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Abstrak 
Paper ini mengajukan suatu pengendali prediktif model tak-linier (MPC) yang baru berdasarkan 

model perubahan parameter taklinier (NPV) yang teridentifikasi. Pertama-tama, suatu skema model NPV 
dipresentasikan untuk identifikasi proses yang ditunjukkan dengan struktur model hibrid tak-linier 
Hammerstein parameter model yang bervariasi. Model hibrid Hammerstein menggabungkan jaringan saraf 
tiruan statik yang dinormalisasi dengan suatu fungsi transfer linier untuk mengidentifikasi sistem tak-linier 
secara umum pada setiap titik kerja tetap. Filosofi interpolasi model digunakn untuk memperoleh model 
global dii seluruh domain operasi. Model NPV mempertimbangkan ketaklinieran dinamis transisi yang 
disebabkan oleh variasi titik kerja dan pemetaan tak-linier dari masukan ke keluaran pada titik kerja yang 
tetap. Di bawah kerangka kerja NPV yang baru, pengendalian dihitung melalui metoda linierisasi langkah 
jamak yang ditujukan untuk problem optimasi taklinier. Dalam skema yang diajukan, hanya pengujian 
berbiaya rendah yang diperlukan untuk pengenalan sistem dan pengendali dapat memperoleh kinerja 
keluaran yang lebih baik daripada metoda MPC yang berdasar model perubahan parameter linier (LPV). 
Contoh perhitungan numerik mengesahkan keefektifan pendekatan yang diajukan. 
 
Kata kunci: perubahan parameter tak-linier (NPV), model Hammerstein, MPC tak-linier 
 
 

Abstract 
In this paper, a novel nonlinear model predictive controller (MPC) is proposed based on an 

identified nonlinear parameter varying (NPV) model. First, an NPV model scheme is present for process 
identification, which is featured by its nonlinear hybrid Hammerstein model structure and varying model 
parameters. The hybrid Hammerstein model combines a normalized static artificial neural network with a 
linear transfer function to identify general nonlinear systems at each fixed working point. Meanwhile, a 
model interpolating philosophy is utilized to obtain the global model across the whole operation domain. 
The NPV model considers both the nonlinearity of transition dynamics due to the variation of the working-
point and the nonlinear mapping from the input to the output at fixed working points. Moreover, under the 
new NPV framework, the control action is computed via a multistep linearization method aimed for 
nonlinear optimization problems. In the proposed scheme, only low cost tests are needed for system 
identification and the controller can achieve better output performance than MPC methods based on linear 
parameter varying (LPV) models. Numerical examples validate the effectiveness of the proposed 
approach. 

 
Keywords: Nonlinear parameter varying (NPV), Hammerstein model, nonlinear MPC. 

 
 

1.  Introduction 
During last decades, model predictive control (MPC) has gained great success in a 

wide range of industrial applications. In most of those practices, MPC is designed based on 
linear models. However, linear MPC often results in poor performance when dealing with highly 
nonlinear processes. Meanwhile, although the nonlinear MPC can offer the potentials for 
improved performance, the main challenge is the high cost of modeling and identification of 
nonlinear process. Therefore, a more effective and efficient nonlinear identification technology 
for process prediction and optimization is crucial to the development of nonlinear MPC 
methodologies.  

In terms of model identification of nonlinear systems, a promising method is to divide 
the system into a static nonlinear part and a linear dynamic component, so that the 
Hammerstein- model [2] or the Wiener-model [3] can be used to depict it. They have been 
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widely used in process control [2], [3] due to theirsimple structure and effective prediction 
capabilities. Especially, the two tools can provide a solution for time-invariantnonlinear systems. 

However, when coping with a system with parameter varying property, the above 
methods will encounter difficulties while exciting the plant to perform thorough system 
identification tests across the whole scope of operation due to large disturbances and 
production loss. Hence, parameter varying process identification has attracted many attentions 
from both academia and industry [11]. Some results have been proposed in literature to discuss 
the input-output linear parameter varying (IO-LPV) methods, most of which are based on 
parameter interpolation techniques [11], [13], [14]. Another feasible approach is provided by 
interpolating the linear models [5]. That is to say, the global LPV model is retrieved by 
interpolating all local linear models with proper interpolating functions [5]-[8], [12].According to 
literature [12], the model interpolating based input-output LPV (MI-IO-LPV) can achieve better 
results by approximately representing the process behavior in a thin envelop covering its 
operating trajectory. However, when dealing with highly nonlinear processes, LPV methods 
have difficulties to maintain the performance demands due to that the internal nonlinearities are 
ignored by using simple linear structures. 

Therefore, in this paper, anidentification method using nonlinear parameter varying 
(NPV) model frame is introduced to represent nonlinear processes. The NPV model is featured 
by its nonlinear hybrid Hammerstein model structure along with varying parameters. The hybrid 
Hammerstein model combines a normalized static artificial neural network with a linear transfer 
function to identify general nonlinear systems at each fixed working point. Meanwhile, a model 
interpolating philosophy is utilized to obtain the global model across the whole operation 
domain. Moreover, a nonlinear MPC law is developed based on the NPV model, which is 
computed via a multistep linearization method. The contribution of this paper can be 
summarized as: (1) providing an NPV model identification method which is low cost and 
reliable;(2)developing a nonlinear MPC algorithm for NPV plants which addresses both input 
and output constraints. 

 
 

2.  The Frame of the NPV Model 
The NPV model is characterized by its nonlinear hybrid Hammerstein model structure 

along with varying parameters. This is not only because the nonlinear hybrid Hammerstein 
model [9]can representcomplicated nonlinear processes accurately, but also it is very 
convenient for the nonlinear predictive controller designs. 

Given a single-input single-output (SISO) nonlinear system, denote the input as ( )U t  at 

time t and output as ( )Y t . The nonlinear hybrid Hammerstein model consists of two parts: 
anormalized static nonlinear function and a linear transfer function. The nonlinear static 
nonlinear function ( )f ⋅  is represented by the normalized direct linear feedback (DLF) neural 
network, which is showed in Figure 1. 

Assume that input and output data are generated by a sampled NPV system: 
 

( ) ( , ( )) ( ) ( )

( , ( )) [ ( ), ( )] ( )

Y t G q t X t v t

G q t f t U t v t

δ
δ δ

= × +
= × +

                                                                (1) 
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1
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−− −
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+ +
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              (2) 

 
is the transfer function from ( )X t  to ( )Y t . ( )X t  is a middle variable. 1q−  denotes the unit delay 

operator, n  is the model order. d is the delay form the input to the output. [ ( ), ( )]f t U tδ  

isanormalized static nonlinear functionof the variable ( )tδ , which is called the working point 
variable(scheduling variable). It is a measured variable form the process or can be calculated 
from measurable process variables. Examples of working points are load of a power plant, and 
product grade of a polymer unit [6]. 
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2.1. Static direct linear feedback (DLF) neural network  
The static nonlinear DLF network model is given as: 

 
( ) ( ) ( ( ))F BPX t W U t N U t= +                             (3) 

 
where FW  is a constant matrix, (.)BPN  is a multilayer feedforward Back Propagation (BP) 

artificial neural network, and ( )X t  is a middle variable. In fact, DLF network is composed of a 

linear mapping FW  and a nonlinear one (.)BPN . 
DLF network is well known for its universal approximation property. Furthermore, it is 

very convenient to be integrated into the design of nonlinear predictive control [9].Thence,a 
linear prediction controller can be easily extended to a nonlinear counterpart. On theother hand, 
the computing burden of a nonlinear predictive controller can be greatly reduced.  

Remark 1:The static normalized nonlinear function [ ( ), ( )]f t U tδ  can also be represented 
by other universal nonlinear function approximations, such as CMAC, RBF NN, splines, fuzzy 
logic,ANN and etc.[15], [16], although DLF neural network is utilized in this paper for 
demonstration purpose. 

 
2.2. Linear transfer function 

The dynamics of the industrial process is represented by a linear transfer function, 
which is widely adopted in the literature [6]. Several linear identification methods can be utilized 
to identify the unknown parameters within the linear block. In this paper, the asymptotic method 
[10] (ASYM) is used to obtain anunbiased model with low order. 

Remark 2: Ateach fixed workingpoint, an individual local nonlinear hybrid 
Hammersteinmodel is identified. On the contrary, LPV methods [6], [12] only build a simple 
linear model at a working point, and hence ignore the nonlinear mapping from the input to the 
output at fixed working points. However, our NPV model considers both the nonlinearity of 
transition dynamics due to the variation of the working-point and the nonlinear mapping from the 
input to the output at fixed working points. 

 
 

3. NPV Model Identification 
3.1. Model identification at each working point 

A hybrid model is identified using the data set achieved at each working point.Denote 
the parameter vector of the model ( )G qδ as, 

 

1 1
[ ( ),..., ( ), ( ),..., ( )]

n na a b bδ δ δ δ                           (4) 

 
Without loss of generality, assume that the process has three working points at 
 

1 2 3δ δ δ< <  
 

Denote the three identified nonlinear hybrid working-point models as, 
 
When 1δ δ=  
 1

1 1 1 1 1

1 1

( ) ( ) ( ( ))

( ) ( ) ( )
F BPX t W U t N U t

Y t G q X tδ

= +

=                     
(5a) 

When 2δ δ=  
 2

2 2 2 2 2

2 2

( ) ( ) ( ( ))

( ) ( ) ( )
F BPX t W U t N U t

Y t G q X tδ

= +

=
                   (5b) 

When 3δ δ=  
 3

3 3 3 3 3

3 3

( ) ( ) ( ( ))

( ) ( ) ( )

F BPX t W U t N U t

Y t G q X tδ

= +

=
                    (5c) 

 
        The identification training methods [9] to a nonlinear hybrid Hammerstein model can be 
used here. 
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3.2. Nonlinear static compensation by triangular interpolation 
When system identification is undertaken for most industrial processes, it is usually not 

feasible or even possible to measure all input and output static data set for training the DLF 
network along the whole operating trajectory. That is to say, due to economic considerations, no 
steady-state tests in transition periods are available for model identification purpose. Therefore, 
before implementing any model based controllers, it is required to expand the local 
Hammerstein models at certain number of working points to the whole operation domain. In this 
paper, the triangular interpolation method is utilized to estimate the variation of model due to 
varying working point. 

Firstly, the middle variable at an arbitrary working point ( )tδ  is denoted as follows: 

1 1 1

2 2 2

3 3 3

ˆ ( ) ( )[ ( ) ( ( ))]

( )[ ( ) ( ( ))]

( )[ ( ) ( ( ))]

F BP

F BP

F BP

X t W U t N U t

W U t N U t

W U t N U t

φ δ
φ δ
φ δ

= +
+ +
+ +

                         (6) 

 
where 1 2 3( ),  ( ),  ( )φ δ φ δ φ δ  are the weight functions. Essentially, they determine how much the 
system model at current working condition is close to that at individual working point. By 
recalling the triangular interpolation method, the weights are set to be the distances between 
the current working-point and the working point of the DLF network, i.e. 
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Therefore, the middle variable across the entire working domain can be calculated. 

 
3.3. Obtain nonlinear parameter varying model by interpolation 

Similar to LPV model identification processes [6], instead of identifying a full nonlinear 
model in Eq. (1) and (2), an approximation model is built to represent the process along the 
operating-trajectory as follows: 

 
1 2

3

1 2

3

ˆ ˆ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]

ˆ( )[ ( ) ( )] ( )

Y t G q X t G q X t

G q X t v t

δ δ

δ

η δ η δ

η δ

= +

+ +
              (8) 

 
Several estimation methods [5]-[8] can be used here to parameterize the weight 

functions, 1( )η δ , 2 ( )η δ  and 3( )η δ : cubic splines, polynomials, or piece-wise linear function. In 
our work, the cubic splines are taken. 

Firstly, denote a set of knots 1, 2{ ,..., }sp p p for a working-point variable ( )tδ . The knots 

should span the whole process operation range. It is reported convenient [6] to distribute the 
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knots uniformly over the range min max[ , ]δ δ . A better option is to use the working points at which 
comparatively accurate models are available. Besides, the knots must be real numbers and 
satisfy the followinginequality: 

 

min 1 2 max... sp p pδ δ= < < < =                            (9) 
 

Thereafter, each cubic spline weight function ( )η δ  can be given as 
 

1
3

1 2 1
2

( ) | |
s

j j
j

pη δ λ λ δ λ δ
−

+
=

= + + −∑    (10) 

 

where 1 2[ , ,..., ]sλ λ λ are the parameters to be estimated. s  is the order of cubic splines, which 
depends on the number of working points and the amount of total data.  

Now, assume that all weight functions 1( )η δ , 2 ( )η δ and 3( )η δ  are written as Eq. (10). 
Then the parameter vector of the weighting functions can be denoted as: 

 
3 3 31 1 1 2 2 2

1 2 1 2 1 2

ˆ [ , ,..., , , ,..., , , ,..., ]
s s s

Tδ δ δδ δ δ δ δ δθ λ λ λ λ λ λ λ λ λ=        (11) 
 

Define the total data sets as follows: 
 

[ ( ), ( ), ( ), 1,2,..., ]NZ U t Y t t t Nδ= =                 (12) 
 

Moreover, denote the output error of model in Eq. (8) as: 
 

1 1 2 2 3 3
ˆ ˆ ˆ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]OEe t Y t Y t Y t Y tη δ η δ η δ= − + +             (13) 
 

where ˆ ˆ( ) ( ) ( ),  1,2,3i

iY t G q X t iδ= = , and θ̂  is the parameter vector to be determined. Thereafter, 
by using total testing data which include working-points data and transition test data, the 
parameter vector can be estimated by minimizing the output error loss function: 
 

2

1

ˆ min [ ( )]
N
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t

e t
θ

θ
=

= ∑   (14) 

 
 

4.  Nonlinear MPC using the NPV model 
4.1. Process Model 

Assume that inputs and output data are generated by a sampled NPV system in Eq. (1) 
and (2). Then a state-space description of the NPV model can be derived as follows: 

 
ˆ( 1) ( ) ( ) ( )

( ) ( )

x t Ax t B w X t

Y t Cx t

+ = +
=

 (15) 

 
In order to imitate practical applications, step-like disturbance at the output, slow drifts 

or step-like disturbance at the input or states, and plant-model mismatch have to be introduced. 
The resulting augmented model for the NPV model [6] can be written as follows: 

 
( 1) 0 ( ) ( )

ˆ( 1) 0 0 ( ) 0 ( ) ( )

( 1) 0 0 ( ) 0
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where ( )tε and ( )v t are zero-mean white noise with specified covariance Rε and vR , ( )p t are 

augmented output disturbance variables, ( )d t  are augmented input disturbance variables, dB

and pC is the disturbance model. 
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4.2. Control Objective 

The nonlinear MPC controller is based on the minimization of the following open-loop 
quadratic objective performance index: 

 

2 2

ˆ ˆ( | ),..., ( 1| ) 1 0
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(17) 
 

where ry defines a reference trajectory for the outputs; minX̂ and maxX̂ are lower and upper 

operating limits for X̂ ; minY and maxY are lower and upper operating forY . P is a prediction horizon 

and M is a control horizon. ˆ ˆ ˆ( | ) ( | ) ( 1| )X t j t X t j t X t j t∆ + = + − + − is often referred as control 
move suppression to prevent aggressive control actions. Currentintermediate 
controlcanbecalculatedbythefollowing formula: 
 

ˆ ˆ ˆ( ) ( 1) ( )X t X t X t= − + ∆  (18) 
 

4.3.Derivation ofactual nonlinear control input 
Theabove Eq. (18) obtainsoptimizationintermediatecontrol ˆ ( )X t which ensures the 

output of plant tracks thereference trajectory. But itis nottheactual input. As can be seen in 

Figure 1, the relationship between intermediatecontrol ˆ ( )X t and actual input ( )U t is described by 
the static DLF network in Eq. (6). 

This paperusesthe following approximating formula (in this case, the sampling period 
should not be too large). Eq. (6) can be approximated: 
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Then the actual input can be obtained: 
 

1 1 2 2 3 3

1 2 3

( ) ( ( ) ( ) ( ) )

ˆ[ ( ) ( ( 1)) ( ( 1)) ( ( 1))]

F F F

BP BP BP

U t W W W

X t N U t N U t N U t

φ δ φ δ φ δ= + +

× − − − − − −
  (20) 

 
When it is necessary, the iteration correction of ( )U t can be denoted as: 

 
( )

1 1 2 2 3 3

( 1) ( 1) ( 1)
1 2 3

( ) ( ( ) ( ) ( ) )

ˆ[ ( ) ( ( )) ( ( )) ( ( ))]

k
F F F

k k k
BP BP BP

U t W W W

X t N U t N U t N U t

φ δ φ δ φ δ
− − −

= + +

× − − −
  (21)  

 
where k indicates the number of iteration. For the first time, ( 1) ( )kU t− can be obtained by Eq. 

(20).The number of iteration depends on the actual situation. 
 
4.4. Multistep Linearization Method  

For a multi-step-ahead control, however, the linear model may significantly deteriorate 
form the nonlinear process and therefore negatively influence the controller performance. This 
can be overcome by using multiple linear models derived along the nominal trajectory within the 
prediction horizon. This process is called multistep linearization method. 
Control Algorithm.  
• Step1: Initialization 0

ˆ ˆ( )X t X= . 

• Step2:Starting with the state estimation value ( | )x t t and the nominal input trajectory vector

ˆ ( )X t , compute the nominal trajectory vector Y andW . Get the linearized models 

{ ( ), ( 1),..., ( 1)}G t G t G t P+ + − around the nominal trajectory. 

• Step3: Solve the corresponding QP problem. Update ˆ ˆ ˆ( ) ( 1)X t X t L X← − + ∆ , L is a triangular 
matrix with elements of one on and below the diagonal. 

• Step4:If the trajectory ˆ ( )X t is converged or the QP iteration counter exceeds maxn , then go to 

Step5. Else, go back to Step2 with iteration count 1i i= + . 

• Step5: Implement the first computed move ˆ ( | )X t t∆  and update ˆ ( )X t  for the next time 
interval. 

• Step6: Derivationofactual nonlinear control input 
 

( )
1 1 2 2 3 3

( 1) ( 1) ( 1)
1 2 3

( ) ( ( ) ( ) ( ) )

ˆ[ ( ) ( ( )) ( ( )) ( ( ))]

k
F F F

k k k
BP BP BP

U t W W W

X t N U t N U t N U t

φ δ φ δ φ δ
− − −

= + +

× − − −
, then go back to Step1 at time

1t t← + . 
 
 

5.  Simulations 
Given an S type nonlinear parameter varying function, the steady-state shape can be 

seen in the Figure 2. 
 

3 (4 10)

1
( , )

1 *e u
x f u δ

δ − −= =
+

， [1,4]δ ∈     (22) 

 
We take a first order process as the linear transfer function. The transfer function in the 

continuous-time is  
 

( , ) ( )
( , )

( , ) ( ) 1

Y s K
G s

X s s

δ δδ
δ χ δ

= =
+

        (23) 

 
where 2 2( ) 1 , ( ) 3K δ δ µ δ δ= + = + ， [1,4]δ ∈  
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Then, the simulated output is corrupted by a filtered white noise as: 
 

1
( ) ( )

1 0.9

c
v t e t

z−=
−

                  (24) 

 

where ( )e t is a white noise sequence and the constant c is adjusted at the three working points 
so that the noise is 3% of the noise-free output in power. In order to obtain nonlinear hybrid 
working-point models, the process will be tested at three working points: 
 

1 2 31, 2.5, 4δ δ δ= = =  
 

In the operation range [1,4]δ ∈ , the normalized static nonlinear mapping from the input 

to the outputhave an obviousnonlinear alter and process gain changes nonlinearly more than 10 
times and time constant changes 10 times in the linear transfer function. Thus a linear model 
cannot obtain good approximation of the process behavior in the whole operation trajectory.  

 

FW

  
 

Figure 1. The architecture of a nonlinear hybrid 
Hammerstein model 

 

 
Figure 2. The normalized static nonlinear 
mapping from the input to the outputusing 

the DLF network 
 

Here, we will show how well the proposed nonlinear parameter varying model can 
approximate the process over the whole operation trajectory. For generating input-output data, 
the process is simulated at a sampling time of 1 second. The input is a GBN (generalized binary 
noise) signal with average switch time of 20 seconds. The knots for the three weighting 
functions are the same and the order of cubic spline is 7.  

The estimated normalized nonlinear mapping from the input to the output and step 
responds of NPV models at the working points 2 and 3.3 respectively are shown in Figure 3 and 
Figure 4. The weights functions of DLF networks and NPV models are shown in Figure 5. One 
can see that good control performance of nonlinear MPC using the NPV model can be obtained 
by comparisons with linear MPC and LPV-MPC [8] in Figure 6 and Figure 7. 

 
 

 
 

Figure 3. The normalized nonlinear mapping from the input to the output and step responses of 
NPV models at the working points 2. Left blue solid lines: true normalized nonlinear mapping; Left red 
dotted lines: weighted fitting of DLF network. Right blue solid lines: true step responds; Right red dotted 

lines: output of NPV model. 
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Figure 4. The normalized nonlinear mapping from the input to the output and step responses of 
NPV models at the working points 3.3. Left blue solid lines:true normalized nonlinear mapping; Left 

red dotted lines:weighted fitting of DLF network. Right blue solid lines: true step responds; Right red dotted 
lines:output of NPV model. 

 

 
 

Figure 5. Left picture is triangular weighting functions for normalizedstatic nonlinear mapping. 
Right picture is weighting functions of the nonlinear parameter varying model using noise data. Red solid 

line: weighting 1; blue dashed line: weighting 2; black dash dotted line: weighting 3 
 
 

Figure 6.Output comparisons of linear MPC, 
LPV-MPC and NPV-MPC, Red solid line: set 

point. Cyan dashed line: linear MPC. Black dotted 
line: LPV-MPC. Blue dash dotted line: NPV-MPC. 

Figure 7. Input comparisons of linear MPC, 
LPV-MPC and NPV-MPC 

 
 
6.  Conclusions 

In this paper, an NPV model identification method is proposed to represent the 
nonlinear process. It consists of local nonlinear hybrid Hammerstein model structure and 
varying model parameters. Further, a nonlinear MPC design is developed based on the 
identified NPV model. The control actionis computed via a multistep linearization method of 
nonlinearoptimization problem. Simulation examples demonstrate the results of model 
identification and the control performance of nonlinear MPC. 
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