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Abstract 
 In communication between planes and satellites, Optical Beamforming Networks (OBFNs), which 

rely on many small and flat Phased Array Antennas (PAAs), need to be tuned in order to receive signals 
from specific angles. In this paper, we develop a deep neural network representation of tuning OBFNs. 
The problem of tuning an OBFN is in many aspects similar to training a deep neural network. We present a 
way to exploit the special structure of OBFNs into deep neural network and an algorithm for tuning OBFNs 
based on feedback that can be easily measured in real system. Training data, which consists of full 
signals, can be measured, and therefore is used in this paper. For pilot signals, the desired signal is known 
explicitly. Given the configuration of OBFNs and all nominal parameters required, it was verified in 
simulation that the deep neural network can be used to tune large scale OBFNs for any desired delays. 
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1. Introduction 

The demand of being able to connect to internet has been increasing recently, even on 
intercontinental flights. In order to transmit/receive RF signals to/from satellite, the planes 
should focus the transmission beams towards the satellite. Ordinary omni-directional antennas 
are not preferable because, although they are directional-sensitive, they have low gain [1]. 
The conventional solution is to steer dish antennas mechanically, which has some 
disadvantages such as high maintenance cost, large dimension and increased drag  
forces [2, 3].  

Phased Array Antenna (PAA) system [4] is potential solution, because of its agility, low 
maintenance cost, and reduce drag forces [5]. A PAA system mainly consists of an array of 
antenna elements (AEs) and a beamforming network, as illustrated in Figure 1. Each AE 
receives a time-delayed version of desired signal from specific angle. The received signals will 
go through RF paths in which they are delayed with pre-determined delay values. This is done 
to make sure the signal arrives first to the bottom-most path, which will simplify the tuning 
process [2]. After that the signal will go through a beamforming network, where the delay values 
are tuned to match the desired delays [6]. 

The beamforming network is a delay-and-combine network, by which the desired signal 
adds up in phase [7]. In this paper, the desired signal and its time-delayed version are known 
explicitly. An optical beamforming network, with optical ring resonators (ORRs) as tunable delay 
elements, is used in this paper [8,9,10]. Non-linear programming optimization [11,12], genetic 
algorithm [13] were used to get the optimum parameter of the ORRs. However, they cannot 
exploit the special structure of OBFNs, making them not suitable for tuning large-scale  
OBFNs [14]. The problem of tuning OBFNs is in many aspects similar to training a deep neural 
network. It has been proven that neural network has been tremendously used to solve wide 
range of problems, such as in biomedics [15], fault detection system [16], power systems [17], 
face recognition [18], and telecommunication systems [19]. 
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Figure 1. A phased array antenna (PAA) system, antenna elements (AEs) and optical 
beamforming network (OBFN) [2]. 

 
 

The paper is organized as follows. In Section 2, we derive the mathematical model of 
ORR. In Section 3, we describe how to exploit the special structure of OBFNs into deep neural 
network representation. In Section 4, the simulation results of tuning OBFNs using deep 
learning are presented. Finally, some conclusions are presented in Section 5. 

 
 

2. Mathematical Model Of Optical Ring Resonator 
A simple one-input one-output single-stage ORR is illustrated in Figure 2 (Left). It 

consists of a ring-shaped and a straight waveguide. The parameter   is the power coupling 
coefficient, which has a value between 0 and 1,    is the round-trip length of the ring-shaped 

waveguide,   is the round-trip period, and   is the extra phase-shift due to heater on the top of 
the ring. 

 
 

 
 

Figure 2. (Left) Structure of a     single stage ORR. (Right)  -transform schematic of ORR [2]. 
 
 

The Z-transform of an ORR is illustrated in Figure 2 (Right). Let the signal at the right and left 

side of the ring be    and    respectively, then one can derive the following relations: 
 

   =   √    √           (1) 
 

   = 
  √             

   √                  (2) 

 

   =  
√            

   √                   (3) 

 

where   defines the power loss. Since the frequency response is defined as            , and 

substituting             with   being the round-trip period, we obtain the equation for 
frequency response of an ORR: 
 

       
√                

   √                      (4) 

 
Equation (4) is the same as the equation (2.18) in [2] and equation (2.52) in [20]. 
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Figure 3. Group delay response of (a) single ORR, (b) cascade of multiple ORRs. 
 
 

Figure 3 (a) shows when the group delay increases, the width of the delay curve 
decreases. This is due to the fact that the area under the group delay curve represents the 
phase shift of the ORR, which is constant    for one free spectral range (FSR) [21]. This 
observation reveals the tradeoff between the delay value and the bandwidth. A single ORR will 
not be able to cover large bandwidth and high desired delays at the same time. We can use 
cascade of multiple ORRs to solve this problem, as illustrated in Figure 3(b). The frequency 
response of  -stage cascade ORRs in normalized angular frequency is defined by the product 
of those of the individual single-stage ORRs: 

 

          ∏       
             (5) 

 
where       is the frequency response of a single ORR in the stage  . 
 
 
3.    Deep Neural Network Representation of Optical Beamforming Networks 
3.1. Feed-forward Neural Network System 

The OBFN structure is desired to be low-cost, scalable, has minimum number of ORRs, 
and able to cover wide bandwidth. Zhuang [2] found in his experiment that, for the same 
antenna specifications and bandwidth, asymmetrical binary-tree-structured OBFNs, illustrated in 
Figure 1 and its neural network representation in Figure 4, is scalable and has the least number 
of ORR. 

 
 

 
 

Figure 4. (left) 4×1 OBFN system, and (right) its neural network configuration. 
 
 

3.2. Generating Training Examples 
Training examples of a certain neural network consist of input vectors and their 

respective desired output. From Figure 4, the input to the neural network is the signal received 
by each antenna element. The signal received by the reference path is the desired output. In 
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this paper, it is assumed that the signal is coming from a satellite, which is very far, and without 
any aberration from the atmosphere. Therefore, noise and other signal from different direction 
are omitted, and input signals arriving at each antenna element are parallel to each other.  
The inputs shown in Figure 4 (a) are in time domain. Since, we will use frequency response of 
ORR, it is convenient to transform the inputs into frequency domain using Fourier 
transformation, as follows: 
 

  
   

    =  {    }  

  
   

    =  {       } =   
             ,    (6) 

  
   

    =  {         } =   
               . 

 
From equation 6, the input is frequency dependent. Since we want to obtain desired group delay 
response over a certain frequency range, an array of signal for a set of frequencies is needed. 

Given a frequency range                    the input array for path   is  
defined by 

 

  
   

=[
  

   
    
 

  
   

    

]  [
  

        
         

 

  
   

              

]         (7) 

 
Consider a lossless system, i.e., power loss     and gain response         , then the 

desired output for path   of the network is defined by 
 

   = [
  

   
    
 

  
   

    

]           (8) 

 
For a lossy system, where    , the magnitude (gain) response of ORR         , will 

not be covered in this paper. 
 
3.3. Weight Matrices 

Consider an     binary-tree OBFN, which is represented by a neural network whose 
    neurons and   layers, where   specifies the number of frequency of interest. The input 

vectors are propagated through layers using weight matrices             as follows: 
 

                 and       (    )        (9) 

 
where   specifies the layer index, and   is the activation function, which is defined as 
 

                .        (10) 
 

Note that the structure of the weight matrices depends on the configuration of the neural 
network, because different neural network leads to different location of frequency response    

inside weight matrices. However, determining the weight matrices from a given neural network 
configuration is straight forward. Consider a neural network representation of     OBFN 
shown in Figure 5, the respective weight matrices are 
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],       [

  
  

  
  

  
  

   
   

],       [

  
  

  
  

  
  

   
   

], (11) 

 

where        specifies the zero matrix,        specifies the identity matrix and    

represents the frequency response matrix of ORR number  , which is defined by 
 



TELKOMNIKA  ISSN: 1693-6930  

 

Deep Learning for Tuning Optical Beamforming Networks (Herminarto Nugroho) 

1611 

   

[
 
 
 
       

       
    
    

   
   

     
       ]

 
 
 

     ,      (12) 

 
Note that we should carefully consider coupling weights, in which some weights represent the 
same frequency response of a certain ORR, as we can observe in equation 11 and 12. 
 
3.4. Non-linear Optimization 

Given   number of training examples, the deep learning algorithm trains the neural 
network to obtain the optimum value of all   number of ORR’s parameters (all   and  ) by 
minimizing the cost function 

 

                 
 

 

 

 
∑ ‖            ‖

  
        (13) 

 
subject to constraints 
 

    
        , and     

             (14) 

 
via stochastic gradient projection, with     is a small number,   is the training example index, 

and   is the number of stochastic training examples randomly chosen from   training examples. 
Note that stochastic gradient projection [22] is used because the constraints make the 

gradient descent does not work. Stochastic gradient descent is an appropriate choice because 
of its simplicity which results in faster computation. The parameters of ORRs are updated via 
gradient projection methods as follows: 
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     (15) 

 

where   is sufficiently small learning rate and   is the projection matrix. The term 
  

   
 and 

  

   
 

specify the gradient of the cost function with respect to   and   respectively, which are 
formulated by 
 

  

   
 

  

     

     

   
 and 

  

   
 

  

     

     

   
      (16) 

 
where      specifies the      -th element of weight matrix. 

 
3.5. Backpropagation Algorithm 

The non-linear optimization process using stochastic gradient projection requires the 
information of the gradient of the cost function with respect to all parameters in equation 16. 
Backpropagation algorithm is the most efficient way to find the gradient of the cost function by 
applying the chain rule in reverse order. 

 
3.5.1. Gradient for the last layer (layer  ) 

From equation 13, we can determine the partial derivative of the cost function with 

respect to   
   

, where   
   

 specifies each element of matrix     , as follows: 

 
  

   
     (     

   
),        (17) 

 
where   specifies each element of matrix  . Using identity activation function (Equation (10)) 

and the chain rule, the partial derivative of the cost function with respect to     
   

 is given by 
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3.5.2. Gradient for layer     

Let   any number in {     } specifies the layer index. The partial derivative of the cost 

function with respect to   
     

 is 

 
  

   
      ∑

  

   
       

    
   ,        (19) 

 
where   {         } defines the index of neuron. Then, the partial derivative of the cost 

function with respect to     
     

 is 

 
  

  
   
      

  

   
       

            (20) 

 
Since we should carefully consider coupling weights, i.e., some weights represent the same 
frequency response, equation 16 should be modified such that 
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The remaining terms in equation (21) are the derivatives of weights (i.e., frequency response of 
ORR) with respect to parameters   and  . From the frequency response mentioned in  
equation 4, we obtain 
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 , and 

     

   
 

               

(  √                )
    (22) 

 
This completes the formula to find the gradient of the cost function with respect to all 
parameters   and  , which enables the implementation of gradient projection method. 
 
 
4.    Simulation 
4.1. Simulation Setup 

The nominal parameters of OBFN setup simulated in this project are similar to the ones 
used in [14]. Table I shows all parameters needed and their value. The desired delays and 
training examples are given. Initial guesses of all parameter κ and ϕ are similar to [14]. 
 
 

Table 1. The Nominal Parameters of the OBFN 
Symbol Quantity Value Symbol Quantity Value 

  Power factor 1    Frequency center 107.52 Hz 
       Magnitude of frequency response 1   Bandwidth of interest 2 GHz 

  Round-trip period 0.08 ns   Number of frequency 100 

  wavelength 1550 nm    

 
 

The results will show the group delay response graph and test error. This test error refers to the 
difference between the desired output and the actual output of the neural network for given 
training examples, which is stated in equation 13. It is also necessary to compute normalized 
squared group delay error which is defined by 
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where   specifies the number of AE,        and        specify the desired and actual delay 

response of the  -th path respectively. The normalized squared group delay error is essential 
since it gives the comparison how big the error is compared to the desired delay response. 
 
4.2. Simulation Result 

Figure 5 shows group delay response and test error of simulation result of a     

OBFN with desired delay [0 0.1 0.2 0.3] ns. Table 2 shows the optimum value of    and   , and 

the initial and final normalized squared group delay error (  . These optimum parameters are 
similar to the result found in [14]. 

 
 

 
Figure 5. Group delay and test error of     OBFN with desired delay [0 0.1 0.2 0.3] ns. 

 
 

Table 2. Comparison Between Initial - Optimum ORR Parameter Values 
ORR       Initial         Final   

1 0.9 0 

0.2493 

0.9859 0.0018 

         
2 0.9 5.88 0.9766 5.9191 
3 0.9 0.4 0.9726 0.3713 
4 0.9 0 0.9865 0.0027 

 
 

Figure 6 shows the group delay error for different values. Let the desired delays be 
                  ns, where   is a positive real number. One interesting thing is that the error 
increases as the delays becomes bigger. This is expected because of the trade-off mentioned in 
Section 2. When the delay becomes bigger, it is as expected that few ORRs cannot provide 
enough delay response, which will result in error becomes bigger as well. 

Figure 7 show the group delay responses of     OBFN, with desired delay   
                ns where we use     and     respectively. We can observe that as the 
desired group delay increases, the ripple of the delay response will increase as well. This is why 
the error illustrated ini Figure 6 increases as desired delay increases.  

 
 

 
 

Figure 6. Group delay error of                   ns of a     OBFN. 
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The deep learning algorithm aims to exploit the special structure of OBFN system such 
that it can tune large-scale OBFN setups. Figure 8 show the group delay responses of     and 
     OBFN setups. We can observe that the deep learning algorithm indeed can be used to 
tune larger OBFN setups. 

 
 

 
 

Figure 7. Simulation result of a     OBFN with desired delay (left) [0 0.2 0.4 0.6] ns and (right) 
[0 0.3 0.6 0.9] ns. 

 
 

 
 

Figure 8. Simulation result of (left)     OBFN, and (right) 16   OBFN. 
 
 

5. Conclusion 
Optical Beamforming Networks (OBFNs) is used to control Phased Array Antennas 

(PAAs) such that planes can communicate to satellites. Tuning OBFNs is a highly non-linear 
and complex problem. An existing solution, a non-linear programming, is limited to small-scale 
OBFN setups. A deep learning algorithm, which can exploit the special structure of OBFN is 
proposed to tune large-scale OBFN setups. The special structure of OBFNs can be represented 
by a deep neural network. The weight matrices are composed of frequency response of some 
Optical Ring Resonators (ORRs) in the respective layer. Given a certain OBFN structure, a 
deep learning algorithm works well to find the optimum ORRs’ parameters for    ,    , and 

even      OBFN for any given desired delays. Another important thing is that the deep 
learning approach is data driven, which use measurable signal as a training examples. This is 
desirable because we can use real data as measurable signal, which is very essential for online 
tuning in future development. 
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