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Abstrak 
Makalah ini menyajikan desain kendali obje- jamak H2/H∞ dengan konstrain kutub 

regional. Penguatan umpan-balik keadaan dapat diperoleh dengan menyelesaikan problem 
kelayakan ketidaksamaan matrik linier (LMI) yang secara kokoh menjadikan kutub kalang-
tertutup pada suatu daerah LMI yang ditentukan. Teknik yang diusulkan ini diilustrasikan 
dengan aplikasi pada desain stabilisator untuk sebuah sistem tenaga bus tak terhingga mesin 
tunggal (SMIB). Kendali berbasis LMI memastikan redaman yang memadai untuk kondisi 
operasi sistem yang sangat bervariasi. Hasil simulasi mengilustrasikan efektivitas dan 
kekokohan stabilisator yang diusulkan. 
 
Kata kunci: kendali H2 /H∞, kendali kokoh, ketidaksamaan matrik linier, stabilisator sistem tenaga 
 
 

Abstract 
This paper presents multiobjective H2/H∞ control design with regional pole constraints. The state 

feedback gain can be obtained by solving a linear matrix inequality (LMI) feasibility problem that robustly 
assigns the closed-loop poles in a prescribed LMI region. The proposed technique is illustrated with 
applications to the design of stabilizer for a typical single-machine infinite-bus (SMIB) power system. The 
LMI-based control ensures adequate damping for widely varying system operating conditions. The 
simulation results illustrate the effectiveness and robustness of the proposed stabilizer. 
 
Keywords: H2 /H∞ control, linear matrix inequality, power system stabilizer, robust control 
 
 
1.  Introduction 

Power systems are usually large nonlinear systems, which are often subject to low 
frequency oscillations when working under some adverse loading conditions. The oscillation 
may sustain and grow to cause system separation if no adequate damping is available. To 
enhance system damping, the generators are equipped with power system stabilizers (PSSs) 
that provide supplementary feedback stabilizing signals in the excitation systems. PSSs extend 
the power system stability limit by enhancing the system damping of low frequency oscillations 
associated with the electromechanical modes [1]. Many approaches are available for PSSs 
design, most of which are based either on classical control methods [1-3] or on heuristic 
techniques such as genetic algorithms [4, 5] and particle swarm optimization techniques [6]. 

However, as power systems are large nonlinear systems, it is impossible for the system 
to always run at the preselected operating conditions. When the system is away from the 
specified operating point, the performance of the PSS will degenerate. Power systems 
continually undergo changes in the operating condition due to changes in the loads, generation 
and the transmission network resulting in accompanying changes in the system dynamics. In 
other words, the stabilizer should be robust to changes in the power system over its entire 
operating range. 

In the last few years, robust control technique has been applied to power system 
controller design to guarantee robust performance and robust stability, due to uncertainty in 
plant parameter variations. Some of those efforts have been contributed to design robust 
controllers for PSS and/or FACTS devices using H∞ concept such as mixed-sensitivity [7-10]; µ
-synthesis or structured singular value (SSV) [11] and H2 norm concept such as LQG [12]. 
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Normally, the problem is formulated as a weighted mixed-sensitivity design and solved by a 
Riccati approach. In addition, robust H∞ design being essentially a frequency domain approach 
does not provide much control over the transient behavior and closed-loop pole location. Robust 
pole placement stabilizer design using linear matrix inequalities (LMIs) has been presented in 
[13, 14], where the feedback gain matrix is obtained as the solution of a linear matrix inequality 
expressing the pole region constraints for polytopic plants. 

Design methods based on the H∞ norm of the closed-loop transfer function have gained 
popularity, because unlike H2 methods (best known as LQG), they offer a single framework in 
which to deal both with performance and robustness. On the other hand, since an H2 cost 
function offers a more natural way of representing certain aspects of the system performance, 
improving the robustness of H2 based design methods against perturbations of the nominal 
plant is a problem of considerable importance for practical applications [15]. In the robust H2 
approach, the controller is designed to minimize an upper bound on the worst- case H2 norm for 
a range of admissible plant perturbations. Thus, a combination of H2 control and H∞ control, 
called multiobjective or mixed H2/H∞ control that minimized the H2 norm of some closed-loop 
function subject to the H∞ norm constraint of another closed-loop function.   Khargonekar et al. 
[19] considered state- and output-feedback problems of multiobjective H2/H∞ control and gave 
efficient convex optimization approach to solve the coupled nonlinear matrix Riccati equations. 

With the development of numerical algorithms for solving linear matrix inequality (LMI) 
problems in the last 15 years, the LMI approach have emerged as a useful tool for solving a 
wide variety of control problems [17]. One of the advantages of linear matrix inequality (LMI) is 
mixing the time and frequency domain objectives. This paper proposes a multiobjective H2/H∞ 
control design with regional pole constraints for damping power system oscillations base on 
linear matrix inequality. The efficiency of an LMI-based design approach as a practical design 
tool is illustrated with case study, including a typical single-machine infinite-bus (SMIB) power 
system. 
 
 
2.  Research Method 

Stability is a minimum requirement for control system. However, in most practical 
situations, a good controller should also deliver sufficiently fast and well-damped time 
responses. A customary way to guarantee satisfactory transients is to place the closed-loop 
poles in a suitable region of the complex s-plane. 

This section discusses state feedback synthesis with a combination of multiobjective 
H2/H∞ performance and pole assignment specifications. Here, the closed-loop poles are 
required to lie in some LMI region D contained in the left-half plane. Unconstrained 
multiobjective H2/H∞ synthesis is considered in [19], where an LMI-based synthesis procedure is 
proposed. Excellent background material on LMI may be found in [16]. 
 
2.1. Introduction of linear matrix inequality 

A wide variety of problems in control theory and system can be reduced to a handful of 
standard convex and quasi-convex optimization problems that involve linear matrix inequalities 
(LMIs), that is constraints of the form [16]: 
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where )(  ,)()(,)()( xSandxRxRxQxQ TT == depend affinely on x , is equivalent to 
 

    0)()()()(  0,)( 1 >−> − TxSxRxSxQxR                                                                       (3) 
 

In other words, the set of nonlinear inequalities Eq. (3) can be represented as the LMI Eq. (2). 
Two standard LMI optimization problems are of interest: 
(1) LMI feasibility problem. Given an LMI 0)( >xF , the corresponding LMI feasibility problem 

is to find  feasx  such that 0 )( >feasxF  or determine that the LMI is infeasible. 
(2) Semi-definite Programming problem (SDP). An SDP requires the minimization of a linear 

objective subject to LMI constraints: 
 

           Minimize   xcT  
           Subject to  0)( >xF                                                                              (4) 

 
where c  is a real vector, and F  is a symmetric matrix that depends affinely on the optimization 
variable x . This is a convex optimization problem. 
Both these problems can be numerically solved vary efficiently, using currently available 
software [17,18]. 
 
2.2. LMI formulation for multiobjective H2/H∞ performance 

Consider the linear plant P with input u, disturbance w, performance output ∞z  and 2z , 
the measurement signal x. The input is generated by state feedback, using the controller K. The 
signal ∞z  is the performance associated with the H∞ constraint, the signal 2z  is the 
performance associated with the H2 criterion. The state space representation of the controlled 
system can be written as follows: 
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where all the matrices are constant real matrices of appropriate  dimension. The illustration of 
the controlled system is shown in Figure 1. 
 

 
 
 
 
 
 
 
 
    
 

Figure 1. Generalized plant 
 
 

After substitution of the state feedback controller Kxu =  into Eq. (5), the closed-loop 
system becomes 
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Let wzT
∞

 and wzT
2

 be the closed-loop transfer matrices from the generalized disturbance w  to 

the performance output ∞z  and 2z , respectively: 

2Z  
P 

K 

w 

u x 

∞Z  



          �          ISSN: 1693-6930 

TELKOMNIKA  Vol. 10, No. 1,  March  2012 :  103 – 112 

106









=









+
+

=
∞

∞ 0   

   

cl

clcl
wz C

BA

KDC

BKBA
sT

0    

      
)(

121

12                                                                        (7) 

 









=









+
+

=
0   

   

0   

      
)(

2222

12
2

cl

clcl
wz C

BA

KDC

BKBA
sT                                                                         (8) 

 
The goal of multiobjective H2/H∞ control is to find an internally stabilizing controller K 

that minimizes the 2H  performance, 
22wzT , subject to the ∞H performance, γ<

∞∞wzT  and 

places the closed-loop poles in some LMI stability region D that will be explained in the next 
subsection. In this subsection, pure H2 and H∞ synthesis are not given. For proofs and more 
details, see [20, 21]. 

We are now ready to give tractable necessary and sufficient conditions for solving the 
following multiobjective H2/H∞ problem: 
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The optimization problem above is not yet convex because of the products KP  arising 

in terms like PAcl . So, defining the variables Y = YT = P, L = K Y and W = WT and using Schur's 
complement it is possible to rewrite the problem above as the LMI problem 
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where TTTT BBBLLBYAAYH 1122 ++++= . 
 
2.3. LMI formulation for regional pole constraints 

In the synthesis of control systems, meeting some desired transient performance 
objectives (to ensure fast and well-damped transient response, reasonable feedback gain, etc.) 
should be considered. Generally, H2-norm and H∞ synthesis design do not directly deal with the 
transient response of the closed-loop system. In contrast, a satisfactory transient response can 
be guaranteed by confining its poles in a prescribe region. For many practical problems, exact 
pole assignment may not be necessary; it suffices to locate the closed-loop poles in a prescribe 
subregion in the complex left half plane. 
 
Definition 1. LMI stability region [20]. A subset D of the complex plane is called an LMI region if 

there exist a symmetric matrix mm
kl R ×∈= ][αα  and a matrix mm

kl R ×∈= ][ββ  such that 
 
  }0)(:{ <∈= zfCzD D                                                                                            (14) 

 
where the characteristic function )(zf D  is given by mlkklklklD zzzf ≤≤++= ,1][)( ββα  ( Df  is 
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valued in the space of mm×  Hermitian matrices). 
The location of the closed-loop poles of )( 2KBA + in Eq. (6) concern with the 

performance of the closed-loop system, i.e., the stability, the decay rate, the maximum 
overshoot, the rise time and settling time. Therefore, it is interesting work for control engineers 
to design the control gain K such that the closed-loop poles of )( 2KBA +  lie in a suitable 
subregion of the left half plane. The interesting region for control purposes is the set ),,( θα rS of 
complex number jyx + such that 

 
,  ,0 rjyxx <+<−< α  and yx −<)tan(θ                                                                   (15) 

 
as shown in Figure 2. Confining the closed-loop poles to this region ensures a minimum decay 
rates α , a minimum damping ratio θζ cos= , and a maximum undamped natural frequency 

θω sinrd =  (θ in radian). 

The LMI formulations for the poles of )( 2KBA + lie in the region ),,( θα rS are 

characterized as the following LMIs [20, 21]: if there exists symmetric 0>P  such that 
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with PYKPL ==    ; , the above LMIs are equivalent to 
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From the analysis above, if there exists Y and L for Eqs. (19)-(21), then the poles of )( 2KBA +  
lie in the region ),,( θα rS . 
 
2.4. Multiobjective control design 

The combination objectives of robust multiobjective H2/H∞ control with regional pole 
constraints can be characterized as follows: 
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s.t.  Eq. (12), Eq. (13) and Eqs. (19)-(21)                                                                  (22) 
 

From analysis above, the most important task in this paper is to find the variable Y, L, γ and W 
can be solved using standard optimization techniques. Once a feasible solution (Y, L) satisfying 
Eq. (22) is found, the required state feedback gain matrix can be computed as 

 
1−= LYK                                                                                                                (23) 

 
which leads to 
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The Lyapunov shaping paradigm for multi-objective design provides a greater flexibility 

than single-objective optimal design techniques such as H∞ synthesis or H2-norm technique. 
 

 

 
 

Figure 2. Region ),,( θα rS  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. A SMIB power system 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Static fast exciter model 

 

 
 
 
 
 
 
 
 
 
Figure 5. Block diagram of conventional PSS 

 
 
 

 
3.  Results and Analysis 
3.1. Dynamic model of the power system 

In this study, a single-machine infinite-bus (SMIB) power system [22] as shown in 
Figure 3 is considered. The static fast exciter is shown in Figure 4. Block diagram of 
conventional power system stabilizer (CPSS) used for comparison is shown in Figure 5.  
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Neglecting the effect of damper winding, stator transient and resistance, the synchronous 
machine together with its excitation system is modeled using the following 4th order non-linear 
dynamic equations: 
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It can be seen that this model is non-linear. To permit analysis and control of the power 

system, the model is linearised around the operating point. The state variables of this model are 

fdq EE ∆∆∆∆ ,,, 'δω , respectively, angular speed, rotor angle, voltage behind transient, and 

excitation voltage. In this study, we assumed that all state variables are available for feedback. 
The power input to the generator shaft is assumed constant, the network is represented by a set 
of algebraic equations and the loads are modeled by constant impedance. 
 
3.2.  Simulation results 

A typical single-machine infinite-bus (SMIB) power system [22] is chosen for analysis of 
the proposed controller. The machine data and the exciter data are shown in Tables 1 and 2, 
respectively. The data for CPSS constants is given in Table 3. 
 
 

  
 
 

 

 

 
 
 

The operating condition: Pe = 1.0 pu, Qe = 0.015 pu and vt = 1.05 pu are chosen as the 
nominal operating condition and other operating points are regarded as perturbations of the 
nominal system. Four different loading conditions representing nominal, heavy, light, and 
leading power factor (PF) are considered as given in Table 4. The eigenvalues of the nominal 
system are 0.295±j4.96 and -10.4±j3.28. It is observed that the electromechanical mode 
(characterized by the pair of eigenvalues 0.295±j4.96) is negatively damped and the 
eigenvalues for this mode should be shifted leftward to more desirable locations into the left half 
s-plane. 

The technique described in Section 2 was applied to the damping controller design for 
the study system. The feasibility problem was solved for (Y,L) and the required state feedback 
matrix was obtained as 1−= LYK , where Y is a symmetric, positive definite matrix and L is the 
matrix introduced to obtain linearity. 
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To determine the gain of the state feedback controller, the minimization problem Eq. 
(22) is solved using LMI-control toolbox. We can solve the eigenvalue problem in Eq. (22) with 
pole constraints in the region of 93)(2,16,1.15S . In this case, the associated matrices and 
scalars are 
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and thus the feedback gain matrix is 
 

0.01678]    3.7586    1.9197    [288.65 −−=K  
 

which makes the poles of )( 2KBA +  locate at –5.77 ± j10.2 and –12.70 ± j5.12. As a final 
check, we can calculate 
 

5616.08748.0 ==
∞∞ 22

      , wzwz TT   

 
that satisfies the inequality Eq. (24). 

For evaluation purposes, the performance of the system with the proposed controller 
was compared to the CPSS and H2 control (without LMI stability region). A small disturbance of 
10% step increase in the reference voltage ( refV ) was applied to the SMIB power system at four 

different operating conditions. The system eigenvalues and damping ratios of electromechanical 
modes at various operating conditions are given in Table 5. Note that the damping ratio as 
shown in Table 5 is written in the brackets. It is clear that the system stability is greatly 
enhanced with the proposed stabilizer. It can also be seen that all eigenvalues and damping 
ratios with the proposed stabilizer lie in an LMI region of S. Simulation results shown in Figures 
6-9 illustrate the performance and robustness of the proposed PSS under different operating 
conditions. It can be seen that the proposed PSS yields the better dynamic performance, it is 
less sensitive to changes in the system parameters and more robust against model 
uncertainties. 

For completeness and verifications, all controllers were tasted at the following 
disturbances and loading conditions. 
(a) Nominal loading (P,Q)  = (1.0,0.015) pu with one-line fault. 
(b) Heavy loading    (P,Q)  = (1.2,0.3) pu with one-line fault. 

A line fault is assumed; one of the transmission lines (as shown in Figure 3) met a line-
fault and the circuit breaker operated. The simulation results for cases (a) and (b) as shown in 
Figure 10 and Figure 11, respectively. Figure 11 shows both CPSS and H2 control fail to 
stabilize the system with disturbance (b), the proposed PSS provide good damping 
characteristics and system is stable under this disturbance. It is clear that the proposed PSS 
exhibits better damping properties and guarantees robust stability of the power systems. 
 
 
 
 
 
 
 
 

Table 5.  System eigenvalues and damping ratios at various operating conditions 

 
        Case                      CPSS                   H2 Control                  Proposed PSS 
 
1. Nominal        -1.52 ±j 3.17; (0.43)  -3.67 ±j 4.52; (0.63)    -5.77 ±j 10.2; (0.49) 
2. Heavy           -1.07 ±j 3.02; (0.33)  -4.35 ±j 5.22; (0.64)    -6.32 ±j 11.3; (0.49) 
3. Light             -1.53 ±j 3.40; (0.41)  -2.07 ±j 4.40; (0.43)    -3.64 ±j 7.17; (0.45) 
4. Leading PF   -1.98 ±j 3.39; (0.51)  -2.28 ±j 5.41; (0.39)    -4.05 ±j 8.45; (0.43) 
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Figure 6. Response with 10% step in refV  for 

case 1 
 
 

Figure 7. Response with 10% step in refV  for 

case 2 
 

Figure 8. Response with 10% step in refV  for 

case 3 
 

Figure 9. Response with 10% step in refV  for 

case 4 
 

Figure 10. Response with fault disturbance for 
case (a) 

 

Figure 11. Response with fault disturbance for 
case (b) 
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4.  Conclusions 
This paper has presented the design of multiobjective H2/H∞ control with regional pole 

constraints. The required state feedback gain has been obtained by solving a linear matrix 
inequality (LMI) feasibility problem that robustly assigns the closed-loop poles in a prescribed 
LMI region. The performance of the proposed stabilizer on a SMIB power system is seen to be 
robust over a wide range of operating conditions. Finally, simulation results show the 
effectiveness and robustness of the proposed stabilizer to enhance the damping of low 
frequency oscillations. 
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