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Abstrak 
Penggunaan matriks sirkulan sebagai matriks pengindera pada skema penginderaan kompresif  

(CS) telah banyak digunakan untuk mengatasi keterbatasan matriks random atau Fourier parsial. 
Disamping mengurangi kompleksitas komputasi, penggunakan matriks sirkulan untuk citra magnetic 
resonance (MR) dapat mempermudah implementasi perangkat keras. Pada makalah ini dijabarkan 
tentang simulasi penginderaan kompresif untuk citra MR pada organ pernafasan menggunakan matriks 
sirkulan sebagai matriks pengindera. Rekonstruksi dari tiga jenis citra MR dibandingkan berdasarkan 
jumlah sample, jumlah iterasi, dan kualitas rekonstruksi menggunakan signal to noise ratio (SNR). Dari 
hasil simulasi menunjukkan bahwa matriks sirkulan dapat difungsikan dengan eifisien untuk 
merekonstruksi citra MR, khususnya untuk citra MR yang tipis pada kawasan spasial. 

 
Kata kunci: penginderaan kompresif, citra MR, organ pernafasan, matriks circulant 

 
 

Abstract 
The use of circulant matrix as the sensing matrix in compressed sensing (CS) scheme has 

recently been proposed to overcome the limitation of random or partial Fourier matrices. Aside from 
reducing computational complexity, the use of circulant matrix for magnetic resonance (MR) image offers 
the feasibility in hardware implementations. This paper presents the simulation of compressed sensing for 
thoracic MR imaging with circulant matrix as the sensing matrix. The comparisons of reconstruction of 
three different type MR images using circulant matrix are investigated in term of number of samples, 
number of iteration and signal to noise ratio (SNR). The simulation results showed that circulant matrix 
works efficiently for encoding the MR image of respiratory organ, especially for smooth and sparse image 
in spatial domain. 

  
Keywords: compressive sensing, MR image, respiratory organ, circulant matrix 
  
 
1.  Introduction 

Magnetic resonance imaging (MRI) is one of the alternatives for intra-cardiac 
visualization. Compared with other imaging modalities such computed tomography (CT), MRI is 
relatively safe since it does not using ionizing radiation (x-rays). It is also able to obtain 
sequential 2D slices or 3D volumes with high spatio-temporal resolution. Despite all the 
advantages of MRI, some major problems are inevitable. Some issues and problems of brain 
MRI such as segmentation, localization, correction, and classification are discussed in [1]. Long 
scan time in data acquisition is also found to be a major problem in MRI, especially to capture 
thoracic or respiratory organ.  Thoracic MR image provides representation of heart, valves and 
major vessels anatomy and function. It is also useful to diagnose any cardiovascular problems. 
Ideally, physicians want to be able to observe real-time motion of respiratory organ. 
Unfortunately, it is impossible to get real-time motion using current MR scanner. Moreover, 
acquiring MR image of respiratory organ can lead to quality image degradation due to the 
motion during inhale and exhale of the patient. Breath holding during acquisition is one of the 
methods to reduce image artifact. An overview of reducing motion artifacts principles such as 
retrospective gating or projection reconstruction were discussed in [4]. Hardware based 
approach to reduce imaging time using parallel data acquisition (P-MRI) method is proposed in 
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[6]. Clearly, the needs to reduce imaging time which yields high quality image is the holy grail in 
MR imaging technology.  

Compressed Sensing (CS) is a relatively new method introduced by Donoho and 
Candes [2-3] and expected to answer one of the issue in MR image acquisition, fast imaging 
time acquisition without losing its quality. It is built upon the fact that a signal (image) has a 
sparse representation in a priori known basis (or compressible). A signal ū with length n can be 
transformed using an orthogonal basis Ψ (e.g. Fourier or Wavelet basis) such that Ψ. ��= �̅. 
Here �̅ can be seen as a sparse representation of signal ��, and it has k numbers of nonzeros (k-
sparse), where k < n. Once known that vector �̅  is sparse or compressible, it can be 
compressed by projecting it onto a measurement matrix (Φ). Matrix Φ is an m x n matrix where 
the number of its row is much smaller than the size of the signal (m << n). The projection is 
simply the inner product of Φ and vector �� (y�=Φ��). Since m << n, the equation y� = Φ�� leads to 
an ill-posed problem (underdetermined system) and it is impossible to recover ��  (sparse 
representation of original signal �̅) from y�. However, the sparsity of �� changes the impossible 
recovery into a perfect recovery of  ��. Another condition needs to be satisfied to reconstruct �� 
from y�  is restricted isometry property (RIP) of matrix Φ which is obeyed by many types of 
matrices (e.g Random Gaussian, Bernoulli, Partial Fourier Matrices) [7]. The reconstruction 
process can be done by greedy method (fast, but requires more measurements) or solving 
convex optimization problem (slow but requires less measurement data).  

Lustig et al in [5] showed that MR image is suitable for CS implementation since it has 
sparse representation in certain transform domain. The DCT and Wavelet transform have good 
performance of recovering brain and angiogram MR images with 5-10%  coefficients. Moreover, 
wavelet transform also proven to be effective for real-time data transmission for real image 
(JPEG2000) [13] showing that both medical and real image are actually sparse in when 
transformed into certain domain. But the success of reconstruction does not only merely depend 
on the sparse representation. Another factor is to satisfy RIP, which is a tool for analyzing the 
performance how efficient a matrix measures sparse signal [8]. Recent widely measurement 
matrices that satisfy RIP with high probability is independent and identically distributed (i.i.d) 
random Gaussian matrix. Although Gaussian matrix provides incoherence with any sparse 
signal and the number of measurements for signal recovery is minimal, it requires huge memory 
storage and high complexity computation. Using Gaussian matrix as sensing matrix to acquire a 
256x256 image  with 50% sampling will require nearly gigabyte space and giga-flop operation, 
leads to impractical application of CS scheme for MR device. Structurally random matrices, 
such as Toeplitz or Circulant matrix have been shown to be fast computable and satisfy RIP 
property as well for almost all orthonormal matrices [9]. But, the efficiency using Circulant matrix 
to reconstruct MR images have not been known. 

In this paper, we investigated the efficiency of using circulant matrix as sensing matrix 
for MR Image of respiratory organ compared to partial Fourier matrix. The reconstruction is 
done via conventional l1-norm minimization. 

The contents of this paper are organized as follows: in Section II we review the basic 
theory of compressed sensing and MR image of respiratory organ motion. In Section III, we 
discuss the methodology we use in the experiment and also the simulation results. We conclude 
this paper in Section IV. 
 
 
2.  Basic Theory 

There are three stages in CS scheme: encoding, sensing and decoding 
(reconstruction). Encoding  is a stage of sparsifying input signal (or image) using certain basis 
representation (such as Fourier or wavelet). Sensing phase is a process to measure the sparse 
signal representation and reducing its dimension using sensing matrix and  at last, decoding is a 
process to reconstruct the sensing signal.  

This section is divided into two parts. First part discusses about basic CS theory and its 
reconstruction using Total Variation minimization. Second part reviews partial random circulant 
matrix as sensing matrix. 
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2.1. CS with Total Variation Minimization 
The encoding phase starts with an input of 1-D discrete signal �� with length n that can 

be represented in term of an orthonormal basis  {ψ}���
�   as: 

 �̅ = ∑ ψ
�

�
��� ��� =  ψ��        (1) 

 

Vector �̅ is a sparse representation of vector �� and has k non-zeros coefficients. We say that 
vector �̅ is highly compressible if k << n, or in other word, non-zeros or significant coefficients 
much smaller than length of vector ��.  

The sensing phase of CS needs measurement matrix for projecting vector �̅ into smaller 
dimension. Let  is a measurements matrix with m x n dimension (where k < m << n), the linear 
projection of sparse vector �̅ is given by: 

 

y� = Φ�̅ = Φψ�� = A��        (2) 
 

The measurement matrix  has to be independent of  �̅ (non-adaptive/fixed). From (2) we have 
vector of measurements y� with length m.  

The decoding stage is a stage to reconstruct �̅ from y� and matrix . Since there are m 
equation and n unknowns to be solved, the reconstruction becomes an ill-posed problem 
underdetermined system) with infinitely many solutions. CS theory [1, 2] states that vector �̅ can 
be recovered by solving convex problem. As long as �� is highly sparse, finding the sparsest 
solution will be the “best guest” to recover vector �̅. 
 

min‖x‖�  ��	
�� � �� = �        (3) 
 

Unfortunately, (3) is a NP-hard problem and computationally impractical. An effective way to 
recover �̅ is to solve ℓ�-norm instead of ℓ�-norm. This method is also known as Basis-pursuit. 
 

min‖x‖�  ��	
�� � �� = �        (4) 
 

By solving ℓ�-norm optimization problem, vector �̅ can be faithfully recovered. Another 
assumption in decoding phase is the number of measurements, � ≥ �� ��� �, for some small c 
where the measurements matrix is Gaussian or � ≥ � ��� � where the measurements matrix is 
random partial Fourier. 

In practical application, MR image acquisition collects data in the frequency domain (k-
space). Lustig et al in [4] proposed a reconstruction model for MR Image. Let  be the 
undersampled Fourier transform, the reconstruction is given by: 
 

min‖ψu�‖� subject to ‖ℱu� − y‖� < �       (5) 
 

where  represents as threshold parameter for noise level. Total Variation (TV) as the sum of 
the absolute variations in the image can be also employed. The reconstruction model in 
equation (5) can be written as: 
 

min  ‖ψu�‖� + α���u��  subject to ‖ℱu� − y‖� < �      (6) 
 

Here,  is a positive parameter. Better reconstruction in MR image from a small number of 
Fourier coefficients is achieved by additional TV. 
 
2.2.  Partial Random Circulant Matrix as Sensing Matrix 

In equation (2), A is called sensing matrix. Sensing matrix plays an important role in 
decoding (reconstruction) stage. Recent results show that stable reconstruction from k-sparse 
and compressible signal can be achieved when the sensing matrix satisfies restricted isometry 
property (RIP) [7]. Current widely used sensing matrices are random matrices and partial 
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Fourier. Random matrices (such as Gaussian or Bernoulli random matrices) has optimal 
performance but requires big memory storage and complexity computation while partial Fourier 
enables a fast computation of Fast Fourier Transform (FFT) but lack of universality (only 
incoherence with sparse signal in time domain but not  for smooth signal). 

Circulant matrices are orthonormal matrices that are nearly incoherence with other 
orthonormal matrices [10], which provide universality with many types of signal. It is formed by 
starting with a vector with N components. The subsequent rows are acquired by shifting the 
previous row to the right.  
Given a vectorc = �c�, c�, c�, … , c����	 ∈ ℝ�, and ϕ = ϕ�c� ∈ ℝ�
�, the general form of circulant 
matrices are given by: 

 

ϕ�c� = � c� c�
c��� c�

… c���

… c���

⋮ ⋱

c� c�

⋱ ⋮

… c�

�       (7) 

 

Consider an index set θ ⊂ �1, … , n� as a subset of randomly locations between (1...n) 
with cardinality m. The rows of ϕ�c� can be restricted by the element of  and formed ϕ�c��as 
partial circulant matrix which contains m number of rows.  

A new paradigm of random filter was proposed by Tropp in [11] to captures signal s by 
convolution operation of random-tap FIR filter h, followed by subsampling. Figure 1 shows a 
block diagram of the measurement process through random filtering. 

 

 
 

Figure 1. Block diagram of measurement process through random filtering 

 
Using this paradigm, equation (2) can be written as: 
 

y� = D↓(c ∗ u�)          (8) 
 

where D↓  is subsample of convolution operation �c ∗ u�� . Using the FFT to implement the 
convolution, equation (8) can be expressed as: 
 

y� = D↓�ℱ��Σℱ� ∗ u�         (9) 
 

where ℱ and ℱ��  is Fourier matrix and its adjoint.  is diagonal matrix of c ∈ ℝ�  Fourier 
transformation. The theoretical analysis of restricted isometries for partial random circulant 
matrices is given by Rauhut et al in [10]. 
 
 
3.  Results and Analysis 

To demonstrate the effectiveness of partial random circulant matrix in MR image of 
respiratory organ, we used three models of MR images of respiratory organ from different 
patients. The MR images were acquired using a 1.5T Achieva Nova-Dual (Philips Medical 
Systems, Best, NL) whole-body scanner with a 16ch SENSE TORSO XL Coil. The size of each 
image is 256x256. 

 

 
y 

Sparse signal 
(s) 
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Experiments were performed under Windows 7 Professional running on Dell PC 
Desktop with an Intel® Core ™ 2 Quad CPU, 2.66GHz and 4GB RAM. The reconstruction 
model we used in the experiments is fast algorithm proposed in [12]. This algorithm is 
implemented in a MatLab program, RecPC [15]. Three original images are shown in Figure 2a, 
2b, and 2c respectively. Each image represents different variation of respiratory organ. Figure 
2a represents front side of respiratory organ, Figure 2b represents left side and Figure 2c 
represents back side.  

 
 

 
Figure 2. Original MR images of respiratory organ. (a) Front side; (b) Left side; (c) Back side 

 
The visual result of the reconstruction using partial random circulant matrix for image in 

Figure 2a, 2b and 2c are shown in Figure 3, 4 and 5 respectively. As shown in Figure 3, at the 
sample ratio of 10% and 25%, the reconstruction images still suffer from aliasing artifact due to 
the sharpness original image.  

 
 

 
Figure 3. Result of image reconstruction, original image in Figure (2a)  

(a) 10% samples (12.4dB); (b) 25% samples (16.7dB); (c) 50% samples (22.1dB)  
 
 

For reconstruction of Figure 2b and 2c (as shown in Figure 4, 5), the aliasing artifact are 
less at sample ratio of 25% and has better quality at sample ratio of 50% compared to Figure 3. 
The reconstruction works better for sparse and smooth image as in Figure 2b and 2c. 

Table 1 shows the comparison of each image based on number of samples, number of 
iteration and reconstruction quality (SNR). The best reconstruction is gained by 50% sampling 
of left side MR image of respiratory organ, as the sparsest in spatial among the images.   
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Table 1. Comparison of three different image reconstructions in term of number of samples, 
number of iteration and image quality 

# of 
sample 

Fig 2a 
(Front side) 

Fig 2b 
(Left side) 

Fig 2c 
(Back side) 

# itr SNR 
(dB) 

# itr. SNR 
(dB) 

# itr SNR 
(dB) 

50% 140 22.1 100 29.1 90 28.4 
25% 280 16.7 190 20.3 160 22.1 
10% 560 12.4 430 14.4 360 17.0 

 
 

 
Figure 4. Result of image reconstruction, original image in Figure (2b).  

(a) 10% sampling (14.4dB); (b) 25% sampling (20.3dB); (c) 50% sampling (29.1dB) 
 
 

 
Figure 5. Result of image reconstruction, original image in Figure (2c).  

(a) 10% sampling (17.0dB); (b) 25% sampling (22.1dB); (c) 50% sampling (28.4dB) 
 
 

As shown in [3], exact reconstruction of MR Images using CS scheme is achievable by 
employing random partial Fourier matrix. To validate our results, we compared the quality of MR 
Images reconstruction using circulant matrix and partial Fourier matrix. The number of sampling 
we picked for the comparison is 35%, 50% and 75%. This is due to the unstable reconstruction 
using random partial Fourier matrix when the number of sampling is below 35%. Table 2 shows 
the comparison of image reconstruction using circulant matrix (CM) and partial Fourier matrix 
(PFM) in term of SNR (dB). 

As shown in Table 2, MR images reconstruction using random partial circulant matrix as 
sensing matrix has better SNR compared with reconstruction using partial Fourier matrix.  
Table 3 showed that the time required to reconstruct the image using Circulant Matrix with lower 
sampling has better speed compared with random partial Fourier matrix (35% and 50% 
sampling). In the other side, when the number of sampling is higher (75%), shorter 
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reconstruction time was achieved by employing partial Fourier matrix, yet the reconstruction 
quality (SNR) is far below the circulant matrix. 
 
 
Table 2. SNR (dB) comparison using Circulant Matrix (CM) and partial Fourier matrix (PFM) 

# of 
sampling 

Fig 2a 
(Front side) 

Fig 2b 
(Left side) 

Fig 2c 
(Back side) 

CM PFM CM PFM CM PFM 
75% 28.2 15.9 42.5 31.5 36.8 13.4 
50% 21.8 10.8 29.1 23.2 28.5 8.6 
35% 18.1 6.1 23.3 16.7 24.7 1.7 

 
 

Table 3. Reconstruction time (sec) comparison using Circulant Matrix (CM) and partial Fourier 
matrix (PFM) 

# of 
sampling 

Fig 2a 
(Front side) 

Fig 2b 
(Left side) 

Fig 2c 
(Back side) 

CM PFM CM PFM CM PFM 
75% 1.6 1.4 1.5 1.2 1.3 1.1 
50% 1.6 1.7 1.4 1.5 1.6 1.4 
35% 1.4 1.9 1.6 2 1.4 1.6 

 
 
4.  Conclusion 

We applied CS using partial random circulant matrix as sensing matrix for MR image of 
respiratory organ. The comparison of three different MR image of respiratory organ using partial 
random circulant matrix as sensing matrix has been performed. It has been found that partial 
random circulant matrix can efficiently reconstruct MR image of respiratory organ especially for 
sparse image in spatial domain. As partial random circulant matrix has better image quality and 
faster reconstruction time when using lower sampling compared with partial Fourier matrix, its 
implementation for MR scanner is very promising. Further study can be carried out by 
combining the CS scheme using partial random circulant matrix with particular medical image 
techniques such as segmentation [14]. 
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