26.67 26.67 0 21.33
15 100 40 26.67 25.2 0 21.33 15 100 40 26.67 26.67 0 21.33
16 110.5 60 26.67 35 30 30.67 16 108 60 26.67 35 0 30.67
17 150 60 34.73 35 30 30.67 17 150 60 30.29 35 0 30.67
18 147.1 60 26.67 35 30 30.67 18 143.3 60 26.67 35 0 30.67
19 138.1 60 26.67 35 30 30.67 19 135 60 26.67 35 0 30.67
20 127.7 60 26.67 35 30 30.67 20 126.2 60 26.67 35 0 30.67
21 112.3 60 26.67 26.67 23.33 30.67 21 107 60 26.67 26.67 0 30.67
22 100 45.47 26.67 26.67 0 0 22 100 46.65 26.67 0 0 0
23 100 43.4 0 0 0 0 23 100 40 26.67 0 0 0
24 100 31.4 0 0 0 0 24 100 41.75 26.67 0 0 0

(a) without PRDS bidding (b) with PRDS bidding

 
 

4.3. Social Welfare with LPF varying from 0 to 0.1 
In this section, we study the sensitivity of social welfare results to the size of PRDS 

bidding with and without wind power. For the same system we use different PRDS with several 
LPF options as shown in fig. 1(C). It can be seen that with wind power total emission reduces 
from 9275.748 lb to 6628.245 lb when we do not consider PRDS. By increasing the size of 
PRDS, the total emission further reduces to 6449.473 lb. 
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Table 4. Statistics of Unit Commitments in Scenarios 
 

 
 
 
5.  Conclusion 

 A MIP based social welfare problem including wind and PRDS bidding is described in 
this paper. The case studies based on an IEEE 30 bus system generator data indicate that the 
application of PRDS can impact the peak load reduction, system operating cost, emission 
reduction, commitment and dispatch of the units. Much of the benefits listed here will depend on 
the load participation factor of PRDS bidding. The example on IEEE 30 bus system generator 
data showed the effectiveness of the proposed model. The proposed algorithm can be used for 
the operation planning in the day-ahead as well as the long term planning of wind units in a 
constrained thermal power system. 
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