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Abstract 
Substrate Integrated Waveguide (SIW) antennas are considered as main radiators for RF and 

microwave wireless systems due to their low profile, low cost and soft integration with the other devices. 
The gain of a SIW patch antenna may be enhanced using different techn iques such as Artificial Neural 

Networks (ANN) by modifying the antenna’s geometry with high efficiency comparing to electromagnetic 
techniques that take more time. This paper describes a novel structure of a circular SIW patch antenna 
design using a tree-dimensional electromagnetic (3D-EM) simulation based on ANN model which is 

developed as an accurate tool for synthesizing the forward side and then analyzing the reverse side of the 
problem. In this work, ANN algorithms are used for training the samples to  provide precise geometrical 
dimensions of the SIW patch antenna with high accuracy for the target requirements. The antenna is 
designed to operate in Ku and K frequency bands, resonate at 16.10 GHz and 19.81 GHz respectively and 
show good performance resulting in low return losses of less than -10dB to -29dB for the selective 
frequency bands. 
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1. Introduction 

As the growing expansion of RF and microwave applications operating at high 

frequencies motivates the development of effective technologies, SIW technology becomes very 
useful for designing circuits especially antennas by using periodic metallic via holes that largely 
preserves the well-known advantages of conventional rectangular waveguides, namely, high 

quality factor, high power capacity, and self-consistent electrical shielding, takes the advantages 
of microstrip lines, such as small volume, and light weight, and easily connects to other 
microstrip and coplanar components through simple transitions. This has consequently led to 

develop a variety of compact low-loss microwave integrated systems [1-3].  
Recently, antennas employing SIW have achieved excellent  radiation and good 

properties such as symmetry patterns, high gain, and very wide bandwidth, and their difficult 

modeling into planar forms due to the bulky geometry seems to become easier [4-5]. This has 
provided over the past decade an important class of microwave antennas with numerous 
wireless applications after using automatic modelling techniques to bring the Computer Aided 

Tuning (CAT) for such high frequency structures to its current state of the art. Artificial neural 
networks present one of the most popular automation techniques used for RF and microwave 
design optimization that consist of information processing systems with their design inspired by 

the studies of the ability of the human brain to learn from observations and to generalize by 
abstraction [6-7]. ANNs can be used to develop new models or enhance the accuracy of 
existing models. They learn device data through an automated training process, and the trained 

neural networks are then used as fast and accurate models for efficient high-level design. 
In this paper, a novel design of a circular SIW patch antenna using High Frequency 

Structure Simulator (HFSS) is proposed for Ku (12-18GHz) and K (18-27GHz) band 

applications. The SIW patch antenna structure adopts two main parts: a tulip-shaped patch [8] 
and microstrip feeding line. The antenna parameters are optimized by developing an MATLAB 
based ANN algorithms trained by the back-propagation technique as a fitness function for 

excellent learning and accurate designing of the antenna’s geometry . ANN Algorithms are 
trained by a set of existent input and output relations obtained by simulation to test data for the 
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algorithms and analyze the SIW patch antenna parameters for the selective bandwidth. The 

design is then validated by comparing the ANN responses with input values provided for the 
combinations of dimension values, within the parameter range of the test set . 

 

 
2. Circular SIW Patch Antenna Design 

SIW geometry structure as shown in Figure 1 is composed of walls presented by two 

rows of metalized via holes with center-to-center distance called WSIW embedded into a 
dielectric substrate and by the top and the bottom metallization of the dielectric substrate. The 
structure can be modeled by a conventional rectangular waveguide mainly defined by its 

horizontal length a, vertical length b designed to determine the guide’s cut-off frequency and 
modes of excitation. The design parameters of the SIW are mainly defined by the set of valid 
relations [9] of a high performance and accurate modelling technique used mostly for calculating 

complex propagation constants of the substrate integrated waveguide, using the concept of 
surface impedance in modelling the rows of conducting cylinders:  

 

 

 
 

Figure 1. Substrate integrated waveguide structure 
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Where p is the centre distance between the via-holes, and d is the diameter of each via hole. 

Practically, a SIW structure can be synthesized in a planar substrate form with arrays of 
metallic vias used to realize a bilateral edge of walls in which the SIW width (WSIW) should be 
instead of a normalized equivalent width called Weq given by the followed experimental  

formula [9-10]: 
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Accordingly, a set of antenna geometric specifications is proposed for the analysis and 

optimization by calculating the SIW parameters basing on equations mentioned above, and 
using HFSS-based Eigen mode solution to determine the remaining antenna parameters 
including both microstrip line and tulip-shaped patch parameters. Details of geometric 

configuration of the circular SIW patch antenna proposed for the study are illustrated in Table 1 
and Figure 2. W, D, R1, R2 present main antenna parameters to be optimized over Ku and K-
bands of frequency by training an ANNs model to support both antenna’s resonate frequencies 

and return losses, and validate Ku and K range operations. 
 
 

Table 1. Circular SIW Patch Antenna Specifications 
Parameters (mm) 

Substrate 

Longer (LS) Width (WS) Thickness (h) Dielectric constant (εr) Tangent loss (δ) 
24 15.4 0.95 3.2 0.0018 

Microstrip line  

Width (W) 2 

SIW 
Diameter(d) Walls Center-to-center distance (p) 

0.6 0.8 

Tulip-shaped patch 
Diameter (D) Inner  ray (R1) Outer ray (R2) 

4.6 3.9 4.6 

 
 

 
 

  
(a) (b) 

 

Figure 2. Front view of (a) upper and (b) bottom metal face of the proposed 
circular SIW patch antenna 

 

 
3. Artificial Neural Network Modelling of Circular SIW Patch Antenna 

Geometrical parameters of the proposed circular SIW patch antenna have been 

optimized by introducing an ANN model using MATLAB programming in order to enhance the 
accuracy of the existing structure through an automated data training process having the ability 
to capture multidimensional arbitrary nonlinear relationships in a very fast way to finally provide 

an efficient high-level antenna design. 
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Figure 3. MLP-ANN architecture selected for the optimization 
 
 

In this work, a Multilayer Perceptron (MLP) network structure has been adopted for the 
calculation of the resonant frequencies and return losses using for training standard, back 
propagation algorithms [11-12], in which neurons are grouped into three layers divided into: first 

layer which consists of input neurons, output layer which contains the output neurons, and 
remaining layer presenting the hidden layer. Figure 3 illustrates the MLP-ANN architecture used 
for the simulation and optimization. For the considered circular SIW patch antenna the 

developed neural model is designed to produce output parameters divided into D, R1, R2, and 
W, having down return loss S11D, high return loss S11U, down resonance frequency fD and upper 
resonance frequency fD as inputs. The range of inputs for training data and modelling problem 

are gathered in the Table 2. 
 
 

Table 2. Training Data Range of Circular SIW Patch Antenna 
Parameters Training data range 

W 2.0–2.4 mm 

D 4.2-5.2 mm 
R1 3.2-4.2 mm 
R2 4.2–5.2 mm 
fD 15.5–17.5 GHz 

fU 19–20 GHz 
S11D (-22)–(-18) dB 
S11U (-32)–(-28) dB 

 
 

After having defined the antenna’s input and output variables as a first stage known as 
neurons process, training data are generated using multi-HFSS simulations to provide a neural 
network model that will be incorporated into the simulator again for fast and accurate 

optimization as a second stage of the overall device called network training process. Likewise, 
the training error is automatically calculated, and network weights are being updated after each 
cycle in order to minimize the training error. The aim of the network training process is then to 

teach the network to produce valid response for inputs from outside the training data that is 
simply called generalization [13]. 

 

 
4. Optimization Results 

Figure 4 shows the simulated return losses of the proposed antenna design for Ku and 

K frequency bands. It is clearly observed that the selected geometric parameters have not 
presented a good performance in terms of low return losses. These parameters are then 
optimized through developing an accurate ANN model. Circular SIW patch antenna’s 

parameters outputted by trained artificial neural network have been implemented by HFSS 
electromagnetic software to compare antenna responses with those initially provided. Both of 
these results are shown in Figure 5 from (a) to (d). 

The results of optimization show that the antenna structure comes with very low return 
losses over the entire bands of resonance. The antenna has been found to resonate at 16.10 
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GHz with a return loss of -19.74dB and also at 19.81 GHz with a return loss of -29.54dB as 

shown in Figure 5-d. The results obtained from testing samples in ANN model are very useful 
for obtaining at resonance bands of the proposed circular SIW patch antenna, very low return 
losses. 

 
 

 
 

Initial parameters (mm): W=2.2, D=4.4, R1=3.6, R2=4.4 

Figure 4. Return loss graph in dual-band Ku/K bands of the circular SIW patch antenna (before 
optimization) 

 

 

  
  

(a) 1st iteration, ANN Output parameters (mm): 

W=2.0152, D=4.6050, R1=3.9011, 
R2=4.6041 

(b) 2nd iteration, ANN Output parameters 

(mm): W=2.2017, D=4.7393, R1=4.3348, 
R2=4.8440 

 

 

 
  

(c) 3rd iteration ANN Output parameters (mm): 
W=2.1800, D=4.6814, R1=3.9634, 

R2=4.6923 

(d) 4th iteration, ANN Output parameters 
(mm): W=2.3431, D=4.3434, R1=3.3903, 

R2=4.6785 
 

Figure 5. Return loss graph in dual-band Ku/K bands of the optimized circular SIW patch 

antenna based on ANN modelling 
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This indicates that ANN model selected for the optimization offers the advantage of 

superior computational ability to provide an optimal circular SIW patch antenna geometry due to 
its high degree of efficiency and interconnectivity for solving complex problems. Table 3 shows 
the final geometric configuration reported from the fourth iteration proposed for the circular SIW 

patch antenna design after optimization. 
 

 

Table 3. Optimized Circular SIW Patch Antenna Parameters 
Optimized parameters Values (mm) 

W 2.3430 
D 4.3434 

R1 3.3903 
R2 4.6785 

 
 
5. Conclusion 

In this paper, a novel circular SIW patch antenna design fed by a microstrip line is 
proposed for Ku and K band applications by developing an accurate MLP-ANN model and 
carrying out multiple HFSS simulations to achieve best approximations to target parameters 

providing a high structure precision as well as high performance level. Greater than -19dB and -
29dB return losses at approximately 16.10 GHz and 19.81 GHz resonance frequencies have 
been obtained to be excellent characteristics for the proposed antenna design to operate in Ku 

and K bands of frequencies. MPL-ANN model selected for the optimization offers the advantage 
of superior computational ability to provide an optimal circular SIW patch antenna geometry due 
to its high accordance with user’s setting resonance frequencies and return losses.  
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