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Abstract 
 Monitoring and maintaining acceptable Quality of Experience is of great importance to video 

service providers.  Perceived visual quality of transmitted video via wireless networks can be degraded by 

transmission errors. This paper presents a reduced-reference video quality metric of very low complexity 
and overhead that makes use of frame based spatial (SI) and temporal (TI) activity levels to monitor the 
effect of channel errors on video transmitted over error prone networks. The performance of the metric is 

evaluated relative to that of a number of full and reduced reference metrics. The proposed metric 
outperforms some of the most popular full reference metrics whilst requiring very little overhead. 
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1. Introduction 

Strong demand for digital video and expectations among consumers for good quality 
has made the assessment of the end-user video quality an important issue that needs to be 
addressed. This is even more so in the case of error prone wireless video transmission and, in 

particular, multicast wireless video transmission. In multicast transmission, automatic repeat 
requests are not allowed, making the transmitted video stream more prone to channel errors. In 
addition, multiple users connected to the same session can experience different levels of video 

quality depending on the channel conditions that each one of them encounters.  
Accurate video quality assessment can be conducted through time-consuming 

subjective video quality tests which are impossible to conduct in real-time. Objective quality 

metrics are thus usually employed for estimating the perceived quality of the received video in 
real-time. In this time-sensitive scenario, reduced-reference (RR) and no-reference (NR) metrics 
are more suitable for assessing the received video quality than full-reference (FR) because they 

require limited or no information from the original encoded or transmitted video [1].  
Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are two of the most 

popular full reference objective quality metrics [2]. More advanced FR metrics that take into 

account more perceptual aspects  include the visual signal-to-noise ratio (VSNR) [3], video 
quality model (VQM) [4], motion tuned spatial-temporal quality assessment method (MOVIE) [5], 
spatio-temporal most apparent-distortion (STMAD) [6] and perception-based video quality 

metric (PVM) [7].  
RR video quality metrics offer a promising solution for monitoring the effects of the 

transmission channel on the video quality as they tend to offer better performance than NR 

metrics and can have fairly low computational and overhead requirements. A number of RR 
metrics [8-10] extract spatial and temporal features as the means to form the RR information. 
The STRRED method [11] employs spatio-temporal entropic differences for performing the 

quality assessment. STIS-SSIM [12] combines spatio-temporal selection with a modified SSIM-
based framework. 

In this paper we examine the possibility of extracting video quality information at the 

receiver by analysing the spatial and temporal information of a transmitted video stream at both 
the transmitter (encoder) and receiver (decoder). In particular we make use of frame based 
spatial activity (SI) and temporal activity (TI) values to form the Spatio-Temporal Information 

Reduced Reference Metric (STIRR).  
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Spatial activity has been used before in [13-14] to form an RR method that tries to 

estimate the PSNR of a received sequence. This RR metric was extended to NR video quality 
estimation in [15]. The method of [17] employs perceptual weighting parameters in order to 
estimate the quality of the received video through activity difference values between the 

transmitted and received videos. This method is fairly complex and produces sizeable side 
information (one value per block of pixels). The rest of the paper is organised as follows. 
Section 2 describes the proposed RR metric (STIRR). Section 3 describes the evaluation 

procedure followed and presents the results collected, including performance comparisons. 
Finally, conclusions and suggestions for future work are given in Section 4.  
 

 
2. Research Method 

One of the factors affecting the perceptual video quality is the amount of spatial and 

temporal details in a video [16]. ITU Recommendation P.910 specifies how to calculate SI and 
TI for the purpose of characterizing video complexity. In order to calculate the value of SI for 
one video frame, a Sobel filter is first applied on the luminance values. The SI value of frame Fn 

at time n is then equal to the standard deviation of the image resulting from convolving frame Fn 
with the Sobel kernel:  
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TI is calculated by subtracting two successive frames and taking the standard deviation of the 
resulting residual frame: 
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  (   ) is the pixel value at row i and column j of the nth frame. At the receiver end the SI and TI 

values of the received video are calculated. The STIRR value for each nth frame is equal to the 
Euclidean distance between the two feature vector (SI,TI) of the transmitted video frame and 
that of the received video  frame: 
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where q=(q1,q2) are the coordinates of the received frame’s (SI,TI) vector and p=(p1,p2) are 
those of the transmitted. Frame by frame STIRR values are averaged over the length of a 

Group of Pictures (GOP) with the IDR frames being excluded. 
 
 

Table 1. Tested IEEE 802.11n PHY Modes. 
Transmission 

Mode 
Modulation 
Scheme 

Code rate 
Data rate 
(Mbps) 

Video bit rate 
(Mbps) 

1 BPSK 1/2 27 8 
3 QPSK 3/4 81 24 
5 16-QAM 3/4 162 48 

 

 
3. Results and Analysis 

We are interested in the use of the STIRR metric as an indicator of the effects t hat 
packet errors (missing packets) have on the quality of compressed video. We assume that the 

video is transmitted over error prone wireless channels and that the video decoder at the 
receiver end has error concealment capabilities. The performance of the decoder’s error 
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concealment module depends on the actual concealment method, the affected video content, 

the error resilience of the compressed video, and the severity of the errors (packet error rate 
and nature of errors). In effect we wish to be able to estimate if the quality of the video after 
concealment is acceptable or not so that the network link adapts to a more robust mode when 

the latter is the case. 
 
3.1. Simulation Setup 

We simulated wireless video transmission over IEEE 802.11n wireless networks by 
dropping packets according to error patterns produced by a compliant IEEE 802.11n, PHY-layer 
simulator [17]. The received video streams were decoded and concealed using previous frame 

copy (PFC) as well as motion copy (MC) concealment. The resolution of the test sequences 
used (CrowdRun, PrincessRun and DanceKiss) was 1920x1080 at 50 frames per second. 
Figure 1 shows a plot of the spatio-temporal activity indicators of the three test sequences (HD). 

DanceKiss at the bottom-left has the lowest spatio-temporal activity while PrincessRun at the 
top-right has the highest. All sequences contained 500 frames and were encoded using the JM 
H.264/AVC reference software (JM18.0-high profile) with an IPPP GOP of size 10. IDR frames 

were assumed to be error free, and one slice was set to be equal to one row of blocks.  
The transmission modes and the video bit rates tested are summarized in Table 1. The 

setting used for the IEEE 802.11n simulation were as follows: MMSE detection, 800ns guard 

interval, channel model B (Non Line-of-Sight residential environment). For each of the three 
transmission modes, we tested three packet error rates-1%, 2%, and 4%, - corresponding to 
three different channel signals to noise ratios. For each packet error rate ten simulation runs  

(ten error patterns) were performed with a different starting point for the errors.  
 
3.2. Results 

 The hypothesis behind this experiment is that increases in the distortion of the received 
video due to channel errors would result in increased differences between the STIRR values of 
the transmitted and received (concealed) video. To test this hypothesis we compared the STIRR 

difference values with three established objective quality metrics: PSNR, SSIM and VIFP. More 
specifically we measured the correlation (Pearson correlation coefficient) between the STIRR 
difference values and the quality of the received video as measured by the three selected 

metrics. 
Table 2 and Table 3 show correlation results for the case of previous frame copy 

concealment and motion copy concealment respectively.  The average correlation for all 

sequences and all metrics was 0.8 for PFC and 0.78 for MC, with values ranging from highs of 
0.952 (CrowdRun, SSIM, MC) to lows of 0.515 (PrincessRun, SSIM, MC).  

We additionally evaluated the performance of STIRR with LIVE Video Quality  

Database [18-19] (wireless transmission errors, motion copy concealment). Six different 
reference videos were used (Station, Tractor, River Bed, Shield, Mobile & Calendar and Blue 
Sky) with four error patterns per reference video. These videos are distorted according to 

manually adjusted strengths of wireless distortion, in order to ensure that the distorted videos 
are separated by different levels of perceptual distortion. The SI and TI values of these 
sequences are also shown in Figure 1. 

 
 

Table 2. Pearson correlation between STIRR difference values and objective quality 

metrics for the case of previous frame copy (PFC) concealment 
STIRR PER 1% PER 2% PER 4% Average 

Crow dRun 
(PFC) 

PSNR 0.892 0.953 0.958 0.934 
SSIM 0.891 0.960 0.958 0.936 
VIFP 0.906 0.954 0.953 0.938 

PrincessRun 
(PFC) 

PSNR 0.758 0.534 0.673 0.655 
SSIM 0.707 0.551 0.581 0.613 
VIFP 0.790 0.552 0.669 0.670 

DanceKiss 

(PFC) 

PSNR 0.807 0.793 0.790 0.797 

SSIM 0.843 0.883 0.876 0.867 
 VIFP 0.820 0.837 0.777 0.811 
Average 0.824 0.780 0.804 0.802 
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Table 3. Pearson correlation between STIRR differences (transmitted and received) and 

objective quality metrics for the case of motion copy (MC) concealment  
STIRR PER 1% PER 2% PER 4% Average 

Crow dRun 
(MC) 

PSNR 0.947 0.953 0.951 0.950 
SSIM 0.968 0.958 0.931 0.952 
VIFP 0.953 0.954 0.944 0.950 

PrincessRun 

(MC) 

PSNR 0.758 0.534 0.596 0.629 

SSIM 0.633 0.516 0.395 0.515 
VIFP 0.790 0.552 0.467 0.603 

DanceKiss 

(MC) 

PSNR 0.816 0.805 0.813 0.811 
SSIM 0.782 0.836 0.863 0.827 

VIFP 0.817 0.833 0.775 0.808 
Average 0.829 0.771 0.748 0.783 

 

 
 

Figure 1. Spatio-temporal activity (SI-TI) indicators of the six test sequences from the LIVE 
database as well as the three HD test sequences used in the experiments. 

 

 
Table 4 presents a summary of the performance results obtained with the tested FR 

and RR quality metrics using the LIVE database. The results show that despite its very low 

complexity STIRR is able to outperform some of the FR metrics tested (PSNR, SSIM, VFIP). 
Reduced reference metrics STRRED and STIS-SSIM perform better than STIRR but generate 
significantly more side information and thus incur much more overhead. Overhead is normalised 

with regards to the number of pixels in one frame (P). In addition our method exhibits very little 
complexity relative to all other methods (except PSNR) as shown in Table IV. Complexity was 
measured as the average execution time on an Intel i7-2600 CPU @ 3.40GHz PC and was 

normalised relative to the execution time of PSNR. All test metrics were realised in Matlab 
except MOVIE, which is realised in C.  

 
 

Table 4. Comparison of the performance of vqa algorithms for wireless distortion  
(LIVE DATABASE) 

Prediction Model VQA LCC SROCC Complexity 
No. of scalars 

per frame 

PSNR FR 0.468 0.433 1 P 

SSIM FR 0.540 0.523 13 P 
VIFP FR 0.549 0.551 49 P 
VQM FR 0.733 0.721 681 P/25 

MOVIE FR 0.839 0.811 2206 P 

STRRED RR 0.804 0.786 97 P/576 
STIS-SSIM RR 0.806 0.829 9 P/256 

STIRR RR 0.623 0.624 3 P/331776 
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4. Conclusion 

In this paper we described STIRR a very low redundancy reduced reference metric that 
makes use of the spatiotemporal activity values of a transmitted sequence in order to estimate 
the quality of the received video in the presence of errors. STIRR was found to correlate 

adequately with quality values estimated by a number of full reference objective quality metrics. 
STIRR was also shown to outperform some full reference metrics when tested on the wireless 
distortion part of the LIVE video database. Future work will concentrate on improving the 

performance of the metric through the use of further information regarding the channel and the 
SI/TI levels of the transmitted sequence. 
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