
TELKOMNIKA, Vol.10, No.4, December 2012, pp. 759~770
ISSN: 1693-6930
accredited by DGHE (DIKTI), Decree No: 51/Dikti/Kep/2010 � 759

Received March 8, 2012; Revised July 4, 2012; Accepted July 14, 2012

Effects of Puncturing Patterns on Punctured
Convolutional Codes

Lydia Sari
Electrical Engineering Department, Faculty of Engineering, Atma Jaya Catholic University

Jln. Jend.Sudirman Kav. 51, Jakarta 12930, Indonesia Ph. 62-21-5708826
e-mail: lydia.sari@atmajaya.ac.id

Abstrak
Kode konvolusional punctured telah digunakan secara luas dalam sistem telekomunikasi karena

hemat bandwidth dan lebih sederhana dibandingkan kode non-punctured, namun tetap memiliki kinerja
yang baik. Analisa kinerja kode konvolusional punctured dapat disederhanakan menggunakan kode
ekivalen non-punctured. Dalam makalah ini diajukan kode konvolusional punctured baru dengan rate 3/8,
3/7 dan 3/6, dan kinerjanya dianalisa dengan terlebih dahulu mengkonstruksi kode ekivalen non-
punctured. Hasil simulasi menunjukkan bahwa pola puncturing yang berbeda untuk laju kode yang sama
akan mempengaruhi kinerja kode. Penelitian lebih lanjut menunjukkan bahwa puncturing pada bit-bit yang
bersebelahan perlu dihindari karena berpotensi menurunkan kinerja kode, seperti diindikasikan dengan
penurunan jarak bebas kode sebesar 9% dan 33% di bawah rata-rata berturut-turut untuk laju kode 3/7
dan 3/6. Sebaliknya puncturing yang dilakukan pada bit-bit yang tersebar akan menghasilkan kinerja kode
yang baik, seperti diindikasikan dengan peningkatan jarak bebas sebesar 27% dan 32.45% di atas rata-
rata berturut-turut untuk laju kode 3/7 dan 3/6.

Kata kunci: bobot galat, kode ekivalen non-punctured, kode konvolusional punctured, pola puncturing

Abstract
 Punctured convolutional codes are known to have low complexity compared to their non-

punctured counterpart, while retaining a good performance. Analyzing the performance of punctured
convolutional code can be simplified by using non-punctured equivalent code. In this paper new punctured
convolutional codes with rates of 3/8, 3/7 and 3/6 are proposed, and their performances are studied by first
constructing non-punctured equivalent codes. Simulations results show that different puncturing patterns
will affect the code performances. Further investigations show that puncturing adjacent bits is to be
avoided as it tends to degrade the code performance, as indicated by a decrease of the free distance by
9% and 33% below average for code rates 3/7 and 3/6 respectively. On the contrary, dispersed punctured
bits will yield good code performance as indicated in the increase of the free distance by 27% and 32.45%
above average for code rates 3/7 and 3/6 respectively.

Keywords: error weight, punctured convolutional code, puncturing pattern, non-punctured equivalent code

1. Introduction

Forward error control is one of the key areas which enable the rapid development of
reliable and secure telecommunication systems. It is found in the transmission and reception
parts of a telecommunication system, as well as in the storage media critical to the reliability of a
system.
 One of the most widely used forward error control method is convolutional coding, found
in wireless terrestrial to deep space telecommunication. Its advantage lies in its ability to protect
transmitted data from burst as well as intermittent errors. This type of coding plays an important
role in both parallel and serial concatenated coding, which serves as a highly reliable error
detector and corrector [1].
 To ensure high reliability, however, convolutional codes tend to occupy a large
bandwidth. This is due to the fact that convolutional codes add redundancy to each transmitted
bit, producing a code rate of smaller than 1. The larger number of redundancy bits added to
each transmitted bit, the stronger the protection given to the said bit against transmission
errors [2].

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

760

 One way to reduce the occupied bandwidth is by using punctured convolutional codes
[3-4]. Punctured convolutional codes can also provide variable rate convolutional code, an
important part of unequal error protection in wireless telecommunication systems [5-6]. A
puncturing process deletes a number of bits in the codeword produced by a convolutional
encoder [3]. As the number of redundant bits decreases, so does the system complexity and
the bandwidth required by the system. The decrease of redundant bits implies that the code
performance will decrease as well. However it has been shown that there punctured codes
which performances are comparable to those of convolutional codes [3], [7-8].
 Quantifying the performance of punctured convolutional codes is not straightforward,
and the accurate analysis using state diagram and transfer function has been widely known only
for convolutional codes [1], [9-10]. A method to accurately analyze the performance of
punctured convolutional codes is therefore a research topic of an urgent value. We have tried to
implement a combination of the methods proposed in [1] and [9] to quantify the performance of
new punctured convolutional codes using non-punctured equivalent model [10]. However the
role of a puncturing pattern is not shown in [10]. In this paper we use the non-punctured
equivalent model [1], [9-10] to construct a punctured convolutional code in order to quantify the
performance of a punctured convolutional code, as well as demonstrating the effects of
puncturing patterns used on the code performance.
 This paper is organized as follows. Section 2 illustrates the basics of punctured
convolutional codes. The reconstruction of equivalent non-punctured convolutional code for a
punctured code is given in Section 3. Section 4 gives the simulation results and the analysis of
the code performance, while the conclusion is given in Section 5.

2. Research Method
 In this paper three punctured convolutional codes of rates 3/8, 3/7 and 3/6 are
generated from a mothercode having a rate of 1/3. The steps required to analyze the
performance of punctured convolutional codes using non-punctured equivalent codes is given in
Figure 1.Details are given in the subsequent sub-sections.

Figure 1. Steps to analyze punctured convolutional codes using non-punctured equivalent

codes

Figure 2. Punctured convolutional code with Pc=4

TELKOMNIKA ISSN: 1693-6930 �

Effects of Puncturing Patterns on Punctured Convolutional Codes (Lydia Sari)

761

2.1.Punctured Convolutional Codes and the Equivalent Non-Punctured Representation
 Punctured convolutional code was first developed to simplify the decoding process of a
convolutional code. A pioneering research has shown that codes with rates 8/9 to 8/30, attained
by puncturing a rate 8/32 convolutional code, have comparable performances to the best known
convolutional codes of the respective rates [3]. Figure 2 illustrates a punctured convolutional
code scheme where a convolutional code with rate Rc=k/n=1/2 is punctured with puncturing
period Pc=4, where k denotes the number of transmitted bits from the source, and n denotes the
number of coded bit resulted in the codeword. The illustrated system has two puncturing tables
used simultaneously, where the number “0” represents a punctured bit while “1” represents a
non-punctured bit. It is shown that for 4 input bits, instead of a codeword with 8 bits in
accordance to Rc=1/2, the system yields a codeword with 6 bits, resulting in an Rc’=4/6. This is
due to the fact that 2 bits in the codeword are punctured, conforming to the puncturing tables
used.

A puncturing table can be stated as an n×Pc matrix, and for Figure 2 the puncturing
table is as follows

 (1)

where 1 ≤δ≤ (n-1)Pc, and δ denotes the number of punctured bits. For this example as Pc=4, δ
can take any value from 1 to 3. The resulting punctured convolutional codes are [3]

 (2)

so that for the example given, the possible code rates are 4/5, 4/6 to 4/7.
 It is apparent that there is a number of different puncturing tables available to reach
each code rate. A different puncturing pattern will yield different code performance, as will be
shown in the later sections.
 To construct a non-punctured equivalent of a punctured convolutional code, the first
step is to develop a K-times blocked code from the mother code with rate Rc=1/n, with K being
any integer value. Any convolutional code with rate 1/n can be stated as a K-times blocked code
with rate K/nK[9].
 A convolutional code which generator matrix is G=(G0,…,Gn-1) can be expanded into a
K-times blocked code with expanded generator Ge. The expanded generator Ge consists of n
polynomials, each further broken down into K polynomials. The resulting expanded generator
Ge therefore consists of nK polynomial Tij, where i=0, 1, .., (n-1) and j=0,1,.., n. The expanded
generator Ge for a convolutional code can be stated as [9]

 (3)

where j/n denotes the smallest integer not exceeding j/n and D denotes the D-transformation
of unit delay produced by one memory element in the shift-register of the convolutional encoder.
 For the example as given in Figure 2, assume the mother code has a rate of Rc=1/2 and
blocked 4 times, so that K=4. The resulting equivalent code rate is K/nK=4/(2)(4)=4/8.
According to (3), the expanded generator Ge will therefore have nK=8 polynomials Tijand DTij.
After the polynomials are calculated, the elements of the expanded generator are laid out as
follows [9].

 (4)

()

=

1011

0111
δa

δ+
=

c

c
c P

P
R

>×

≤×
=

+−

−

jinDT

jinT

G
Ki

n

j
nj

i
n

j
nj

e

,mod

,mod

[]MMZMZMZG KK
e |||| 21 ×××= −−

K

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

762

where Z denotes a K ×Kmatrix consisting of an upper diagonal of 1, a D in the bottom left
corner and 0 elsewhere [9], while M is a K ×n matrix which consists of the previously calculated
polynomials Tijand DTij.
 The next step in constructing a non-punctured equivalent of a punctured convolutional
code is to delete some columns in the expanded generator matrix Ge. The deletion is done
according to the puncturing pattern as stated in the puncturing table.
 As there are no systematic method to create a well-performing punctured convolutional
code, such code is created by puncturing a well-known convolutional code with good
performance [7-8].

2.2.Constructing Non-Punctured Equivalent Codes of Punctured Convolutional Codes
 In this paper a mother code having a rate of 1/3 will be punctured to yield punctured
convolutional codes of rates 3/8 to 3/6with puncturing period P=3. For Rc=1/3, a blocking of
K=3 times is carried out, resulting in an equivalent code rate Rc’=3/9. The generator of the
mother code is G(D)=[75 53 47], which is a well-known convolutional code with good
performance. This generator will be expanded to yield Ge which consists of nK=9 polynomials.
In its matrix form, Ge will have nKcolumns and n rows.
 To construct Ge, first G(D) is split into G0(D), G1(D), and G2(D). The three separate
generators can be stated in their binary forms as follows:

 G0(D)=758=1 1 1 1 0 12=1 + D + D2 + D3 + D5 (5)

 G1(D)=538=1 0 1 0 1 12=1 + D2 + D4 + D5 (6)

 G2(D)=478=1 0 0 1 1 12=1 + D3 + D4 + D5 (7)

Each of the generator G0(D), G1(D), and G2(D) is split further using the method
proposed in [1]. The generator G0(D) is split as follows

 G0(D) = 1 + D + D2 + D3 + D5=a0 D

0+a1 D
1+a2D

2+a3D
3+a5 D

5 (8)

where is binary sequence and its equivalent in the D-domain is A(D)=

 and the sequence a can be split into P sub-sequences with respect to the modulo-P
positions [1]

 (9)

hence the representation of G0(D) in (8).
 The first of the 3 polynomials Tij gained from (8) is T00, where

 (10)

[]maaaa ,,, 10 K

∆
=

∑
=

m

i

i
i Da

0

[]
[]

[]K
KK

K

K

,,,

,,,,

,,,,

131211

12111

200

−−−

∆

−

++

∆

∆

=

=
=

=

tttt

tt

tt

aaaa

aaaa

aaaa

K

K

++++=

++++=

===

+⋅+⋅+⋅+⋅

+

3
9

2
6

1
3

0
0

3
033

2
032

1
031

0
030

00 0,....;2,1,0

DaDaDaDa

DaDaDaDa

jiDaT i
jiP

TELKOMNIKA ISSN: 1693-6930 �

Effects of Puncturing Patterns on Punctured Convolutional Codes (Lydia Sari)

763

It is shown in (8) that the polynomials in G0(D) possesses a maximum coefficient of a5, therefore
the terms of sequence in (10) with coefficients higher than 5 are negligible. The first polynomial
T00 can be written as

 (11)

With the same method, the polynomials T01 and T02 can be derived from G0(D) and yields

 T01=1 (12)
 T02 =1+ D (13)

In a similar manner, G1(D) is rewritten as

 G1(D)= 1 + D2 + D4 + D5=a0 D

0+a2 D
2+a4D

4+a5 D
5 (14)

Splitting G1(D) into 3 polynomials will yield

 T10=1 (15)

 T11=1+ D (16)

 T12=1+ D (17)

Whereas G2(D) is rewritten as

 G2(D)= 1 + D3 + D4 + D5=a0 D

0+a3 D
3+a4D

4+a5 D
5 (18)

and splitting G2(D) into 3 polynomials will yield

 T20=1 + D (19)

 T21=1+ D (20)

 T22=1+ D (21)

The resulting 9 polynomials T00 to T22 are the elements of expanded matrix generator Ge, which
is stated in (4). For K=3, Z can be stated as

 (22)
while M is

 (23)

Using (4), the expanded generator Ge can be stated as

 (24)

DDaDaT +=+= 11
3

0
000

=
00

100

010

D

Z

=

201000

211101

221202

TTT

TTT

TTT

M

=

201000221202021101

211101201000221202

221202211101201000

TTTDTDTDTDTDTDT

TTTTTTDTDTDT

TTTTTTTTT

Ge

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

764

where each element Tijis given in previous equations and DTij can be easily calculated using Tij
and is given in Table 1.

3. Results and Analysis

The code rates of 3/8 to 3/6 are yielded by puncturing 1 to 3 bits from the mother code
used in this paper, which rate is 3/9. This translates into removing 1 to 3 columns from the
expanded generator Ge. The determination of which column or columns to be removed is done
by trial and error to find the best-performing punctured codes.

Table 1. Values of DTij calculated from (D), G1(D), G2(D)

Polynomials from G0(D) Value (Octal)
DT00 Not needed
DT01 2
DT02 5
DT10 Not needed
DT11 5
DT12 5
DT20 Not needed
DT21 5
DT22 5

Table 2. Punctured code with Rc=3/8

Removing one column of Gefor example will mean increasing the code rate from 3/9 to
3/8, regardless of which of the 9 columns in Geis removed. However the code yielded by
removing the first column in Ge will have a different performance compared to the code yielded
by removing the ninth column in Ge. The performance of a punctured code resulting from
removing one column in Ge is given in Table 2. It is shown that different puncturing patterns will
result in different performances, in this case different free distances dfree and error weights cd for
the given code; where error weights represent the number of erroneous bits produced by the
incorrect paths. The simulations for all codes are done for the first 5 components of cd.
 It is noted that for instance, puncturing the first bit of the codeword, which is equal to
removing the first column in Ge results in a dfree of 6. On the contrary, puncturing the ninth bit of
the codeword, will yield a dfree of 8 although the code rate is maintained at 3/8. This means
puncturing the ninth bit is favorable to puncturing the first bit of the codeword. Puncturing the
first bit will yield a code which free distance is the same as the code yielded by puncturing the
third bit. However the code weight cd will differ between the two, and the total number of bit
errors in the latter code is higher than that of the code where the first bit is punctured.
 The simulation result for a punctured code with Rc=3/7 is given in Table 3. To achieve
Rc=3/7, 2 bits in the resulting codeword from a mother code with Rc=3/9 are punctured. This is
equal to removing two columns from the expanded generator Ge. It is shown that consistent with
the result shown in Table 2, different puncturing patterns will affect the code performance.

Code Rate: 3/8
Bit(s) Punctured: 1

Column(s)
removed

1

2 3 4 5 6 7 8 9

dfree

6 7 6 6 7 6 7 7 8

Cd

[2 2 3 10
18]

[2 6 7 14
47]

[2 0 10 0
25]

[2 2 0 7
17]

[4 0 4
22 22]

[2 0 10 0
31]

[4 7 13 25
18]

[2 5

11 15
10]

[7 0 29
0 101]

TELKOMNIKA ISSN: 1693-6930 �

Effects of Puncturing Patterns on Punctured Convolutional Codes (Lydia Sari)

765

Table 3. Punctured code with Rc=3/7

It is further noted that puncturing dispersed bits yield better performance, in this case

larger dfree, compared to puncturing adjacent bits. From Table 3 it is observed that by puncturing
bits 1 and 2 of a codeword, the resulting dfree is 5, while puncturing bits 1 and 9 will yield a dfree
of 6. Furthermore, puncturing bits 2 and 9 will yield a dfree of 7 while puncturing bits 2 and 3 will
result in a dfree of 5. The variations of dfree resulting from different puncturing patterns are
observed in the other instances in Table 3. In all instances, it is seen that puncturing adjacent
bits will yield poorer performance compared to puncturing highly-dispersed bits. This is due to
the fact that puncturing adjacent bits emulates a burst error, while puncturing highly-dispersed

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

766

bits emulates an intermittent error. The convolutional decoder used in the model system of this
paper performs better to mitigate intermittent error, and therefore punctured bits located more
dispersedly will contribute to better performance compared to ones located next to each other.
The best performances, however, are obtained by puncturing bits 2 and 8; 2 and 9; and 5 and 9.
This implies that puncturing the first significant bit (bit 1) will degrade the code performance.
Therefore, dispersing the punctured bits as well as keeping the first bit unpunctured will assist in
keeping a good code performance.

Table 4. Punctured code with Rc=3/6

TELKOMNIKA ISSN: 1693-6930 �

Effects of Puncturing Patterns on Punctured Convolutional Codes (Lydia Sari)

767

Puncturing several bits at the same time might also change the constraint length of the
code. To preserve consistency, code words requiring a constant length exceeding or below [3 3
3] are not included in the simulation.

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

768

 The simulation result for a punctured code with Rc=3/6 is given in Table 4. To achieve
Rc=3/6, 3 bits in the resulting codeword from a mother code with Rc=3/9 are punctured. The
puncturing process is equal to removing 3 columns from the expanded generator Ge of the
mother code. It is observed that consistent with the previous results, different puncturing pattern
will yield different code performance, suggesting that by choosing a particular puncturing
pattern, the code rate can be maintained yet the code performance can be optimized.

Table 4. Punctured code with Rc=3/6 (cont.)

TELKOMNIKA ISSN: 1693-6930 �

Effects of Puncturing Patterns on Punctured Convolutional Codes (Lydia Sari)

769

The best dfree for Rc=3/6 is 6, attainable through puncturing bits 2, 3, 6; 2, 5, 8; 2, 5, 9; 2,
6, 9; 3, 6, 9; and 3, 8, 9. This implies that both dispersing the punctured bits and keeping the
most significant bit intact will contribute to improve the code performance. It is also shown that if
two out of the three punctured bits are adjacent, the code can still yield good performance. This
is not the case if all three punctured bits are adjacent.

For rates Rc=3/7 and Rc=3/6, there are several catastrophic codes. This is unavoidable
as puncturing might change the structure of the matrix generator into a non-invertible generator
polynomial. As the case with Rc=3/7, several codes with Rc=3/6 requires a constraint length
other than [3 3 3] and therefore the simulation for their dfree is excluded.
 The worst dfree for Rc=3/6 is 3, which is obtained by puncturing bits 1, 2, 3; 1, 3, 4; 1, 3,
5; 1, 4, 6; 4, 5, 6; and 4, 5, 7. This concurs with our previous observation that puncturing
adjacent bits, especially if one of the bits happens to be the most significant bit of the
mothercode, may lower the code performance. It is noticed however that puncturing bits 6, 7, 8,
which are adjacent bits, still yield a dfree of 5. Therefore whilst there is no systematical way to
determine a puncturing pattern which is beneficial to the code performance, dispersing the
punctured bits is more favorable than keeping the punctured bits adjacent.

Table 5 summarizes the results in Tables 2, 3 and 4. For rate 3/8, as only one bit is
punctured, only the average value of dfree is given. For rates 3/7 and 3/6, it is shown that
puncturing adjacent bits will yield the worst dfree, whereas puncturing dispersed bits yields the
best dfree.

Table 5. Summary of performance
Code rates 3/8 3/7 3/6

Average dfree 6.67 5.5 4.53

Worst dfree (obtained by puncturing adjacent bits)
Not

applicable
as only 1 bit
is punctured

5
 (9% below average)

3
 (33% below average)

Best dfree (obtained by puncturing dispersed bits)

7
(27% above average)

6
(32.45% above average)

4. Conclusion

New punctured convolutional codes with rates of 3/8, 3/7 and 3/6, yielded from a mother
code of rate 3/9 have been proposed. Non-punctured equivalent codes are used to represent
the punctured codes, to simplify the process of calculating the parameters of the code
performance. These parameters are free distance and error weights.

Simulation results show that while using different puncturing patterns may retain the
code rate, the code performance will vary according to the puncturing pattern used. It is shown
that dispersing the punctured bits, in many cases will assist in improving the code performance,
as opposed to puncturing adjacent bits. Dispersed punctured bits resemble intermittent error
which a convolutional encoder/decoder is capable to mitigate. On the contrary, puncturing
adjacent bits emulates a burst error which in turn degrades the encoder/decoder ability to
recover lost bits. Further researches are needed to statistically predict how certain puncturing
patterns affect the performance of punctured convolutional code.

References
[1] Li J, Kurtas E. Punctured Convolutional Code Revisited: The Exact State Diagram and Its

Implications. The 38thAsilomar Conference on Signals, Systems and Computers. Pacific Grove.
2004;2: 2015-2019.

[2] Proakis JG. Digital Communications. Singapore: McGraw-Hill International. 2008.
[3] Hagenauer J. Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and Their

Applications. IEEE Transaction on Communications. 1988; 36(4): 389-400.
[4] Li J, Alqamzi H. An Optimal Distributed and Adaptive Source Coding Strategy Using Rate-Compatible

Punctured Convolutional Codes. IEEE Conference of Acoustics, Speech and Signal Processing
(ICASSP ’05). Philadelphia. 2005; 5:685-688.

[5] Guo R, Zhou P, Liu J. BER Performance Analysis of RCPC Encoded MIMO-OFDM in Nakagami-m
Channels. International Conference on Wireless Communications, Networking and Mobile Computing
(WiCOM ’06). Wuhan. 2006; 1-4.

 � ISSN: 1693-6930

TELKOMNIKA Vol. 10, No. 4, December 2012 : 759 – 770

770

[6] Noh Y, Lee H, Lee I. Design of Unequal Error Protection for MIMO-OFDM. IEEE 61st Vehicular
Technology Conference. Stockholm. 2005; 2:1058-1062.

[7] Lee LHC. New Rate-Compatible Punctured Convolutional Codes for Viterbi Decoding. IEEE
Transactions on Communications. 1994; COM-42: 3073-3079.

[8] Lee LHC, Sodha J. More New Rate-Compatible Punctured Convolutional Codes for Viterbi Decoding.
Proc. 5th Workshop on Telecommunication & Signal Processing. Hobart. 2006.

[9] Cluzeau M. Reconstruction of Punctured Convolutional Codes. Proc. IEEE Information Theory
Workshop (ITW 09). 2009: 75-79.

[10] Sari, L. Studi Penggunaan Kode Konvolusional Ekivalen Untuk Representasi Kode Konvolusional
Punctured. Jurnal Elektro Universitas Atma Jaya. 2010; 3(2): 139-148 (in Indonesian).

