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Abstract 
 An integral-order hyperchaotic system with four-dimension is expanded to be a fractional-order 

system whose chaotic behaviors are analyzed, Firstly, based on the stability theory of fractional-order 
linear system and the thinking of tracking control, a synchronization method for two fractional-order 
systems with different structures is proposed,  and an analytic expression for synchronization controller is 
given. Secondly, taking the extended fractional-order system and Rőssler hyperchaotic system as 
example, the synchronization between them is numerical simulated. Finally, the proposed synchronization 
method is applied to encrypt and decrypt digital images. The simulation results show that the lowest order 
that extended fractional-order system appears chaos is 3.2, and this method has many advantages for 
encrypting and decrypting digital images, such as sensitive secret keys, random uniform distribution of 
pixels and low correlation between adjacent pixels. 
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1. Introduction 

Chaos is a random, uncertain and never repeated movement happened in particular 
systems and it expresses the properties of a system, such as complexity, disorder and 
randomness [1]. Because chaos is a universal phenomenon in the natural world, it is helpful to 
make research on chaos for promoting the development of many disciplines. Meanwhile, the 
development of these disciplines can also expand application fields of chaos. At present, the 
research on the control of chaos synchronization, hyperchaos, chaotic neural networks, chaotic 
secure communication, and chaotic economics etc. shows potential value of chaos. 

In recent years, some unique properties that only exist in fractional-order rather than 
integer-order dynamics system have been found via incorporating fractional-order differential 
operator with any real constants into nonlinear dynamic system. For example, an integer-order 
nonlinear system whose order is less than three does not induce any chaotic phenomenon, but 
it appears in Chuas circuits with 2.7 orders [2], it also appears in the heteronomy Duffing system 
whose order is less than two [3] and Rossler equation with 2.4 order [4]. It has been found that a 
chaotic system still presents chaotic state after fractional-order differential operator is 
incorporated into it. Furthermore, a fractional-order chaotic system has more complex dynamic 
characteristics and shows more physical phenomena than integer-order chaotic system. The 
research on fractional-order chaotic systems has received a great deal of attention. 

There are two problems in the research on the fractional-order chaotic systems are 
quite deserving our attention. One is that on what condition a fractional-order system is in 
chaotic state when its corresponding ordinary differential system is in chaotic state, and the 
other is how to design the controller to synchronize two fractional-order chaos systems with 
different structures. Because fractional-order chaotic systems are different from integer-order 
chaotic systems in characteristics, the classical controller and synchronization methods for 
integer-order chaotic systems can not be extended to fractional-order chaotic systems, and a 
novel approach is indispensable. 

In this paper, a four-dimensional integral-order hyperchaotic system proposed in [5] is 
expanded to be a fractional-order system. Firstly, some chaos characteristics of the fractional-
order system are theoretically analyzed and quantitatively simulated. Secondly, based on the 
stability theory of fractional-order linear system and the thinking of tracking control [6], a method 
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to synchronize two fractional-order chaos systems with different structures is put forward. 
Thirdly, the analysis formula of synchronous controller is given, and the synchronization 
between the extended fractional-order system and Rőssler hyperchaotic system is quantitatively 
simulated. Finally the proposed synchronization method is applied to encrypt and decrypt digital 
images. The results show that this method has many advantages for encrypting and decrypting 
digital images. 
 
 
2. Related Work 

The mathematical model of the four-dimensional integral-order hyperchaotic system 
proposed in [5] is as follows formula (1). 
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Where 4321 ,,, xxxx  and dcba ,,, are state variables and parameters of system 

respectively. This system was found to be chaotic in a wide parameter range. In [5], when  
10a , 35b , 4.1c , 5d , the system (1) is hyperchaotic, and the Lyapunov exponent of  

system is 0,0981.0,8058.0
321
 LLL   and 3058.12

4
L .  

Rőssler system [7,8], firstly proposed by Rőssler in 1979, is a famous 4-dimensional 
hyperchaotic system. The system is described in formula (2), where the parameters are 

32.0~ a , 3
~
b , 5.0~ c , 05.0

~
d . 

        The phase portrait of fractional-order Rőssler hyperchaotic system is shown in Figure 1. 
The system (2) has been studied and implemented by many researchers via mathematical 
theory and electronic oscillators, and it has been extensively applied in various fields, such as 
secure communications, synchronization, and lasers. So it is chosen to be synchronization with 
fractional-order chaos systems proposed in this paper. 

 
 

 
（a）y1-y2-y3  （b）y1-y2-y4 

 
Figure 1. Phase portrait of fractional-order Rossler hyperchactic system =0.5 
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The classical methods for solving fractional-order differential equations include 
Quadrature Methods, Adams-Bashforth-predictor-corrector method, and the short memory 
principle method based on Grunwald-Letnikov [9]. Considering time domain methods for 
simulating fractional-order system are complicated and these methods require very long  
simulation time, the short memory principle method based on Grunwald-Letnikov [9] is applied 
in this paper. This method can reduce computation cost than time domain method and get more 
reliable results than frequency calculation method [10]. 

Applying chaos to encrypt data was firstly put forward by Matthews [11]. With the 
development of chaos synchronization, applying chaos synchronization to encrypt digital images 
has received a great deal of attention [12, 13, 14]. Because fractional-order chaotic systems 
have more memory function and more easy stability than integer-order system, it can improve 
control accuracy and has more privacy and robustness to use fractional-order chaotic systems 
as signal carrier. 
 
 
3. The Description and Analysis of Fractional-Order Chaotic System 

The integral-order differential is replaced with fractional-order differential and the state 

variable 3x is added to the first equation in the system (1), by this way, a integral-order system 

is expanded to be a fractional-order system that is shown in formula (3). 
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Where is the fraction, i.e. 0 and nn  1 , n is an integer. Let the 

parameters of system (3) be 3,1.1,20,8  dcba .In order to find equilibrium points of 

the system (3)，set each equation in (3) equals to zero, which is shown in formula (4). 

Two equilibrium points, )0,0,0,0(1O  and )8971.13,029.1,4343.0,7210.14(2 O , can be 

found by solving equations (4). According to Routh-Hurwitz condition [15], 1O  is an unstable 

saddle point, because the eigenvalues of Jacobian matrix at 1O , 2942.171  , 1148.92  ,

0950.03  and 0155.14  , are all real, but not all are negative. The eigenvalues of 

Jacobian matrix at 2O  are 7606.131  , 2580.02  , j6412.112013.23   and 

j6412.112013.24  , where 1 and 2  are negative real, 3 and 4 are conjugate complex roots 

with positive real part, and their argument is 
2

8810.0
)

2013.2

6412.11
()arg()arg( 43

  arctg . 

According to the stability theory of fractional-order chaos [16], O2 is an unstable saddle point 

when 8810.0 . So when 8810.0 , both 1O  and 2O  are unstable saddle points. By 
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using Wolf method [17], we can calculate the maximum Lyapunov exponent of this fractional-
order system and the result is 0.3059. 

Based on the method defined by Grünwald-Letnikov (G-L) for fractional-order differential 
coefficient numerical value [9], numerical simulation of equations (3) is carried out in Matlab. We 

set the initial state to )1.0,1.0,1.0,1.0(  and 95.0 . The trajectories of system (3) in phase 
portrait of x1-x2-x3 and x2-x3-x4 are shown in Figure 2(a) and Figure 2(b) respectively, and the 
Poincare section of system (3) is shown in Figure 3. 

 

 

Figure 2. the trajectory of system (3), 95.0  

 
（a）x1-x2-x3  （b）x2-x3-x4 

   
 

   

 

Figure.3 Poincare section of system（3）
 

 
 
In Figure 2(a) and Figure 2(b), the movement in phase space corresponds to random-

separation trajectory with no loop. In Figure 3, there are dense points in the Poincare section. 
Both Figure 2 and Figure 3 illustrate that the system (3) is in chaotic state. 
 
 
4. The Method to Synchronize Two Fractional-Orders System with Different Structures 

In this section, system (3) is appointed as driving system whose state variables are 
denoted by Txxxxt ),,,()( 4321x , Rőssler hyperchaotic system is appointed as responsive 

system whose state variables are denoted by Tyyyyt ),,,()( 4321y . A controller is designed to 

regulate )(ty to trace )(tx . 

In order to realize the chaotic synchronization of the two systems, that is, to realize 
0||)()(||lim)(lim 


ttt

tt
xye , the fractional-order Rőssler hyperchaotic system is constructed 

as: 
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In formula (5), ))(),(())(( ttt xyUxu  is a tracking controller, in which ))(( txu is 

compensator and ))(),(( tt xyU  is feedback controller. According to the output of driving system 

(3), the compensator of responsive system (5) is defined as ))((/)())(( tdttdt xfxxu   , 

where formula (6), so controlled fractional-order Rőssler hyperchaotic system (5) can be written 
as follows:  
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Let the synchronized error between responsive system and driving system is    

)4,3,2,1(  ixye iii , we can obtain the synchronization error system by moving an item in 

formula (7): 
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We get formula (9) by substituting the feedback controller ))(),(( tt xyU  in formula (8):  
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According to the stability theory of fractional-order linear system [15], if there is a matrix 
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From the above analysis, the aim of 0)(lim 
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e  can be achieved, so the Rőssler hyperchaotic 

system can synchronize with driving system (3). 
We have implemented synchronization simulation in Matlab. In the experiment, we set  
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2A . The eigenvalues of matrix 2211 , ABAB  are -5，-3 

and -3, -3.95 respectively with the arguments of them satisfying the condition 

 5.0arg  . Initial state of driving system (3) and responsive system (5) are set to

)1,2,4,8( and )40,160,10,50(   respectively, and the synchronous courses of two systems 

variables are shown in Figure 4, and the synchronization error curve of these two systems is 
shown in Figure 5. We can see that there is difference between each pair of variables of two 
systems at the beginning, but they can achieve synchronization step by step by tracking. 

 
 

 

Figure 4. synchronous process of two systems       
 
 

 

Figure 5. the error curve of these two systems in the synchronization 
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5. The Application of Chaotic Synchrony in Image Encryption 
The process of the applying chaotic synchrony to encrypt and decrypt digital image is 

shown in Figure 6. 
 
 
 

Figure 6. The process of applying chaotic synchrony to encrypt and decrypt Image 
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The original image is denoted by matrix

NMijgG  )( , where M and N represent row and 

column of the image respectively, and
 ijg is the gray value of the pixel which is at row i and 

column j of this image, with gray value depth set to A (typically A=256). The encryption process 

is completed according to the following steps: 
(1)  Let the time step 005.0h , and make driving system into chaotic state via iteration under 

given initial state ],,,[ )0(
4

)0(
3

)0(
2

)0(
1 xxxx , then the driving system will produce four chaotic 

sequences, denoted by ],,,[ 4321 xxxx .  

(2) Four chaotic sub-sequences can be get via keeping 4/)( NM   points in each chaotic 

sequences from ht 5000 . Join the four chaotic sub-sequences end to end to be a 
sequence )(1 NMB  .  

(3) In order to make operations between the sequence and image pixel matrix value, after 
amplifying sequence )(1 NMB  ， it is taken modular arithmetic with A, and )(1' NMB  would 

be converted into the unsigned eight bit integer data for making the sequence value in the 
range from 0 to A , that is, )(1' NMB   = mod (1000 * )(1 NMB  , A), )(1'' NMB   = uint8 (

)(1' NMB  ); 

(4)  Carry out XOR operation between each element of )(1'' NMB  and ijg , the value of ijg is 

arranged in regular rows, then we get a new matrix
NMijgG  )( which denotes the image 

after being encrypted. 
The process of decryption process is the inverse process of encryption process. At 

receiving terminal, use the secret key (the initial value of driving system) to make responsive 
system into chaotic state via iteration, and we can get four chaotic sequences. Then, according 
to the above step (2) - (4) of encrypting, assemble these sequences into a new sequence, 
finally, perform bitwise XOR between each element of the sequence and corresponding 
encrypted image G’ in turn, then we can get the decrypted image.  
 
 
5.1 The Simulated Results of Image Encryption and Decryption 

In this section, we will apply tracking control synchronization in to encrypting Lena  
whose size is 256×256, and we will do simulation with matlab7.8. Let 

95.0,1,2,4,8 )0(
4

)0(
3

)0(
2

)0(
1  xxxx , and the simulation results are shown in 

Figure 7. 
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From Figure 7 (b), we can see that the encrypted images are very different from the 
original images. From Figure 7 (c), we can see that the encrypted images can be decrypted at 
the receiving terminal. 

In order to furtherly check the validation of the method presented, Lena original image, 
its encrypted image and its decrypting image are compared in histogram and in correlation 
between adjacent pixels. We also analysis the sensitivity of the encrypted image to the secrete 
keys.  
 
 
5.2 The Comparition of Histogram  
           The histograms of Lena original image, its encrypted image and its decrypted image are 
shown in Figure 8 (a), (b) and (c) respectively. It is clear that the histogram of the Lena original 
image is extremely similar to the one of the Lena decrypted image, but the histogram of Lena 
encrypted image is nearly even-distributed in the entire range of gray. It shows that statistical 
property of the original image has been broken, so the encrypted image has a good ability to 
resist the attack that is based on statistical characteristics. 
 
 
 

(a) The histogram of original Lena image  (b) The histogram of encryption image  (c) The histogram decrypted image 

 

Figure 8. The gray histogram 

  

 
   
5.3 The Comparision of Correlation between Adjacent Pixels 

Firstly, we randomly select 5×5 pixels from Figure 7(a) and (b) respectively, and the 
grey values of selected pixels are shown in table 1 and 2. It is clear that the grey values of 
pixels from the encrypted image have more change than the one from the original image. 
Furthermore, the difference of two gray values corresponding two adjacent pixels in the original 
image is small, but the one in the encrypted image is large. 

Then we randomly select 1000 adjacent pixel pairs in horizontal, vertical and diagonal 
direction respectively from Figure 7(a) and (b), and the results are shown in table 3. It shows 
that all correlation coefficients in horizontal, vertical and diagonal directions are close to 1 in the 
original image, but they are close to 0 in the encrypted image. So the correlation of adjacent 
pixel in the original image has been broken via encrypting. 
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138 133 134 134 136 

133 133 133 130 134 

129 133 130 130 133 

131 133 130 122 132 

131 130 130 130 132 

67 222 154 215 5 

224 61 146 100 254 

175 102 52 253 17 

12 22 176 191 86 

13 67 172 158 205 

Tab.1 The grey values of the 5×5 pixels from the original image  Tab.2 The grey values of the 5×5 pixels from the encrypted image 

Direction The original Lena The encrypted Lena 

Horizontal 0.9723 -0.0141 

Vertical 0.9437 -0.0217 

Diagonal 0.9347 -0.0092 

Tab.3 The correlation coefficient of 1000 adjacent pixel-pairs in Lena image 

 
 
5.4 The Sensitivity of the Encrypted Image to the Secrete Keys 

A chaotic system is very sensitive to initial state. If there are not completely correct 
secrete keys, the encrypted information can not be restored correctly. During the simulation 
experiment, if Figure 9(a) the encrypted Lena image is decrypted using the correct secrete key 

8)0(
1 x ， 4)0(

2 x ， 2)0(
3 x , we can get the right image shown in Figure 9(b); if it is 

decrypted using another secrete key 0000000001.8)0(
1 x , 4)0(

2 x ， 2)0(
3 x ， 1)0(

4 x , we 

can get another image shown in Figure 9(c). Because of a tiny difference 10-10 between the two 
keys, we can get two completely different results. This shows that the encrypted image is 
sensitive to secrete keys, and the encrypted image can be decrypted correctly only by the right 
keys.  

 
 

 

(a)The encrypted Lena (b)The decrypted Lena under precision keys (c)The decrypted Lena under changed keys 

Figure 9. Encrypt Lena image and its decrypted images 

 
 
6. Conclusion 

In this paper, we expanded a four-dimensional integral-order hyperchaotic system to be 
a fractional-order system, then we theoretically analyzed and quantitatively simulated some 
chaos characteristics. 

We also put forward a method to synchronize two fractional-order chaos systems with 
different structures on the basis of the stability theory of fractional-order linear system and the 
tracking control ideas, and we gave the analysis formula of synchronous controller and carry out 
quantitative simulations on the synchronization between the extended fractional-order system 
and Rőssler hyperchaotic system.  

At last we applied the proposed synchronization method to encrypting and decrypting 
digital images. Lena original image, its encrypted and decrypting image are compared in 
histogram and in correlation between adjacent pixels, we also analyzed the sensitivity of the 
encrypted image to the secrete keys. The experimental results show that this method has many 
advantages for encrypting and decrypting digital images. 
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7. The Future Work 
At present, the synchronization method of integer-order system has been developed 

well, whether these approaches can be extended to fractional-order chaos or whether 
synchronization scheme will be put forward for fractional order system is worth considering. 
Another future work is reducing the amount of computation and improving the calculation 
accuracy of fractional calculus operations. 
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