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Abstract 
 Sundanese language is one of the popular languages in Indonesia. Thus, research in Sundanese 

language becomes essential to be made. It is the reason this study was being made. The vital parts to get 
the high accuracy of recognition are feature extraction and classifier. The important goal of this study was 
to analyze the first one. Three types of feature extraction tested were Linear Predictive Coding (LPC), Mel 
Frequency Cepstral Coefficients (MFCC), and Human Factor Cepstral Coefficients (HFCC). The results of 
the three feature extraction became the input of the classifier. The study applied Hidden Markov Models as 
its classifier. However, before the classification was done, we need to do the quantization. In this study, it 
was based on clustering. Each result was compared against the number of clusters and hidden states 
used. The dataset came from four people who spoke digits from zero to nine as much as 60 times to do 
this experiments. Finally, it showed that all feature extraction produced the same performance for the 
corpus used.  
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1. Introduction 

The population of West Java is about 46.71 million inhabitants in 2015. It is almost 
equal to the population of the UK, amounting to 53.01 million inhabitants in 2011. It proves that 
the Sundanese language users are one of the great languages in Indonesia. So that research 
related to the Sundanese language becomes very important. However, this research is still very 
minimal, then the opportunity for the research is wide open, especially in speech recognition. 

Speech Recognition is a development of techniques and systems that enable the 
computer to accept input from spoken words [1]. It allows a device to recognize and understand 
spoken words by digitizing words and matching those digital signals to a specific pattern stored 
in a device. The results of this identification can be displayed in writing or can be a command to 
do a job. 

In general, the process begins by inputting voice through a microphone. It required for 
initial processing (pre-processing) to do windowing, normalization, and filtering. After that, the 
feature extraction obtains specific parameters from these signals. In the next stage, the system 
recognizes its meaning. These research has been done well. The primary target is to obtain 
high accuracy in the recognition. Feature extraction and classifier has a vital role in achieving it. 
Pattern recognition on the speech data has been implemented some classifiers, such as Neural 
Networks [2], deep belief networks [3], support vector machine [4], hidden markov models [5] 
and k-nearest neighbor [6], combined fuzzy and ant colony [7].  

However, the most widely used classifier is Hidden Markov Models (HMM). It is 
because HMM worked as a sequence classifier as well as speech data that also represent a 
sequence. It is the main reason HMM used in this study. However, the classifier should be 
supported by the optimal feature extraction. Feature extractions widely used are the Linear 
Predictive Coding (LPC) [8], Mel Frequency Cepstral Coefficients (MFCC) [9], and Human 
Factor Cepstral Coefficients (HFCC) [10]. LPC works by combining a linear combination of a 
sound signal. Differ with MFCC; this method is based on filters as in the human ear. HFCC is 
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the development of MFCC that emphasizes the human aspect of psychoacoustics. The three 
types of feature extraction will be tested on Hidden Markov Models to Sundanese speech 
corpus. The same purpose has been done to the other study, but not to Sundanese speech 
corpus. Speech recognition is language-dependent, so the system needs to be rebuilt for every 
language that has never been used. It is the primary motivation why this research is done. 
 
 
2. Study Literature 

The dataset was tested using three types of feature extraction and Hidden Markov 
Model. The feature extraction included Linear Predictive Model (LPC), Mel Frequency Cepstral 
Coefficients (MFCC), Human Factor Cepstral Coefficients (HFCC). 

 
2.1. Linear Predictive Model 

LPC represents a human voice signal at time n is s (n) as a linear combination of 
previous human voice signals [8]. It is shown in equation (1). 

 
 ( )      (   )      (   )         (   ) (1) 

 
Steps in the LPC are: 
a. Pre-emphasis 

A sound signal that has been converted into a digital signal, s (n), is passed on the low 
orde filter. The most commonly used pre-emphasis sequence is a first order system. 

b. Blocking Frame 
After pre-emphasis, the signal is blocked into parts by specific window size. At this stage, 
each part of blocking results in the signal overlap each other. It gives the LPC spectrum 
results that will correlate to each part. 

c. Windowing 
It is done to minimize discontinuity at the beginning and end of the signal. The most 
commonly used window model for LPC model with autocorrelation method is Hamming 
Window. 

d. Autocorrelation Analysis 
  Each part has been given a window then be formed its autocorrelation by using  
  equation (2). 

 

 ( )  ∑  ̃( )      
    ̃(   ) (2) 

 
where m = 0, 1,2, ..., p. 
The p is the highest value of the autocorrelation and also the LPC orde. The typical values of 
the LPC analysis orde are between 8 and 16. The advantage of using autocorrelation methods 
is that value to zero, r (0), is the energy of the signal is made the autocorrelation. 
a. LPC analysis 

All the autocorrelation values that have been calculated in the previous stage will be 
converted to an LPC parameter. These parameters are varied; they are called LPC coefficients, 
cepstral coefficients, or other desired transformations. A standard method for solving the 
autocorrelation coefficients into LPC coefficients is the Durbin method.  
b. Converting LPC parameters to cepstral coefficient  

The critical LPC parameters that could be derived from the LPC coefficients are its 
cepstral coefficient, c (m). Itl is the coefficient of the Fourier transform representation on the 
logarithmic spectrum. 
 
2.2. Mel Frequency Cepstral Coefficients (MFCC) 

It can be used as a vector of useful features to represent the human voice and musical 
signals. It adopts the human auditory system, where the voice signal will be filtered linearly for 
low frequencies (below 1000 Hz) and logarithmically for high frequency 
(above 1000Hz). Analysis on Mel-frequency applies some filters at a specific frequency, as 
happened in the human hearing system. The filters have a non-uniform spacing on the 
frequency axis. It causes many filters on the low-frequency region and a little on the high-
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frequency region [9]. The filters create the triangle and the spacing between its bandwidth 
determined by constant Mel-frequency intervals.  
The advantages of this method are: 
a. Capable of capturing sound characteristics that are very important for speech recognition 

or in other words capable of capturing valuable information contained in voice signals 
b. Produce as little data as possible without eliminating any critical information. 

The MFCC calculations use the necessary calculation of short-term analysis. It is done 
considering the quasi-stationary voice signal. Tests which conducted for short enough period 
(about 10 to 30 milliseconds) show the stationary characteristics of the sound signal. However, 
if it is done in a more extended period, the characteristics of the sound signal will change 
according to the spoken word. MFCC method has several stages: 
a. Preprocessing 

Preprocessing on MFCC includes framing and windowing. Human voice signals include 
unstable signals. However, we can assume it as a stable signal on a time scale of 10-30 
ms. The framing serves to cut the sound signal with a long duration becomes shorter duration. 
It obtains the more stable characteristics of the sound signal. The windowing process aims to 
reduce the occurrence of spectral leakage or aliasing. The problem is an effect of the 
emergence of new signals that have a different frequency with the original signal. These effects 
can occur due to low sampling rate or due to the framing process that causes the signal to be 
discontinuous.  
b. Discrete Fourier Transform (DFT) 

To get a signal in the frequency domain of a discrete signal, one of 
the Fourier transformation method used is the Discrete Fourier Transform (DFT) [11].  DFT is 
performed every 10ms on the signal. 
c. Mel-Frequency Wrapping 

The Mel-Frequency scale is a linear frequency below 1 kHz and logarithmic above 1 
kHz. Mel scale can be obtained using equation (3). 

 

 ( )              (   
 

   
) (3) 

 
where B is the Mel-Frequency scale, and f is the linear frequency. 

d. Cepstrum 
Mel-Frequency Cepstrum is obtained from DCT (Discrete Cosine Transform) to regain 

the signal in time domain. The result is called Mel-Frequency Cepstral Coefficient (MFCC). 
MFCC can be obtained from equation (4): 

 

 
  √

 

 
∑      (

  

 
(     ))

 
   

 (4) 

 
It is the result of the accumulation of quadratic magnitude DFT, multiplied by the Mel-filter bank. 
After that, it got MFCC. In speech recognition, usually only 13 first coefficient cepstrum is used. 
 
2.3. High-frequency Cepstral Coefficients 

HFCC is the development of MFCC [12]. The main thing of HFCC is also as an artificial 
classifier. This method explicitly applies Moore and Glasberg's Equivalent Rectangular 
Bandwidth (ERB) as part of a filtering mechanism where ERB by equation (5). 

 

          
                  (5) 

  
   is the frequency with units of kHz. HFCC use more than one factor so that is more secure 
than noise. 
 
2.4. K-means Clustering 

Clustering classifies data with the same characteristics into the same region and data 
with different characteristics to the others [13]. K-Means Clustering is one simplified method 
based on the mean value of each cluster [14]. Every clustering objects are seen from a distance 
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with the midpoint of the closest. After knowing the midpoint of the closest, the object will be 
classified as a member of that category. 

The algorithm is as follows: 
a. Determine the number of clusters 
b. Assign data to clusters randomly 
c. Calculate the centroid/average of the data in each cluster 
d. Assign each data to the nearest centroid/average 
e. Return to step 3, if there are data which move the other cluster or the value of the objective 

function above a specified threshold value 
The distance between data and centroid is commonly calculated based on Euclidean Distance. 

 
2.5. Hidden Markov Models 

Hidden Markov Models set parameters which are hidden from observation parameter. 
Every state in HMM has a probability distribution over the output symbols that might appear. 
From a series of symbols generated by HMM, it can provide information about the sequence or 
order state. 

HMM has the following notations: 
1. N=Number of states in the model. 
2. M=Number of observation symbols. 
3. T=The length of the observation series 
4. O=The series of observations, O = O1, O2, … , OT. 
5. Q=The series of state Qq1, q2, …, qT on Markov Models. 
6. V=Collection of observations{0, 1, …., M-1}. 
7. A={aij} transition matrix, where aij describes the probability of transition between state i to 

state j. 
8. B={bj(Ot)} is the matrix emission observations, where bj(Ot)  describes probability between 

observation Oj at the time of state j. 
9. π={πt} is the prior probability, where πt explain the probability of state t at the beginning of 

the HMM calculation. 
In general, there are three problems with the HMM implementation. By using   

 (     ), they are [15]: 
1. How to calculate the value of P(O | λ), the probability of a series of observations O=O1, O2, 

… , OT. 
2. How to choose a state sequence Q=q1, q2, …, qT to obtain a series of observations O = O1, 

O2, … , OT which represents a model    (     ). 
3. How to get HMM parameters,    (     ), so the value of P(O | λ) is maximal. 

The first problem can be handled by using the forward algorithm, and for the third 
problem can be solved using the Baum-Welch algorithm. Forward algorithm is an efficient 
recursive algorithm to calculate P(O | λ). It is defined as a chance state i at time t using forward 
algorithm. The algorithm is described in equation (6). 

 

 (     )  ∑   ( ) 
 
    (6) 

 
Baum-Welch algorithm has a function to train the initial model of HMM by estimating the 
parameter for model    (     ). For t = 0, 1, … T-2 and i, j  *          + , it defines    as 
shown in equation (7).  

 
  (   )   (                 )  (   ) (7) 

 
It is the probability of being in state q when the time t and move to state qj at t + 1.    as can be 
written as 

 

  (   )  
  ( )     (    )    ( ) 

  (     ) 
 (8) 

 
The relationship  between   ( ) and    (   ) is shown in equation (9). 

 

  ( )  ∑   (   )
   
    (9) 
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By   dan    , model    (     ) can be estimated with the following conditions: 
1. For i = 0, 1, … , N-1  

 
     ( ) (10) 
 

2. For i = 0, 1, … , N-1 and  j = 0, 1, … , N-1 and the calculation is shown in equation (11). 
 

    
∑   (   )
   
   

∑   ( )
   
   

 (11) 

 
3. For i = 0, 1, … , N-1 and k = 0, 1, … , M-1 then calculates 

 

  ( )  
∑   ( )  *         +    

∑   ( )
   
   

 (12) 

 
The estimation process is an iteration process. The estimation process is described as follows: 
1. Initialization of     (     ) 
2. Calculation of   ( )   ( )   (   )   ( ) 
3. Estimation of model    (     ) 
If the value of P(O | λ) increases then the system repeats the process on point 2. 
 
 
3. System Design 

The dataset comes from four different people. The recording is done in the soundproof 
room to avoid noise that appears during the process. Every person says the numbers 0 to 9 of 
60 times. After that, the data is divided into two parts. 33% of the dataset used 
as test data while the rest as training data. The system consists of several stages that are 
shown in Figure 1: 
a. Pre-processing 

Input from the system is wav file. This format is part of the Microsoft RIFF specification 
used for storing multimedia files. It starts with the header section and is followed by a chunk 
data sequence. Also, it consists of three parts, namely main chunk, chunk format, and chunk 
data. The sound signal represented in the discrete form, a series of numbers representing 
amplitude in the time domain. In the header file, there is information about the WAV file which 
includes the information about of sample rate, and bits per sample, number of channels. Pre-
processing aims to adjust the input system to be processed at later stages. The two primary 
processes which occur during pre-processing are centering and normalization. 
b. Feature Extraction 

It is the process of determining a value or vector that can be used as the object 
identifier. Three methods used in this research are Linear Predictive Coding (LPC), Mel 
Frequency Cepstral Coefficients (MFCC), and Human Factor Cepstral Coefficient (HFCC) 
c. Vector Quantization (VQ) 

Vector quantization is the encoding process of the signal vector into some symbols [16]. 
It consists of two processes. The first process is learning to get the codebook/centroid/cluster 
centers. The second is a testing process that transforms data into a symbol feature extraction 
results based the obtained codebook. In this study, K-Means Clustering has a role to do this 
process. 
d. HMM Re-estimation 

At this stage, the training data is processed to produce a model that represents the ten 
digits by forwarding and backward calculation algorithm. 
e. Prediction 

All models were evaluated at the HMM re-estimation stage using the test data. A model 
that has maximum likelihood become the prediction label. 
f. Evaluation 

Analysis of the performance of each feature extraction on Sundanese data is evaluated 
using F-measure. F-measure is a test parameter based on a combination of precision and  
recall [17]. 
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Figure 1. Flowchart of sundance speech recognition  
 

 
4. Results and Analysis 

Evaluation of the three feature extraction based on the effect of changing the number of 
clusters and hidden states used.  
 
4.1. Analisis Cluster 

By using the K-Means Clustering, the influences of the clusters number on the three 
types of feature extraction are shown in the table. The analysis is done by altering the clusters 
number. The hidden states used is only five and constant. According to Table 1, 32 clusters had 
a better performance than the 16 clusters. It indicates that the phonemes of digit consist of 
different units with large numbers. If the unit was only represented in 16 different clusters, then 
several different units had the same cluster. However, 64 clusters caused the worst system 
performance. It means that the biases occur in similar units because they were in different 
clusters.  

However, unlike the case with the 128 clusters, with specialization so sharp then the 
units were defined very differently. If on 32 clusters, similar units were still considered one 
cluster but with 128 clusters separated in some different clusters. Also when it compared with 
64 clusters, the definition of the difference made the bias that did not occur in the 128 clusters. It 
was why the performance of 128 clusters was best. It found that its performance was equal by 
comparing the three feature extractions used in this study. The experiments show that although 
all three have different types of features, these features have the same value differentiating 
factor in classifying digits.  

 
 

Table 1. Analysis of Clusters 

n(clusters) 
F-measure 

LPC MFCC HFCC 

16 1.91 1.91 1.91 
32 1.93 1.93 1.93 
64 0.04 0.04 0.04 
128 1.98 1.98 1.98 

 
 

4.2. Analysis of Hidden States 
The second experiment aims to analyze the effect of the number of hidden states on 

HMM. Implementation is done by using 128 clusters which were the best performance in the 
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first experiment. Table 2 shows that the best performance is obtained when the hidden states 
are as five, but the worst are nine states. The increase in the number of hidden states has no 
trend. With the increasing number of hidden state used, the system more adjusts the correlation 
parameters between hidden states. Consequently, there is no significant difference with the 
many or few hidden states used. Increasing the number of hidden states did not always cause 
the performance of the system. On the other hand, the performance of the three feature 
extraction also has the same performance because the value of each feature has a high 
similarity. 

 
 

Table 2. Analysis of Hidden States 

n(hidden states) 
F-measure 

LPC MFCC HFCC 

5 1.98 1.98 1.98 
6 1.97 1.97 1.97 
7 1.98 1.98 1.98 
8 1.97 1.97 1.97 
9 1.96 1.96 1.96 
10 1.97 1.97 1.97 

 
 
5. Conclusion 

Based on Table 1 and 2, it can be concluded that: 
a. The performance of the three feature extraction used in this study has the same 

performance for Sundanese speech recognition 
b. The use of 128 clusters has the best performance so that the distinctive units of the 

phoneme can be well separated. Use of too little cluster has a worse performance due to 
the different units included in the same cluster. In this study, however, the use of 64 
clusters had the worst performance due to bias. 

c. There is no trend in changing the number of hidden states. It shows that trials need to be 
done to obtain optimal conditions. 

For further research, dataset enlargement is required so that the benefits of each feature 
extraction can be seen more clearly. 
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