
TELKOMNIKA, Vol.16, No.5, October 2018, pp.2199~2207
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v16i5.9698 2199

Received April 27, 2018; Revised June 22, 2018; Accepted September 8, 2018

Optimizing Time and Effort Parameters of COCOMO II
Using Fuzzy Multi-objective Particle Swarm

Optimization

Kholed Langsari
1
, Riyanarto Sarno*

2
, Sholiq

3

1
Fatoni University, Thailand

1,2
Department of Informatics, Institut Teknologi Sepuluh Nopember, Indonesia

3
Department of Information Systems, Institut Teknologi Sepuluh Nopember, Indonesia

*Corresponding author, e-mail: langsaree@gmail.com
1
, riyanarto@if.its.ac.id

2
, sholiq@is.its.ac.id

3

Abstract
 Estimating the efforts, costs, and schedules of software projects is a frequent challenge to

software development projects. A bad estimation will result in bad management of a project. Various
models of estimation have been defined to complete this estimate. The Constructive Cost Model II
(COCOMO II) is one of the most famous models as a model for estimating efforts, costs, and schedules.
To estimate the effort, cost, and schedule in project of software, the COCOMO II uses inputs: Effort
Multiplier (EM), Scale Factor (SF), and Source Line of Code (SLOC). Evidently, this model is still lack in
terms of accuracy rates in both efforts estimated and time of development. In this paper, we introduced to
use Gaussian Membership Function (GMF) of Fuzzy Logic and Multi-Objective Particle Swarm
Optimization (MOPSO) method to calibrate and optimize the parameters of COCOMO II. It is to achieve a
new level of accuracy better on COCOMO II. The Nasa93 dataset is used to implement the method
proposed. The experimental results of the method proposed have reduced the error downto 11.89% and
8.08% compared to the original COCOMO II. This method proposed has achieved better results than
previous studies.

Keywords: multi-objective PSO, software effort estimation, COCOMO II, fuzzy logic

Copyright © 2018 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The manager of the software development project is the person responsible for
controlling the activities or activities of the software development, from the needs analysis to the
software maintenance process [1]. To get high-quality software using the fewest resources in
the development team is the primary task of a software project manager [2]. Therefore,
appropriate estimates of resource requirements are required to plan project execution. An
overestimated estimate of actual resource needs will result in a waste of resources, otherwise
too underestimates tend to result in a lack of resources during execution.

Management of software project requires a reliable estimate of software costs to make
the assessment of the amount of effort and resources required to complete the project. The
accuracy of effort and cost estimated for developing software is significant. Estimating in early
efforts and costs can help project managers to plan, to budget, and to monitor project activities.
Due to the resources limited to a project, profer software estimates can supply adequate
support for an efficient and effective decision-making process. However, a hard problem for
estimating the cost of software is the presence of unpredictable obstacles and the intricacies of
data that create adverse effects on the software development process.

One of the major challenges in software project management is the cost estimated for
software projects. To direct companies of software in creating the right management to develop
software is required a better level of accuracy of project cost estimated. In addition, a nice
management of software project can predict effort, cost, and software resources appropriately. It
is stated in person-months. This can manage both the overestimates and the underestimates for
software efforts and the costs required to complete the project. It can also manage the
application's quick configuration [3]. This level of accuracy comes from several influential
variables or cost drivers. Thus, to obtain precise cost estimated of software requires a right
prediction method.

mailto:langsaree@gmail.com
mailto:riyanarto@if.its.ac.id

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 5, October 2018: 2199-2207

2200

Many methods to estimate cost have been presented and refined by several
researchers. However, the COCOMO method has become one of the most well-known methods
of estimating the effort of the most popular software projects today [4]. Generally, problems
arise by regarding the accuracy of the estimation results of this method for the cost estimated of
the software. Several heuristic techniques have been used to overcome the limitations of this
method to improve the level of accuracy [5]. Some heuristic optimization methods are used to
solve this problem. These methods include: Particle Swarm Optimization [6-10], Genetic

Algorithm [11,12], Firefly Algorithm [13], Cuckoo Optimization Algorithm [14], and many others.

In this paper, we undertook the study of the implementation of Fuzzy Logic and Multi-
Objective Particle Swarm Optimization (MOPSO) to calibrate the parameters in COCOMO II to
obtain optimal estimation results. The rest of this paper is structured as follows. In Section 2 we
will briefly describe the related work that has been investigated for earlier researchers to
estimate efforts through different methods and through the PSO approach. In Section 3, we
describe the steps of the working methodology used in this study. In Section 4, we present the
results achieved and analysis of the results achieved. Section 5 is the last section, we conclude
that the accuracy of estimates of effort can be improved through model and effort estimates.

2. Related Work

Previous studies have been conducted to calibrate the COCOMO II coefficient values
intended to optimize and improve the accuracy of effort and cost estimation. Sarno and
Sidabutar undertook to investigate the role of software measures stated in SLOC and Effort
Multiplier (EM) on increasing the accuracy of the effort estimates [15]. In this study, Fuzzy Logic
using Gaussian Membership Function (GMF) is practiced to EM of COCOMO II. GMF
succeeded in making a smoother transition than previously, meaningful more precise EM. In
addition, Sarno et al [16] also used the trapezoid membership function to improve the precision
of COCOMO II. Similar to previous research, fuzzy logic is applied in EM from COCOMO II.

The researchers also applied Neural Network (NN) as an approach using a multi-layer
feed-forward of the neural network with a learning algorithm of back-propagation [17]. The
model can improve upon the basic model of fuzzy or the original COCOMO. Baiquni and Sarno
promoted a model that was an integration between Fuzzy Logic and Tabu Search to perform
local calibrations [18]. These researchers have increased precision by obscuring cost drivers in
Fuzzy Logic using GMF to reconstruct the EM. Local calibration such as Tabu Search and
Calico are applied to discover new parameter values for COCOMO II calculations. The value of
the new coefficient on COCOMO II can increase accuracy and reduce errors significantly.

Parkas and Kamabir [8] have used PSO techniques to optimize coefficients of
COCOMO II models with NASA datasets as test data. These researchers found that PSOs
could solve optimization problems and reduced uncertainties and delivered better results than
those obtained using the original coefficient values in COCOMO II. Kumar et.al [6] and Sheta
et.al [13] analyzed to use PSO as the optimization with both Linear and Fuzzy Logic regression
by constructing a set of linear models to reduce errors of uncertain costs. These researchers
have emphasized the COCOMO II model using the NASA dataset. PSO provides an efficient
way to optimize business and cost predictions, while linear regression methods deliver great
results but take a long time. Reddy et.al [7] promoted a prominent generalization for COCOMO
II and promoted two models by adding PSO with factor of constriction for fine-tuning
parameters. This model efficiently handles improper and uncertain inputs and improves the
reliability of software estimates. The results of these experiments showed that PSO with a
narrowing factor always leads to satisfactory results. Reddy et al [7] proposed a model for the
estimated cost of software using Multi-Objective Particle Swarm Optimization (MOPSO). They
inspected that the model gave better results when it was contrasted to the original COCOMO
model.

2.1. Cost Constructive Model (COCOMO) II

Many models estimation in software cost have been proposed by several researchers
to provide accurate and high-quality estimation results to help managers of software projects to
make informed decisions regarding projects which they handle [19]. One of the most well-known
and widely used estimation models is the Constructive Cost Model (COCOMO). COCOMO was
published by Barry Boehm in 1981 [20]. The COCOMO is used as an estimate of cost models,

TELKOMNIKA ISSN: 1693-6930

Optimizing Time and Effort Parameters of COCOMO II.... (Kholed Langsari)

2201

efforts, and schedules for planning software development activities. This model was built from a
data set consisting of 63 data points which they have sixteen variables. In COCOMO, cost
drivers were categorized into three aspects that is Effort Multiplier (EM), Source Line of Code
(SLOC), and Scale Factors (SF). Every cost drivers will be determined by the equation (1)
producing the effort in person-month (PM). Barry Boehm, in 2000, presented the more
accurately provided model of COCOMO II with several aspects to improve some cost drivers.

If we use the post architecture of COCOMO II model than several attributes affect
effort and cost estimates include: seventeen Effort Multipliers (EM), five Scale Factors (SF), and
software sizes stated in Kilo SLOC (KSLOC). The equation is used to obtain the estimation
effort given in equation (1).

 () ∏

 (1)

The description of equation (1) is as follows: A is a constant that has a value of 2.94 as

the default value if historical data does not exist. Size is defined as the size of software
estimated in KSLOC, E is the scale-exponent. E is an exponential factor which it has account
records for relative economies or scale diseconomies encountered due to the size of software
projects increased, EMI is The multiplier effort where i = 1, 2, 317 for the post-architecture
model. The coefficient E is computed using five Scale Factor by the equation (2).

 ∑

 (2)

where, B is an exponential constant having a default value (if historical data does not exist) to
0.91 and SFj is a Scale Factor where j = 1, 2 ... 5. While to obtain the time of development
(TDEV) we used equation (3) and to obtain exponential effort F is obtained by equation (4).

 ()

 (3)

 (4)

where C is a constant of development time having a default value of 3.67 and D is an
exponential having a default value of 0.28. F stated the scale-exponent for the schedule of
development time. In this paper, it is proposed to calibrate the constants A, B, C, and D to
obtain optimal estimation results. Four variations of calculation of effort and schedule calculation
parameters of COCOMO II for better improvement than original COCOMO II using Fuzzy Logic
and MOPSO for the dataset of NASA.

2.2. Fuzzy Logic

Fuzzy logic (FL) was first introduced by Zadeh in 1965 [21], the term is given for
mathematical systems which were constructed to model the way human intelligence reasoning
when word processing. The main characteristic of FL is the lack of accuracy in the process of
measurement. Zadeh states that when complexity increases, exact statements miss meaning,
and statements miss a significant degree of precision [21]. Fuzzy logic provides a way that
enables to handle both qualitative and quantitative data in a single model. It is a multi-value
logical form raised from the theory of the fuzzy union to deal with more precise reasoning than
a prediction. The fuzzy set is a set whom it’s elements have membership degrees [22]. Some
functions of membership in fuzzy logic may be in form Trapezoidal, Triangle, Gaussian, and
others. In this research be applied GMF as membership function.

 Fuzzy Logic System (FLS) is a given method for a system consisting of the
relationship between fuzzy and principles of fuzzy logic. The most prominent FLS
is categorized into three types that are basis FLS, Takagi and Sugeno's fuzzy systems, and
FLS using fuzzifiers and defuzzifiers [23]. Most of the application techniques by making inputs
use sharp data, then producing a sharp data output. The FLS using fuzzifier and defuzzifier is
applied widely that the fuzzifier renders the sharp inputs to the fuzzy set, and then defuzzifier
renders fuzzy sets to the sharp output. Figure 1 described the system of logic which is promoted
by Mamdani [24].

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 5, October 2018: 2199-2207

2202

Figure 1. System of Fuzzy Logic using fuzzifier and defuzzifier application

2.3. Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) was first familiarized in 1995 by Kennedy and

Eberhart [25]. PSO is a swarm intelligence algorithm based on the inspirational behavior of
swans. PSO has become one of the famous and widely used intelligence algorithms because it
is based on the durability, simplicity, and flexibility of this algorithm. PSO employs randomness
using real numbers, and local and global communications between the herd particles [24]. The
PSO is set to get spaces of objective function updating the motion of individual objects named
‘particles’. Every particle attempts to shift towards the best global position g

(t)
 and its personal

best xi
(t)

 conforming to the best experience. At the time when the herd particles found a better
position than the position previously found, so the particle updates its position becoming the
best new current position of particle i. Subsequent through some number of iterations or goals
no longer moving and improving, so the best of all the best solutions have achieved. Let xij and
vij be the vector of positions and velocities of particle i. The new vector of velocity is considered
by equation (5).

 [

] [

] (5)

The starting location of all particles must be uniformly distributed, so they can obtain the
sample in most areas that are essential for multimodal problems. The starting velocity for a

particle can be initialized as 0 (zero), which is, . Then, the new position can be renewed
using equation (6).

 (6)

Where,

 is the current search point;
 is a modified search point;

 is the current

velocity;
 is the modified rate;

 is the best experience of any particles;
 is the best

in the world; w is a weighted function; r1 and r2 are two vectors at random, and each entry takes
values between 0 and 1. Parameters c1 and c2 are learning parameters or acceleration
constants, which can usually be taken as, say, c1 ≈ c2 ≈ 2. In the swarm optimization technique
particles, looking for solutions in solution space in the range [-x, x]. Even though vi can have any
value, but it is normally limited in the range [0, vmax].

2.4. Multi-Objective Particle Swarm Optimization (MOPSO)

The basis of a single objective in problem of optimization is formulated for minimum or
maximum such Minimum or Maximum f(x)=[f1(x), f2(x), …, fM(x)], subject to gj(x) ≤ 0, j= 1, 2, …,

J, and ℎk(x) = 0, k=1, 2, …., K, a solution minimizes the scalar f(x), where x= (x1, x2, …, xd) is
the vector of decision variables. In some formulations used in the optimization literature,
inequalities gj (j =1, …, J) can also include any equalities, because an equality ∅(x)=0 can be

converted into two inequalities ∅(x)≤0 and ∅(x)≥0. However, for clarity, here we list the
equalities and inequalities separately [24,26].

On a real issue, someone always involves optimizing with more than one goal. Multi-
purpose optimization not always and should get a solution in optimal which can minimize

TELKOMNIKA ISSN: 1693-6930

Optimizing Time and Effort Parameters of COCOMO II.... (Kholed Langsari)

2203

simultaneously all multi-objectives. The parameters of some goals in optimal generally do not
cause to optimal other purposes [27]. Thus among these conflicting objectives, we choose just a
few and ignore the other to achieve a certain balanced purpose. Next, we analyze by comparing
the various objectives and then making compromises. Typically, we need to reformulate and
find valuable scalar functions that represent a weighted composite or a preference sequence of
all destinations [24].

Making or transferring to a single objective of PSO, each objective has its own weight,
then we integrate those objectives into a formula of single weighted using equation (7) and
normalize the weighted sum method applying equation (8).

 () () () … () (7)

∑

 () (8)

3. Research Method

There are various uncertainties of parameter values to determine the estimation of effort
and time of software development using the original COCOMO II. In this study, we optimize the
parameter values of the constants of multipliers and exponent that are A, B, C, and D on
COCOMO II. The methodology to optimize the parameters of COCOMO II, in this study we use
GMF of both Fuzzy Logic and MOPSO.

3.1. Fuzzy Logic

Here we describe step by step the implementation of the proposed approach of Fuzzy
Logic. The use of Fuzzy Logic method referred to Sarno’s research [17] and Sarno et al [18]. In
this study, we learned the Effort Multiplier (EM) in the model of COCOMO II. Every EM applies
linguistic magnitude representing the character of every EM. Driver cost which uses linguistic
magnitude has among others: Very Low, Low, Nominal, High, Very High, and Extra High.

In this study, we categorize the EM into two groups that are quantitative and qualitative
EM. The quantitative EM consists of DATA, RUSE, CPLX, TIME, DOCU, ACAP, PVOL, STOR,
PCAP, APEX, PCON, LTEX, PLEX, SITE, SCED, and TOOL, while the rest includes
quantitative EM. The Fuzzy model is applied for redesigning quantitative EM by reason of
description of EM which can be transferred as Fuzzy Logic. As an instance, the effort multiplier:
The LTEX has ranged from Very Low until Very High. The distinction of each degree is the
percentage of using execution time available. In this research, we use GMF as the function of
membership. GMF can create smoother transitions from one degree to another. The Fuzzy
Logic is applied using the toolbox of fuzzy logic in MATLAB. This tool box is called the editor of
Fuzzy Inference System (FIS). The GUI on FIS of the editor can help us making inputs and
outputs with a number of membership functions which we require. With the editor of FIS, we
compose rules ranging from input through output. The rules, in this research, are arranged as
follows:
Rule 1: IF Input LTEX is low THEN Output data is increased
Rule 2: IF Input LTEX is nominal THEN Output data is unchanged
and so forth...

Figure 2 shows the Membership Function as an Input of one of the multipliers of effort ie
LTEX. A description of LTEX for each level translated to GMF is also given. Suppose LTEX has
descriptions of very low ratings given for less than 2 months experience, while very high ratings
are awarded for 6 years or more experience, so we write low intervals to less than 2 and so on.

Figure 3 represents the function of membership of the Output for the effort multiplier:
LTEX. The GMF value is set from the degree of each effort multiplier of LTEX. As an example,
level ‘Low’ has a grade of 1.20, so we write down the interval down to 1.20. In the wake of
creating the membership function for both input and output in GMF, we define rules, so assign
new values to every degree created. Finally, we determine the same for the rest of the
qualitative EM others. After obtaining a new EM value, we substitute the values in the dataset
using the new value which resulted from Fuzzy COCOMO. Finally, from the results of this
process, we get a new ranking table for calibration, then we use this information to optimize the
parameters with MOPSO.

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 5, October 2018: 2199-2207

2204

Figure 2. Representating Input of EM for LTEX using GMF

Figure 3. Representating Output of LTEX EM using GMF

3.2. Multi Objective Particle Swarm Optimization

The MOPSO as the promoted method is utilized accommodating Fuzzy of COCOMO
efforts and estimated time of development. This approach proposed needs seventeen EM, five
SF, actual effort, and TDEV. The MOPSO applies as a technique of global optimization. This
applies by investigating and resolving unpredictable inputs and optimizing the coefficients of
parameters associated with the effort and producing results in fewer implementation times

The steps of MOPSO to optimize parameters in COCOMO II as follows: Step 1:
Initialization of m particles with random position and vector velocity [p1, p2… pm] and [v1, v2…vm]
are suitable for the used parameters to be optimized. Step 2: Initiate each particle like Pbest
particle. Step 3: Assign fitness function f1(x), f2(x) putting on equations (1), (3), (9), and (10) for
each particle. The purpose of f1(x) is minimizing and the goal of f2(x) is maximizing. Step 4:
Change from Multi-Objective into Single-Objective with utilizing the method of the weighted
sum.

Every one of the two purposes gives a rating for each particle. Next, enter the target
range and assign it into each particle, so the last fitness is a minimized value. Step 5: If the
particle fitness (p) is better than the Personal Best (Pbest) fitness then Pbest = Particle (p), so set
the best from Pbest as Global Best (Gbest). Step 6: Update both the velocity and position of a
particle using Equations (5) and (6). So, step 7: Repeat step 4 through 8 until the particles do
not change or move in the destination. While step 8: Give the parameter value of Gbest as the
optimal solution. Finally, the results provide the optimal value of optimization method. Then,
parameter values are applied by calculating better new results for effort and time of
development in COCOMO II.

TELKOMNIKA ISSN: 1693-6930

Optimizing Time and Effort Parameters of COCOMO II.... (Kholed Langsari)

2205

 3.3. Evaluation Criteria and Data Set
We use Mean Magnitude of Relative Error (MMRE) as the functions of fitness for the

proposed method. The main question for each estimation method is whether the prediction is
more accurate than before, the difference between the Actual Effort, the Effort, and the Effort,
should be as small as possible. The major deviations between Effort i and Effort Estimated i will
have a significant impact on costs associated with software development. In this paper, we use
the most ordinary criteria in software cost estimates to evaluate the precision of the effort
expected is MRE. MRE is obtained by calculating for each observation (each project) and
defined as in equation (9).

| |

 (9)

Based on the MRE criteria, the number of measurements of accuracy is formulated. The MRE
value of individual prediction can be averaged, resulting in Mean MRE (MMRE) [25] as a reward
in equation (10).

∑

| |

 (10)

The program parameter setting is set as showed in Table 1. This experiment
implemented MOPSO to optimize parameters in COCOMO II based on the dataset of NASA93.
The dataset has 93 projects as the data point. Each project is composed by 27 attributes that
consist of Project ID, five SF, seventeen EM within the range of value intervals from ‘Very Low’
until ‘Extra High’, actual effort in man-month, Project size that be stated in SLOC, and the actual
time of development in month. All project data would be applied to calibrate COCOMO II. The
results of calibrating can be applied to subsequent projects of similar categories.

Table 1. Settings of MOPSO Parameter
Parameter Value

Iterations 200

Population and Size of Repository 200, 100
Coefficient of Weight Acceleration [1.0, 2.0]
Coefficient of Weight Inertia [0.5, 0.99]
Maximum & Minimun Velocity (Vmax and Vmin) 10, -10
Minimum Velocity (Vmin) -10
Rate of Inflation (alpha), Pressure of Leader Selection
(beta), Pressure of Deletion Selection (gamma)

0.1, 2, 2

Rate of Mutation 0.1

4. Results and Analysis

In this part, we display the experimental results of the method promoted in
implementation to the dataset. The major purpose of this optimization is to degrade the
uncertainty in the coefficients of COCOMO II. The coefficient of parameters obtained using
Fuzzy and MOPSO techniques was A, B, C, and D, so they were compared to the base
coefficients in COCOMO II. Implementation of the method uses MATLAB, while the parameters
calculated could significantly ease the effort estimates for all projects, after applying in several
iterations. Subsequent to several iterations, it was obtained the results of the optimized new
parameters A equals 4.3852, B equals 0.2830, C equals 2.7802, and D equals 0.3615 not the
base value of COCOMO II which A equals 2.99, B equals 0.91, C equals 3.67, and D
equals 0.28.

The result in the execution of the method proposed has been intended reducing MRE
and MMRE error, so the smaller MRE or MMRE is near actual effort and actual TDEV. As an
instance, ProjectID=9 (row 2 in Table 2) has 58.31% and 24.33% errors for effort and TDEV if
using standard parameters of COCOMO II, while 53.05% and 13.31% error and if using the
method proposed. The results of execution present that the method proposed is able to pull
down 5.26% (58.31% minus 53.05%) and 11.02% (24.33% minus 13.31%) of the default setting
in COCOMO II.

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 5, October 2018: 2199-2207

2206

The MMRE of methods deputizes the MEAN's measurement precision. The average of
MMRE by COCOMO II and Fuzzy MOPSO is 50.58% and 38.69% for effort estimated and
19,98% and 11,90% for TDEV estimated. It shows that the method promoted for reducing errors
down to 11.89% and 8.08% from COCOMO II’s perspective. The MMRE results also present
that effort estimated and TDEV estimated with the method promoted provide a better estimation
when contrasted to the original parameters of COCOMO II as shown in Figure 4.

Figure 4. Comparing in Magnitude of Relative Error for the effort and the time of development

between using original COCOMO II and Fuzzy MOPSO

Table 2. Comparing in MMRE for Effort Estimated and TDEV Estimated between using original
COCOMO II and using Fuzzy MOPSO

ProjectID.
Effort by

COCOMO II
Effort by Fuzzy

MOPSO
TDEV by

COCOMO II
TDEV by Fuzzy

MOPSO

9 58.31 53.05 24.33 13.31

13 29.89 16.69 22.94 12.19

15 30.00 18.48 28.70 18.22

24 48.20 39.50 21.69 7.41

36 36.75 26.45 16.50 4.06

39 28.62 17.00 16.82 3.93

42 62.03 55.85 24.58 5.92

55 43.02 32.19 24.36 0.76

60 25.53 7.25 29.56 2.97

61 38.41 28.39 26.19 2.65

65 42.26 33.76 30.45 7.73

66 39.52 30.61 30.64 5.34

79 49.61 41.42 25.89 4.38

86 70.05 66.30 28.74 2.12

93 26.18 2.09 15.10 4.94

MMRE (%) 50.58 38.69 19.98 11.90

5. Conclusion

Research on the cost estimated of software is a challenge in a practical and academic
level. An estimated cost, effort, and development time of a more accurate software project can
handle resources more precisely, effectively, and efficiently. So far, there are more estimation
models of software cost that can be applied to the cost of the software. In this study, we
examined the efficiency of the application of the GMF of Fuzzy Logic and the MOPSO as
calibrating and optimizing algorithm to refine the estimation results in the COCOMO II. The
method proposed has been implemented with test data using the NASA93 dataset. The
performance of this method is analyzed using MRE and MMRE as evaluation criteria. As it turns
out, the method proposed could reduce MMRE significantly and the results of the evaluation
show that calibrating and optimizing with the method proposed provides better estimation if it is
compared with the original COCOMO II.

TELKOMNIKA ISSN: 1693-6930

Optimizing Time and Effort Parameters of COCOMO II.... (Kholed Langsari)

2207

References
[1] Pressman R. Software Engineering: A Practitioner’s Approach. Sixth Edition. Boston. Palgrave

Macmillan. 2005.
[2] Kerzner, Harold, HR Kerzner. Project Management: A Systems Approach to Planning, Scheduling,

and Controlling. 11th Edition. New Jersey. USA. John Wiley & Sons. 2013.
[3] Sachan RK, Nigam A, Singh A, Singh S, Choudhary M, Tiwari A, et al. Optimizing Basic COCOMO

Model Using Simplified Genetic Algorithm. Twelfth International Multi-Conference on Information
Processing-2016 in Procedia Computer Science, Bangalore. Elsevier. 2016; 89: 492–8.

[4] Mansor ZB, Kasirun ZM, Arshad NHH, Yahya S. E-cost Estimation Using Expert Judgment and
COCOMO II. 2010 International Symposium on Information Technology, Kuala Lumpur: IEEE. 2010;
3: 1262–7.

[5] Boehm B. COCOMO II Model Definition Manual. California. The University of Southern California.
1997.

[6] Kumar A, Sinhal A, Verma B. A Novel Technique of Optimization for Software Metric Using PSO.
International Journal of Soft Computing and Software Engineering. 2013; 3: 2251–7545.

[7] Hari C, Reddy P. A Fine Parameter Tuning for COCOMO 81 Software Effort Estimation Using
Particle Swarm Optimization. Journal of Software Engineering. 2011; 5: 38–48.

[8] Parkash J. COCOMO II Model Parameter Optimization using PSO and Effort Estimation. International
Journal of Information Technology & Mechanical Engineering. 2014; 1: 1–11.

[9] Dejaeger K, Verbeke W, Martens D, Baesens B. Data Mining Techniques for Software Effort
Estimation: A Comparative Study. IEEE Transactions on Software Engineering. 2012; 38: 375–97.

[10] Rao GS, Krishna CVP, Rao KR. Multi Objective Particle Swarm Optimization for Software Cost
Estimation. In: Satapathy SC, Avadhani PS, Udgata SK, Lakshminarayana S, editors. ICT and
Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India.
Cham: Springer International Publishing. 2014; 248: 125–32.

[11] Huang SJ, Chiu NH, Chen LW. Integration of the Grey Relational Analysis with Genetic Algorithm for
Software Effort Estimation. European Journal of Operational Research. 2008; 188: 898–909.

[12] Ghatasheh N, Faris H, Aljarah I, Al-Sayyed RMH. Optimizing Software Effort Estimation Models
Using Firefly Algorithm. Journal of Software Engineering and Applications. 2015; 08: 133–42.

[13] Sheta A, Rine D, Ayesh A. Development of Software Effort and Schedule Estimation Models Using
Soft Computing Techniques. 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), Hong Kong: IEEE. 2008: 1283–9.

[14] Parwita IMW, Sarno R, Puspaningrum A. Optimization of COCOMO II Coefficients using Cuckoo
Optimization Algorithm to Improve the Accuracy of Effort Estimation. 2017 International Conference
on Information & Communication Technology and System (ICTS), Surabaya: IEEE. 2017: 99–104.

[15] Sarno R, Sidabutar J, Sarwosri. Comparison of Different Neural Network Architectures for Software
Cost Estimation. 2015 International Conference on Computer, Control, Informatics and Its
Applications, Bandung: IEEE. 2015: 68–73.

[16] Putri RR, Sarno R, Siahaan D, Ahmadiyah AS, Rochimah S. Accuracy Improvement of the
Estimations Effort in Constructive Cost Model II Based on Logic Model of Fuzzy. American Scientific
Publishers. 2017; 23: 2478–80.

[17] Sarno R, Sidabutar J, Sarwosri. Improving the Accuracy of COCOMO’s Effort Estimation Based on
Neural Networks and Fuzzy Logic Model. 2015 International Conference on Information,
Communication Technology and System (ICTS), Surabaya: IEEE. 2015: 197–202.

[18] Baiquni M, Sarno R, Sarwosri, Sholiq. Improving the Accuracy of COCOMO II Using Fuzzy Logic and
Local Calibration Method. 2017 3rd International Conference on Science in Information Technology
(ICSITech), Bandung: IEEE. 2017: 284–9.

[19] Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R. Cost models for future software life
cycle processes: COCOMO 2.0. Annals of Software Engineering. 1995; 1: 57–94.

[20] Boehm B. Software Cost Estimation with COCOMO II. New Jersey, USA. Prentice Hall. 2000.
[21] Zadeh. Fuzzy Sets. Information and Control. 1965; 8: 338--353.
[22] Muzaffar Z, Ahmed MA. Software development effort prediction: A study on the factors impacting the

accuracy of fuzzy logic systems. Information and Software Technology. 2010; 52: 92–109.
[23] Wang L. Adaptive Fuzzy System and Control: Design and Stability Analysis. New Jersey. Prentice-

Hall. 1994.
[24] Yang XS. Nature-Inspired Optimization Algorithms. 1st edition. Amsterdam Boston Heidelberg

London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo. Elsevier. 2014.
[25] Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory. Sixth International

Symposium on Micro Machine and Human Science, Nagoya. IEEE. 1995: 39–43.
[26] Kumar V. Multi-Objective Particle Swarm Optimization: An Introduction. The Smart Computing

Review. 2014; 4.
[27] Coello CCA, Reyes SM. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art.

International Journal of Computational Intelligence Research. 2006; 2.

