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Abstract 
 The flavivirus epidemiology has reached an alarming rate which haunts the world population 

including Malaysia. World Health Organization has proposed and practised various methods of vector 
control through environmental management, chemical and biological orientations. However, from the listed 
control vectors, the most crucial part to be heeded are non-accessible places like water storage and 
artificial container. The objective of the study was to acquire and compare various accuracies and cross-
entropy errors of the training sets within different learning rates in water storage tank environment which 
was essential for detection. This experiment performed transfer learning where Inception-V3 was 
implemented. About 534 images were trained to classify between Aedes Aegypti larvae and float valve 
within 3 different learning rates. For training accuracy and validation accuracy, learning rates were 0.1; 
99.98%, 99.90% and 0.01; 99.91%, 99.77% and 0.001; 99.10%, 99.93%. Cross-entropy errors for training 
and validation for 0.1 were 0.0021, 0.0184 whereas for 0.01 were 0.0091, 0.0121 and 0.001; 0.0513, 
0.0330. Various accuracies and cross-entropy errors of the training sets within the different learning rates 
were successfully acquired and compared. 

  
Keywords: Transfer learning; Inception V3; Aedes aegypti larvae; Water storage tank 

  
Copyright © 2018 Universitas Ahmad Dahlan. All rights reserved. 

 
 
1. Introduction 

The flavivirus epidemiology has reached an alarming rate which haunts the world 
population including Malaysia. From the record, Malaysia suffered twice increment of dengue 
cases reported from the last 2 years [1]. With the rapid growth of Malaysian population either 
from newborn or migration [2], this matter should be taken seriously in order to curb this 
problem. As the population grows, technologies and artificial intelligence also occupy most of 
our daily routines. Machine learning is one of the artificial intelligence subtopics which has 
empowered many aspects of modern life [3],[4]. 

World Health Organization has proposed and practised many methods of vector control 
through environmental management, chemical and biological orientations [5]. However, from the 
listed vector control, the most crucial part to be heeded are non-accessible places like water 
storage and artificial container [6]. This should be taken into account where the maintenance 
and eradication work of eliminating Aedes Aegypti larvae are difficult to implement. The 
elimination of Aedes Aegypti during the larvae stage is very important because when it turns 
into adult mosquito and is able to fly, the population control becomes more complicated.  

Studied on classification of Aedes Aegypti larvae inside the water storage tank are 
scarce. Hence, the discovery and exploration are crucial in this field to offer a better living to the 
human population. Previous studies, only offer reviews on identifying and counting Aedes 
Aegypti larvae [7]. This paper hence, proposed a classification of Aedes Aegypti larvae in water 
storage tank through machine learning. Therefore, the objective of the study was to acquire and 
compare various accuracies and cross-entropy errors of training sets within the different 
learning rates. 
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Convolutional neural networks are the latest and efficient recognition methods 
especially for data that have known-like topology like the human visual cortex. This network is 
trainable multistage architecture and has a lot of advantages compared to the neural network 
traditional method. This network has abundant important steps of traditional pre-processing 
which reduce its complexity because it has built-in pre-processing inside its architecture. Hence, 
the machine is able to be fed with raw data or original images directly as inputs [8].  

Convolutional neural networks stand out as examples of neuroscientific principles. In 
general, they are an operation of a real-valued argument within two functions. The convolutional 
operation can be formally described as [9] 

 

 ( )  ∫  ( ) (   )   [1] 

 
Therefore, 

 
 ( )  (   )( )    [2] 
 

where s(t) is convolutional operation in real time, x is referred as the input, a is the age of 
measurement and w is probability density function or weight. This network has used pooling 
layer technology, receptive field, weights sharing and training parameter reduction compared 
with the traditional network. It has made prodigious progress in the field of image classification 
and localization [10].   

With the rapid development of computer, people start moving toward digitalization and 
everything goes automated and automatic. With the use of convolutional neural networks, a 
study on land-cover classification using high-resolution imagery has been carried out [11]. By 
applying transfer learning, the study has successfully compared the classification accuracies 
among SafeNet, GoogLeNet and ResNet which are 97.8±2.3%, 97.6±2.6% and 98.5±1.4% 
respectively. The convolutional neural networks have also been applied in medical studies to 
classify derma infection between melanoma and benign, where the trained model of VGGNet 
architecture is implemented in the study with 95.95±1.2% of training accuracies [12].  

Convolutional neural networks have attracted attention from a lot of computer vision 
research communities. A study regarding granite tiles classification has been made [13]. To 
classify granite tiles in stone industry is a challenge as it has similar visual appearance. By 
implementing CifarNet, the study has successfully classified the granite tiles with 87.26% 
training accuracy. In terms of safety issue, a trained model of AlexNet has been used in order to 
classify firearms in x-ray baggage for security imagery [14]. As a result, the trained models have 
obtained 95.26% accuracies. 

Vehicle type classification has played an important role in intelligent traffic light  
system [15]. Convolutional neural networks have been used in a study where the architecture 
has 2 convolutional layers, 2 pooling layers and 2 fully connected layers. Besides, to improve 
the performance of the network, non-linear activation function has been added to the model. 
The training accuracy of this application is 97.88%. Besides training the convolutional neural 
networks, it also performs a hybrid with salient feature successfully [16]. The study has 
successfully trained for facial expression with more than 90% accuracies when using the public 
database. 

This paper is organized as follows; the research method regarding the classification of 
Aedes Aegypti larvae using transfer learning in water storage tank is presented in Section 2. 
Section 3 presents the result and analysis of the performance for the classification process in 
different parameters of learning rates. Finally, the conclusion will be drawn in Section 4. 
 
 
2. Research Method 

This section focuses on the development process of Aedes Aegypti larvae classifier 
inside the water storage tank. The architecture of this network had skipped the pre-processing 
steps where the only important step of this network was to label the data which was executed by 
sharing the directory of the created subfolder that contained images to be classified. 

In this experiment, Tensorflow was used as a tool in the experiment. Tensorflow is a 
framework or system for large-scale machine learning which has been developed by the Google 
team [17]. Tensorflow is a dynamic control flow where it supports convolutional neural network, 
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recurrent neural network and other machine learning. This tool is widely used in various 
applications including pattern recognition, image detection, speech recognition, translation 
application and many others. 

Inception-V3 was implemented in this experiment. Inception-V3 is a state of the art or 
network model of machine learning. This experiment performed transfer learning which has 
wide applications [18],[19],[20]. In this context, transfer learning used a previous train model for 
a new task where it successfully trained a large number of images dataset. Back-propagation 
algorithm as the weight parameter which was adjusted by the cross-entropy cost function. 
Figure 1 shows the Inception-V3 architecture. 

 
 

 
 

Figure 1. Architecture of Inception-V3 
 
 

To classify the Aedes Aegypti larvae and other materials inside water storage tank, a 
subfolder between both of the classes was created first. The dataset of Aedes Aegypti larvae 
were obtained based on experiments conducted in the lab. As the data were fed in the network, 
the last layer of the model would be replaced and retrained with the new categories of intended 
classes as shown in Figure 1. As the dataset had 2 classes, the final layer has 2 output nodes. 
This experiment was run on Linux 17.10 of the virtual machine within 3.6GHZ of quad i7 
processor and 10GB 3601MHz DDR2 memory. Figures 2 and 3 show examples of 2 classes of 
the dataset used to feed in the Inception-V3. 
 
 

 

 

 
 

Figure 2. Aedes Aegypti images in various background 
inside water storage tank 

 
Figure 3. float valve images inside 

water storage tank 
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In the experiment, the manipulated variables would be the learning rates of train 
networks. The network was trained within 3 different learning rates namely 0.1, 0.01 and 0.001. 
Other parameters were set as default as the Inception-V3 set. The significance of the 
experiment was to show the effect of the size of the learning rates on the accuracies and 
training speeds. The images used to train in the network were 534 where 380 of them were 
Aedes Aegypti larvae images and others were float valve images. In the procedure, all Aedes 
Aegypti larvae images were taken in rest position and without any intersection between two 
larvae. 
 
 
3. Results and Analysis 

This section discusses the results from the retrained model. Figures 4, 5, 6 and 7 show 
the training accuracies, training cross-entropy errors, validation accuracies and validation cross-
entropy errors based on different learning rates. 
 
 

 
 

Figure 4. Graph of training accuracy within different learning rates  
 
 

 
 

Figure 5. Graph of training cross-entropy error within different learning rates 
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Figure 6. Graph of validation accuracy within different learning rates 
 
 

 
 

Figure 7. Graph of validation cross-entropy error within different learning rates 
 
 

The results showed the filtered digital signal processing. The digital filter was used to 
smoothen and reduce the ripples in the graph so that the best result can be obtained. In the 
experiment, moving average filter was applied in the analysis. This filter was an optimal filter for 
this application where it is often used for common tasks without involving complex mathematical 
such as frequency domain analysis. This filter was implemented in convolution where the 
equation form is written as [21] 

 

 [3] 
 
where   is the input signal,   is the output signal and   is stated as the number of window size 
or also known as the number of points in the average. The value for the window size was 5. 

To measure the accuracy and training speed, all experiments were conducted in the 
same training steps which were 4000. The results is shown in Figure 4. The training accuracy of 
retrained model with 0.1 of learning rates was the fastest retrained model which only needed 
250 steps to complete, followed by 0.01 of learning rates which needed 800 steps and 0.001of 
learning rate which needed at least 4000 steps to fully complete the training. However, the 
validation accuracy in Figure 6 has shown the opposite result where the smallest learning rate 
has higher precision on randomly-selected group tests. It is proven that the smaller value of 
learning rates has the higher accuracy on recognition. 

  𝑖 =
1

 
   𝑖 + 𝑗 

  1

𝑗=0

 



TELKOMNIKA  ISSN: 1693-6930  

 

Training of Convolutional Neural Network using Transfer … (Mohamad Aqil Mohd Fuad) 

1899 

Cross-entropy error is representing loss function which gives an indication into how 
good the learning process is progressing. The purpose of training was to make an error as small 
as possible. The training cross-entropy error and validation cross-entropy error are shown in 
Figures 5 and 7. The training with the smallest learning rate has bigger different values between 
training loss function and validation loss function. This difference signified that the training has a 
lesser error tendency when tested on randomly-selected group of images. The results (Figure 7) 
also showed that the smallest learning rate had continuously declined as the training step went 
on. Nevertheless, at the end of the training set, the smaller learning rates had smaller value of 
loss function during training compared with the bigger learning rate. The performance summary 
is shown in Table 1. 
 
 

Table 1. Performance summary 
Learning Rate Index Performance 

 
0.1 

Training accuracy 99.98% 

Validation accuracy 99.90% 

Training cross-entropy error 0.0021 

Validation cross-entropy error 0.0184 
 

0.01 
Training accuracy 99.91% 

Validation accuracy 99.77% 

Training cross-entropy error 0.0091 

Validation cross-entropy error 0.0121 
 

0.001 
Training accuracy 99.10% 

Validation accuracy 99.93% 

Training cross-entropy error 0.0513 

Validation cross-entropy error 0.0330 

 
 

 Table 1 shows the overall performance in various indexes and learning rates.  
The smallest learning rate had higher accuracy even though it only had small changes from 0.1 
to 0.01. In fact, inception-V3 architecture could classify more than hundreds of classes within 
millions of images, the small changes in the result were due to small application where only 2 
classes were classified. The results of the changes signified the different learning rates 
applicable in the experiment. 
 
 
4. Conclusion 

At present, there are only few studies with regard to Aedes Aegypti larvae machine 
learning in entomology field. The results show various accuracies and cross-entropy errors of 
the training sets within different learning rates. Future study should focus on retrained model 
with higher accuracy to be applied in Aedes Aegypti larvae detection. 
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