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At present, the research on fault detection and diagnosis technology is 

very significant to improve the reliability of the equipment, which can 

greatly improve the safety and efficiency of the equipment. This paper 

proposes a new fault detection and diagnosis means based on  

the FOA-LSSVM algorithm. Experimental results demonstrate that  

the algorithm is effective for the detection and diagnosis of analog  

circuit faults. In addition, the model also demonstrate good  

generalization ability. 
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1. INTRODUCTION 

According to statistics, at present, 80% of devices in electronic systems are digital, but 80% of faults 

occur on analog devices. At the same time, the test cost of the analog circuit part accounts for 80% of  

the total test cost, thence, it is very important to carry out discuss on fault diagnosis of analog circuits. In recent 

years, many scholars have conducted extensive research in the field of analog circuit fault diagnosis and have 

achieved many excellent results [1-9]. However, the analog circuit itself has the characteristics of poor fault 

model, component tolerance, fault parameter continuity and circuit nonlinearity. Such characteristics make the 

development of analog circuit fault diagnosis technology slow, and there is still no practical method. 

In analog circuit fault diagnosis, the extraction of fault features is a very important link, and the quality 

of the extraction results will directly affect the final diagnosis accuracy rate. Ordinary feature extraction 

methods mainly include PCA, wavelet analysis, kernel analysis, etc. [10-13]. These methods have their 

limitations. For example, the PCA method is only suitable for linear feature extraction. Wavelet analysis and 

nuclear analysis involve the selection and consideration of many factors such as wavelet base and nuclear 

parameters, which are greatly influenced by experience. Moreover, in essence, these analysis methods and data 

are isolated from each other, and it is difficult to ensure that the extracted features are the essential 

characteristics of the data. 

Fault classification and identification is another key point of fault diagnosis for analog circuits. In 

recent years, the continuous development of various artificial intelligence algorithms has gave birth a new ideas 

for analog circuit fault diagnosis. They are neural networks (NN) [14-19], support vector machine  

(SVM) [20-24], deep learning [25-27] and so on. The main idea of the fault diagnosis method of neural network 

is: the mapping between fault symptoms and fault types is established through learning between network layers. 

The nodes of the input layer are caused to correspond to fault symptoms, and the nodes of the output layer 

https://creativecommons.org/licenses/by-sa/4.0/
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correspond to fault types. Thus, the reasoning process from fault symptom to fault type can be realized.  

The neural network can set the network structure according to requirements and approximate the nonlinear 

function with arbitrary precision. But the learning of the network requires a large number of circuit failure 

samples. Therefore, for systems that cannot obtain a large amount of fault data, the use of neural networks will 

be limited. At the same time, how to ensure the integrity and typicality of the fault sample and the convergence, 

training speed and real-time diagnosis of the method are the bottlenecks restricting the development of analog 

circuit fault diagnosis technology based on neural network. 

As a pattern recognition method based on statistical learning theory, SVM has many unique 

advantages, for example solving small samples, nonlinear and high-dimensional pattern recognition, and can 

be applied to other machine learning problems, such as function fitting. However, when constructing the 

optimal classification hyperplane, SVM only pays attention to the separability between the data classes and 

ignores the structural information of the data within the class. This results in the classification boundary of the 

data being too smooth when the data has a nonlinear manifold structure, which seriously affects the 

classification performance of the SVM. In practical problems, most of the samples are highly correlated, that 

is, they are at least partially distributed on a low-dimensional manifold. In particular, there is often a nonlinear 

relationship between the output of the general circuit and the fault mechanism of the circuit. Therefore, the 

traditional SVM only pays attention to the inter-class spacing information, which is not enough for the analog 

circuit fault diagnosis classification problem. 

At present, the research results based on deep learning are relatively few in analog circuit fault 

diagnosis. The difficulty in the field of fault diagnosis lies in the adjustment of parameters. The parameter 

selection affects the accuracy of fault sign extraction. There is no systematic theoretical system to guide the 

adjustment of deep learning parameters. The adjustment of relevant parameters often needs to be selected 

according to actual experience. 

 Deep learning training is time consuming. For machine learning, the verification process of model 

correctness is complex and the features found are not intuitive enough. Fault diagnosis requires  

the model to identify the type of fault in a timely and rapid manner. This is a difficult point to overcome in  

the application of the deep learning method. In this paper, we were inspired to receive the above method, we 

present FOA-LSSVM model for circuit fault diagnosis. The example of Sallen-Key band pass filter circuit 

display that our resulting diagnostic system can effectively classify the faulty components of analog circuits 

when it is tested, and it has a competitive classification performance. 

 

 

2. FLY OPTIMIZATION ALGORITHM 

Fruit Fly Optimization Algorithm (FOA) [28, 29] is an emerging swarm intelligent optimization 

algorithm based on the bionics principle of fruit fly foraging behavior. It is based on the food searching 

behavior of the fruit fly. In comparison to any other species, fruit fly has exceptional olfactory and visual 

senses. The organ responsible for the sense of smell with-in fruit flies can search of all kinds of smells floating 

in the air, also it is able to smell the food taste that is nearly 40 km. It has a built-in olfactory organ that allows 

them to pick up different odor molecules in the air and to determine the source of their food. Thereafter, it gets 

closer to the sources, and its sharp eyesight was used to find food, also it uses the way back to its swarm. FOA's 

operation is simple, easy to implement, and has strong local search capabilities. The steps for an iterative search 

for food by the Drosophila population are as follows: 

- Step 1. Define a fruit fly swarm’s location randomly. 

 

𝐼𝑛𝑖𝑡𝑋_𝑎𝑥𝑖𝑠; 𝐼𝑛𝑖𝑡𝑌_𝑎𝑥𝑖𝑠 (1) 

 

- Step 2. Give fruit fly individuals random distance and direction to search for food using their sense of smell. 

 

{
𝑋𝑖 = 𝑋_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒𝑥

𝑌𝑖 = 𝑌_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒𝑦
 (2) 

 

- Step 3. Since the position of the food is unknown,first of all ,the distance from the origin (Disti) is estimated, 

and then the taste concentration judgment value (Si) is calculated, which is the inverse of the distance. 

 

𝐷𝑖𝑠𝑡𝑖 = 𝑠𝑞𝑟𝑡(𝑋𝑖
2 + 𝑌𝑖

2); 𝑆𝑖 = 1 𝐷𝑖𝑠𝑡𝑖⁄  (3) 

 

- Step 4. Substituting the taste concentration judgment value  (Si) into the taste concentration judgment 

function (or called fitness function), so that the taste concentration (Smelli) of the individual position of  

the fruit fly 
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Smell𝑖 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆𝑖) (4) 

 

- Step 5. Find the highest-dose fruit fly in this population  (maximum value) 
 

[𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥] = max(Smell) (5) 
 

- Step 6. Maintain the best smell concentration value and x, y coordinate; the Drosophila swarms will detect 

this position and fly towards it. 
 

{

𝑆𝑚𝑒𝑙𝑙𝑏𝑒𝑠𝑡 = 𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙
𝑋_𝑎𝑥𝑖𝑠 = 𝑋(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥)
𝑌_𝑎𝑥𝑖𝑠 = 𝑌(𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥)

 (6) 

 

- Step 7. Perform iterative optimization, repeat steps 2-6 and determine whether the taste concentration is 

better than that in the previous iteration; if so, go to step 6.  

 

 

3. LEAST SQUARES SUPPORT VECTOR MACHINES 

The support vector machine (SVM) [30, 31] maps the sample space to a high-dimensional or even 

infinite-dimensional feature space through a non-linear mapping, so that the non-linearly separable problem in 

the original sample space is transformed into a linearly separable problem in the feature space. Starting from 

the machine learning loss function, Suykens et al. proposed a least squares support vector machine  

(LSSVM) [32], which uses the second norm in the objective function of its optimization problem. The equality 

constraint condition is used instead of the inequality constraint condition in the SVM standard algorithm, so 

that the optimization problem of the LSSVM method becomes a solution of a set of linear equations obtained 

by Kuhn-Tucker condition.This makes it possible to reduce the computational complexity, increase  

the generalization ability and the solution speed when the extreme conditions are met, and it can be effectively 

applied to pattern recognition and function estimation. 
In LSSVM, the regression is expressed as given below: 

 

min
𝑤,𝑏,𝑒

𝐽(𝑤, 𝑒) = 1 2⁄ ‖𝑤‖2 +
𝛾

2
∑ 𝑒𝑖

2

𝑙

𝑖=1

 (7) 

 

𝑠. 𝑡. 𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖, 𝑖 = 1,2, … ,1, where 𝛾 is the regularization parameter, determining the tradeoff 

between the fitting error minimization and smoothness, and 𝑒𝑖 is error variable. The Lagrangian equation is 

defined as follows: 
 

𝐿(𝑤, 𝑏, 𝑒, 𝑎) = 𝐽(𝑤, 𝑒) − ∑ 𝛼𝑖[𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖]

𝑙

𝑖=1

 (8) 

 

optimize (8), we get the optimal solution of the following conditions: 
 

{
𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)

𝑙

𝑖=1

, ∑ 𝛼𝑖 − 0

𝑙

𝑖=1

, 𝛼𝑖 = 𝛾𝑒𝑖

𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖                            

 (9) 

 

omitting 𝑒𝑖 and 𝑤 leads to the Karush–Kuhn–Tucker (KKT) conditions: 
 

[𝑏
𝑎

] = [
0 𝑒𝑇

𝑒 Ω + 𝐼/𝛾
] [

0
𝑌

] (10) 

 

where 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑙]𝑇 , 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑙]𝑇 , 𝑒 = [1,1, … ,1]𝑇 , Ω (𝜑(𝑥𝑖)𝜑(𝑥𝑗))
𝑙×𝑙

 is kernel function 

matrix, 𝐼 represents the identity matrix. 

Define 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) , which is satisfied with Mercer’s condition. In the paer,  

We choose Gaussian Radial Basis Function (RBF) as the kernel function, as is meaned in: 
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𝐾(𝑥𝑖, 𝑥𝑗) = exp {−
|𝑥𝑖 − 𝑥𝑗|

2𝜎2
} (11) 

 

where 𝜎  introduces a positive real number, taken into account as the kernel function. So, the following 

relationship is found as the final result: 

 

𝑦(𝑥) = ∑ 𝑎𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑙

𝑖=1

 (12) 

 

It should be noted that the performance of the LSSVM model is significantly affected by the kernel 

function width coefficient 𝜎 and the regularization factor 𝛾, the width of the RBF is affected by the width σ, 

and the complexity and punishment are affected by 𝛾. 

 

 

4. FOA-LSSVM ALGORITHM 

In this section, among the methods proposed in this paper, the optimization of the LSSVM classifier 

by FOA is shown as follows: 

- No. 1. Let us assume the maximum number of iterations (maxgen), population size (sizepop), and we also 

can randomly emerge a fruit fly swarm’s starting position (InitX_axis, InitY_axis) in order to create random 

flight distance (FR). 

- No. 2. Surppose gen = 0, it’s assigned that each fruit fly (Flyi ) respectively looks for food toward  

a random direction, and it goes for a random amount of distance. 
 

𝑋(𝑖, : ) = 𝑋_𝑎𝑥𝑖𝑠 + 𝑎 × 𝑟𝑎𝑛𝑑𝑠 − 𝑏 
𝑌(𝑖, : ) = 𝑌_𝑎𝑥𝑖𝑠 + 𝑎 × 𝑟𝑎𝑛𝑑𝑠 − 𝑏 

(13) 

 

𝑎, 𝑏 are Constants which can be selected.  

- No. 3. Calculate the distance of the initial position Disti, then we can determine the value of the smell 

concentration Si. Program Disti which is denoted  by (D(i, 1), D(i, 2)), so we have:  

 

𝐷(𝑖, 1) = √𝑋(𝑖, 1)2 + 𝑌(𝑖, 1)2 

𝐷(𝑖, 2) = √𝑋(𝑖, 2)2 + 𝑌(𝑖, 2)2 
(14) 

 

Let 
 

𝑆(𝑖, 1) = 1 𝐷(𝑖, 1)⁄ , 𝑆(𝑖, 2) = 1 𝐷(𝑖, 2)⁄  (15) 
 

so, we can get the conclusion that 𝑆𝑖  is represented by (𝑆(𝑖, 1), 𝑆(𝑖, 2)). 

Let’s put 𝑆𝑖 into the model of LSSVM. We assume 𝛾 = 𝑣 × 𝑆(𝑖, 1), 𝜎2 = 𝑆(𝑖, 2), where 𝑣 is Constant 

which can be selected. [𝛾, 𝜎] are Parameters of LSSVM, which can be represented by [𝑆(𝑖, 1), 𝑆(𝑖, 2)]. As  

the result of classifications, the smell concentration can be calculated 𝑆𝑚𝑒𝑙𝑙𝑖, which is used to be the mean 

square error (RMSE) in order to measure the predicted and actual value. 𝑛  is a sample capacity, 𝑦𝑖  is a 

measured value, and �̂�𝑖 is a predictive value. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 (16) 

 

- No.4. Surpposed gen = gen + 1, according to (13)-(15) iterations, and put the value of iterations into LSSVM 

model. Thereafter, calculate the smell concentration. 

- No. 5. When gen reaches the maximum iterations, it can decide to stop. Then, we will have the best model 

that meets LSSVM model parameters. Otherwise, we will return to No.2. 

- No. 6. We get the optimized parameters, and we establish FOA-LSSVM models. 
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5. ILLUSTRATIVE EXAMPLE 

The Sallen-Key is tested as a lowpass filter circuit to verify effectiveness and correctness in this section. 

The resistors and capacitors are assumed to meet 5% tolerances respectively. The Sallen-Key bandpass filter in 

Figure 1 under C1, C2, R2 and R3 vary within their tolerances. NF represents non-fault class. The normal values 

for each component are shown in Table 1. Resistors and capacitors have 5% tolerances respectively. Every 

normal value is: 𝐶1 = 5𝑛𝐹, 𝐶2 = 5𝑛𝐹, 𝑅1 = 1𝑘Ω, 𝑅2 = 3𝑘Ω, 𝑅3 = 2𝑘Ω, 𝑅4 = 𝑅5 = 4𝑘Ω. Here, we suppose 

resistors and capacitors in this interval [(50%𝑋, 95%𝑋) ∪ (105%𝑋, 150%𝑋)] (𝑋 is the regular value). Then 

faults can be classified to 8 fault pattern: C1↑, C1↓, C2↑, C2↓, R2↑, R2↓, R3↑, R3↓. In this way, training and test 

samples generated after preprocessing can be trained and tested after FOA-LSSVM optimization. The single 

fault categories and the nominal and fault component values for the Sallen-Key bandpass filter are listed in 

Table 1. 

 

 

 

 

Figure 1. Sallen-Key bandpass filter 

 

 

Table 1. Single fault classes and the nominal and faulty component values 

Fault code Fault class Normal Faulty value 

1 C1↑ 5nF 7.5nF 

2 C1↓ 5nF 2.5nF 

3 C2↑ 5nF 7.5nF 

4 C2↓ 5nF 2.5nF 

5 R2↑ 3kΩ 4.5kΩ 

6 R2↓ 3kΩ 1.5kΩ 

7 R3↑ 2kΩ 3kΩ 

8 R3↓ 2kΩ 1kΩ 

9 NF - - 

 

 

We carry out 50 times Monte Carlo analysis to the diagnosis circuit by PSpice 10.5 software where 

the acquisition value of the output voltage Vout as source data, through Haar wavelet transform and fault data 

which were obtained 450 samples, of which 40% will be used as training data sample, 60% of the data as  

a test samples. We suppose the fruit fly population is 100, and the number of iterations is 30 steps, flies swarm 

original position is a random generator by matlab rands function. After the simulation, FOA-LSSVM 

optimization iteration convergence is shown in Figure 2. We can see that FOA-LSSVM optimization iteration 

steps converge to 0.02, when the iteration step is between 1109 and 2699 under the local optimal area. 

According to several tests of the downward trend, we have found that the optimal iteration can converge 0 to 

4000 steps. Finally, we have obtained the optimal parameters (see Table 2). 

As is seen from Table 3, five kinds of fault modes can diagnose the correct ones. Then, NF, C1↓, R2↓ 

fault modes of 7 tested sample data are diagnosed unsuccessful. Using the optimized parameters is classified, 

diagnostic accuracy of Sallen-Key band-pass filter circuit is 97.04% by FOA-LSSVM methods. 
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Figure 2. Training error of each iteration 

 
 

Table 2. Single fault diagnostic test parameter results 

Sizepop maxgen gambest sigbest 

100 30 2.0521 0.0806 

X_axis Y_axis 

[-6.4958,-6.9183] [10.3066,10.4556] 

 

 

Table 3. Sallen-Key band-pass filter circuit single fault diagnosis 

 NF C1↑ C1↓ C2↑ C2↓ R2↑ R2↓ R3↑ R3↓ 

NF 27  1    2   

C1↑  30        

C1↓ 2  27 (Inf)       

C2↑   1 30      

C2↓     30     

R2↑      30    

R2↓ 1      28   

R3↑        30  

R3↓         30 

 

 

6. CONCLUSION 

In this paper, the use of FOA has a good global searching ability linked with LSSVM in  

pattern recognition of superior performance. We present FOA-LSSVM model circuit fault diagnosis as  

the Sallen-Key band-pass filter, which shows that the algorithm obviously improves the accuracy of fault 

diagnosis and recognition of faults. This shows that the method is an efficacious and reliable method for fault 

diagnosis of analog circuits. 
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