
TELKOMNIKA, Vol.16, No.6, December 2018, pp.2668~2675
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v16i6.9811 2668

Received May 6, 2018; Revised September 27, 2018; Accepted October 24, 2018

Numerical Method for Evaluating E-cash Security

Dany Eka Saputra*1, Sarwono Sutikno2, Suhono Harso Supangkat3
1Departement of Informatics, STMIK “AMIKBANDUNG”, Bandung, Indonesia

1,2,3School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
*Corresponding author, e-mail: dekastra@stmik-amikbandung.ac.id

Abstract
 Security evaluations of electronic cash (e-cash) schemes usually produce an abstract result in

the form of a logical proof. This paper proposes a new method of security evaluation that produces a
quantitative result. The evaluation is done by analyzing the protocol in the scheme using the Markov chain
technique. This method calculates the probability of an attack that could be executed perfectly in the
scheme’s protocol. As proof of the effectiveness of our evaluation method, we evaluated the security of
Chaum’s untraceable electronic cash scheme. The result of our evaluation was compared to the evaluation
result from the pi-calculus method. Both methods produced comparable results; and thus, both could be
used as alternative methods for evaluating e-cash security.

Keywords: evaluation, markov chain, protocol, security.

Copyright © 2018 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Security is the most important aspect of an electronic cash (e-cash) scheme. A lack of
security in an e-cash scheme presents users with the risk of financial loss. As such, a scheme
must prove that it is able to mitigate or eliminate these risks. The security evaluation of an e-
cash scheme provides the basis of whether a scheme can be implemented. The evaluation
assesses the scheme’s protection from attacks on its operation. To be implemented, a scheme
does not necessarily need to meet all the security criteria. The operational environment and the
scheme’s objectives determine the security criteria that need to be met.

The common security criteria in e-cash are: double-spending, anonymity, forgery, and
exculpability [1-3]. To fulfil the criterion on double spending, the e-cash scheme should not allow
users to use the same e-cash data in more than one transaction. Anonymity requires that no
one should be able to determine the owner of the e-cash from the data itself. This may be
further classified into smaller categories depending on the level of secrecy required [2]. The
e-cash scheme should also prevent forgery; i.e., the generating of e-cash data without involving
the proper protocol or involving an illegal party. The last criterion, exculpability, requires that the
e-cash issuer or manager should not be able to accuse an honest user of double spending.
Also, the issuer should not be able to create e-cash data without the request of a legitimate
user. The most common evaluation method of an e-cash scheme is the random oracle model,
which evaluates the cryptographic scheme that formed the basis for the e-cash scheme [4-9].
The analysis is conducted via a simulation between an adversary (an entity with the intention to
attack the scheme), and an oracle (a query-processing machine). The random oracle model
provides logical proof to the security, but not a quantifiable number that measures the security
of the system. The random oracle model assumes an idealized environment where the
adversary is bound to a fully restricted environment. The adversary must follow the simulation
rules to send a query to the oracle. In this simulation, no other external entity can intervene with
the communication between the adversary and the oracle. Due to these assumptions, the
security of a scheme regarding the random oracle model might differ significantly from the
security of its actual implementation [10]. Some researchers also believe that the random oracle
model is too strong as a proof. It creates a faction that reject the usage of random oracle model
as a security proof for any cryptographic implementation [11].

The usage of random oracle model usually relies on some mathematical
assumption [8, 12]. In this kind of security model, the security of the scheme is based on the
difficulty to solve the mathematical problem used as the assumption. For example, many

TELKOMNIKA ISSN: 1693-6930

Numerical Method for Evaluating E-cash Security (Dany Eka Saputra)

2669

schemes rely on a variation of Diffie-Hellman problem as the assumption of its security model.
Since the difficulty of Diffie-Hellman problem is quite well-known, then it is quite difficult to break
the e-cash scheme that implement Diffie-Hellman problem as its main security mechanism.
Another approach is to evaluate the security of cryptographic primitive used in the e-cash
scheme, such as the digital signature scheme. As we can see in various works in digital
signature [13-16], the process to evaluate the security is using logical proof. The result provides
a strong basis to determine the security of the cryptographic primitive, and in the end ensure the
security of the e-cash scheme that using the primitive. Dreier et al., [17] propose another
method of e-cash security evaluation using pi-calculus. Rather than evaluating the cryptographic
scheme using the random oracle model, their method evaluates the protocol, which represents
the operational step-by-step procedure of the e-cash scheme. As such, the pi-calculus method
can simulate the implementation condition more closely than the random oracle model can. In
their paper, Dreier et al., use an implementation of this method, ProVerif, to analyze the
implementation of Chaum’s scheme [1].

Both the random oracle model and the pi-calculus method produce qualitative results as
proofs of security. The results of these evaluation methods do not provide a number which could
be used as a basis of measurement or comparison of security levels. Instead, they only provide
logical reasoning that states why the scheme is secure. These logical proofs can be difficult to
understand for someone without a background in computer science or mathematics. This paper
proposes a method for evaluating the security of e-cash which produces a numerical result. This
method uses a similar approach to the method in [17], by evaluating the protocol. Our method
calculates the probability of a security risk using a Markov chain technique. This method
provides a quantitative result that is indicative of the implementation conditions. In this paper,
we also provide a sample calculation for this evaluation method by measuring the security of
Chaum’s untraceable e-cash scheme [1]. The evaluation result is then compared to the results
of Dreier et al.’s pi-calculus evaluation of the same e-cash scheme.

2. Proposed Method

The proposed method of evaluation consists of four phases: redefining the protocol into
its formal description, constructing the attack scenario, constructing the transition matrix, and
calculating the Markov chain probability. This method assumes that it is possible to calculate the
probability of an attack on the cryptographic scheme used in an e-cash scheme. The phases of
our evaluation method can be seen in Figure 1.

Figure 1. Proposed method of evaluation

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2668-2675

2670

2.1. Redefinition of Formal Description
The first phase of the evaluation is to redefine the protocol in the e-cash scheme to

make it suitable for evaluation using Markov chain techniques. The Markov chain evaluates the
probability of transition between states, while e-cash protocols are usually in the form of
step-by-step algorithms which do not describe the protocol state. Therefore, the common
description of e-cash protocol cannot be used as a basis for protocol evaluation using Markov
chain techniques. For our method, we use a finite state model as the formal description model.
The protocol is modelled as a state diagram which shows states and the transitions between
them. The state diagram provides the basis for forming the transition matrix. Since e-cash
protocols are usually not state-oriented, determining the states from the protocol is often not a
straightforward process. One possible approach is to evaluate the purpose of each data
transaction in a protocol to determine the state involved and its transitions.

2.2. Constructing Attack Scenarios
This phase aims to generate the success probability of an attack on the cryptographic

scheme used in an e-cash scheme. Most e-cash schemes rely on one or more cryptographic
schemes for their basic security. The strength of a cryptographic scheme depends on the kind
of adversary it is protected from. The success probability of an attack might differ depending on
which party involved in the process is honest. Even if the calculation shows that the probability
of a successful attack on a cryptographic scheme is unacceptable, the e-cash scheme can
remain secure. It may have some other mechanism in its protocol to reduce or mitigate the risk
associated with the attack.

2.3. Constructing the Transition Matrix
In this phase, we build transition matrices based on the results of the first and the

second phase. A transition matrix is built for each attack scenario generated from the second
phase. This matrix will be used as the base tool for calculations in the next phase. A state in an
e-cash protocol can usually only change into two other states. If the output of the state complies
with the rule of the protocol, it changes into the next correct state. If the output does not comply
with the rule, it changes into the “ABORT” state and ends the protocol. As such, the transition
matrix can be represented as follows:

𝑃 =

𝑆1 𝑆2 𝐴
𝑆1
𝑆2
𝐴

(
0 𝑎 1 − 𝑎
𝑏 0 1 − 𝑏
1 0 0

)
 (1)

The equation above involves three states: 𝑆1, 𝑆2, and 𝐴. States 𝑆1, 𝑆2 are the proper

state that the protocol should follow. State 𝐴 is the “ABORT” state which becomes the end state
if the proper condition is not met during the protocol run. The variables 𝑎, 𝑏 represent the
probabilities that a state will change into the next state following the proper protocol. The values
of 𝑎 and 𝑏 are the same as the probabilities of an attack on the cryptographic scheme
calculated in the previous phase. This also depends on which attack scenario is being
evaluated. For example, if all entities involved in this protocol are honest, then the 𝑎 = 1, 𝑏 = 1.

If there is a dishonest entity, then the values of 𝑎, 𝑏 become the probability of that entity
breaking the cryptographic scheme.

2.4. Calculation of Markov Chain Probability
The Markov chain probability determines the security of an e-cash scheme against

certain attack scenarios. The security relates to the probability of an e-cash scheme completing
its protocol (not ending in “ABORT” state) in every attack scenario. The probability is calculated
using a general Markov chain, as follows:

𝑝𝑖𝑗
𝑛 = 𝑝𝑖𝑗

′ ∈ 𝑃𝑛
 (2)

where 𝑛 denotes the number of steps needed to complete the protocol normally. The calculation

only sees the probability of a transition from the protocol’s start state (𝑖) to its end state (𝑗) in 𝑛
steps. The resulting probability is used as a quantitative basis to determine the security of the
scheme.

TELKOMNIKA ISSN: 1693-6930

Numerical Method for Evaluating E-cash Security (Dany Eka Saputra)

2671

3. Application in Evaluating Chaum’s E-cash Scheme
In this section, we evaluate the security of Chaum’s offline e-cash scheme [1] using our

method. The results of this evaluation are then compared to the evaluation done by Dreier et al.,
using the pi-calculus method [17] to gauge the effectiveness of our method.

The analysis focuses only on the payment protocol of Chaum’s e-cash scheme. The
scheme has another protocol, the withdrawal protocol, which is used in creating new e-cash
data. The security of the withdrawal protocol does not contribute directly to the security of the
scheme since the presence of a dishonest entity in this protocol results in neither gain nor loss.

3.1. Redefining the Formal Description

Although the payment protocol involves three entities (user, merchant, and bank), our
evaluation sees the whole protocol as a single system, as the state diagram describes how the
whole protocol works rather than how each entity behaves.
The flow of the payment protocol in Chaum’s scheme is as follows:

a. User sends e-cash data 𝐶 to Merchant.

b. Merchant selects and sends random binary strings 𝑧1, 𝑧2, … , 𝑧𝑘 2⁄ (𝑧𝑖 ∈ {0,1})
c. For each binary string sent by Merchant, User sends back the appropriate proof-of-

ownership.

d. If the proof does not match 𝐶, Merchant rejects the transaction and ends the protocol.
Otherwise, the protocol proceeds to next step.

e. Merchant sends 𝐶 and User’s proof to Bank.

f. If Bank verifies the correctness of 𝐶, it settles the transaction. Otherwise, it aborts and

traces the User.
The result of redefinition of this protocol can be seen in Figure 2; it has five states and

five transitions. Step (a) is described as the start of the protocol in the form of the REQUEST
state. Steps (b to d) verify the validity of 𝐶. These steps are represented as the CHALLENGE
state of the protocol. Step (e) describes the state that verifies the signature of Bank and checks
for double spending.

Figure 2. State diagram of payment protocol

3.2. Constructing Attack Scenarios
To construct the attack scenario, we needed to choose some implementation details for

the e-cash scheme. In Chaum’s scheme, a digital signature is needed to create the e-cash data.
This digital signature protects the scheme from forgery. For our evaluation, we chose to use the

RSA signature scheme with modulus 𝑁 of order 1080 and security parameter 𝑘 = 50. Both
values are secure enough to be chosen as implementation values. This determines the length of
e-cash data and the number of random binary string needed during the CHALLENGE state.

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2668-2675

2672

We considered three attack scenarios: double spending, forgery, and exculpability.
When calculating the success probability of each scenario, we also considered the entities that
perform the attack.

3.2.1. Double Spending

The success probability of double spending depends on two things. First, the time
elapsed between two VERIFY state that uses the same e-cash data. The longer the time, the
smaller the success probability. Second, the probability of the merchants in both transactions
using the same permutation of binary string in the CHALLENGE state. If this happens, the Bank
still can determine that the data has been used during the VERIFY state in the second
transaction occurs. However, since the Bank only possesses half of the proof-of-ownership for
each 𝑧𝑖 due the nature of the blind signature used in the Withdrawal protocol, the Bank cannot
determine the perpetrator of the double spending. Steps e and f in the payment protocol can be
conducted much later than the actual transaction (due to the scheme being offline), so the user
could still get away with double spending.

The probability of this attack can be formulated as follow:

𝑃𝑑𝑏 ≈ 𝑃(𝑧𝑖 = 𝑧𝑗). 𝑃(𝑇𝑒) (3)

with 𝑖, 𝑗 denoting the two-different payment protocol involved in double spending and 𝑇𝑒 denoting

the time elapsed between the two protocols. The first part of equation (𝑃(𝑧𝑖 = 𝑧𝑗)) represents

the probability of combination of both proof 𝑖, 𝑗 are the same. The second part (𝑃(𝑇𝑒)) represents
the probability due to elapsed time.

In our evaluation, we did not consider the scenario where the User and Merchant
collude to cheat the honest Bank by creating two different transactions and processes, both
VERIFY states at the same time. In this scenario, although the probability of success is 𝑃𝑑𝑏 ≈ 1
and the Bank would not be able to determine which User is involved in this double spending, the
Bank could still detect the existence of double spending. It might not credit the Merchant
account with settlement, leaving only the User with the benefit. As such, this scenario is unlikely.

As such, we consider only the attack scenario where only the User is dishonest. The

probability of both Merchants using the same binary string array corresponds to
𝑘

2
= 25, which

results in 𝑃(𝑧𝑖 = 𝑧𝑗) = 2.98 × 10−7. The time elapsed component of (3) can be approximated as

𝑃(𝑇𝑒) ≈ 0, since the time needed to change Merchant is likely to be relatively large. However,

for our calculation we will use 𝑃(𝑇𝑒) = 10−6, to represent a number that is practically zero but
still large enough to be used in the calculation. The success probability of double spending by

the User then becomes 𝑃𝑑𝑏 = 2.98 × 10−13.

3.2.2. Forgery

Forgery can only be initiated by the User. To forge the e-cash data, the User needs to
falsify the Bank signature. The probability of breaking the RSA signature is the same as the
probability of factoring 𝑁 [18]. Given sufficiently long amount of time, the factoring theoretically
can always succeed [19]. However, if we ignore the time needed to factor the number, the
probability of breaking RSA is:

𝑃𝑓 =
1

√
𝑁

2

≈ 10−40 (4)

The process of verifying the signature happens in the VERIFY state by the Bank. In the
CHALLENGE state, the Merchant only checks for the proper form of 𝐶.

3.2.3. Exculpability

The exculpability scenario could happen if the Bank was dishonest. To accuse an
honest User for double spending, the Bank needs to break the blind signature. In common
double-spending scenarios, the Bank could determine the User from the User’s response in the
CHALLENGE state, which is transferred to the Bank in the VERIFY state. The

proof-of-ownership for any e-cash data in [1] consists of two parts: 𝑎𝑖 and 𝑎𝑖 ⊕ (𝑢 ∥ (𝑣 + 𝑖)),

TELKOMNIKA ISSN: 1693-6930

Numerical Method for Evaluating E-cash Security (Dany Eka Saputra)

2673

where 𝑎𝑖 is a random string/number chosen in withdrawal by User. The identity of the User is

stored in 𝑢 as an account number, and 𝑣 denotes the counter associated with it. If the Bank has
both pieces of information, it can extract 𝑢 to identify the User. To accuse an honest user of

double spending, the Bank must acquire u from the second part of the proof without knowing 𝑎𝑖.
The probability of successfully doing such an operation is proportional to the bit length of 𝑎𝑖. For

the purpose of this evaluation, let 0 ≤ 𝑎𝑖 ≤ 1024, which makes the length of 𝑎𝑖 = 210. The

probability of successfully extracting the User identity 𝑢 without having 𝑎𝑖 is:

𝑃𝑒 =
1

𝑙
= 2−10 (5)

where 𝑙 denotes the length of 𝑎𝑖. Having the Merchant collude with the Bank does not change
this probability. To provide both parts of proof to the Bank, the Merchant needs to force the User
to double spend the e-cash data, which is unlikely to be done by the user under normal
circumstances.

3.3. Constructing the Transition Matrix

The transition matrix for Chaum’s payment protocol can be generated using the state
diagram in Figure 2, together with the attack scenarios and their probabilities in section 4.2 the
general transition matrix can be expressed in Table 1.

Table 1. Transition Matrix of Chaum's Payment Protocol
Origin State PAYMENT CHALLENGE VERIFY SETTLE ABORT
PAYMENT 0 1 0 0 0

CHALLENGE 0 0 a 0 1-a
VERIFY 0 0 0 b 1-b
SETTLE 0 0 0 0 0
ABORT 0 0 0 0 0

As stated in (1), the values of a and b depend on the attack scenarios. The probability
of each scenario becoming the value of either a or b, depends on where the cryptographic
attack is evaluated. The value of a and b for this evaluation is shown in Table 2.

Table 2. The values of Transition Matrix Variables per Scenario
Scenario Value

Double spending 𝑎 = 1; 𝑏 = 2.98 × 10−13
Forgery 𝑎 = 1; 𝑏 = 10−40
Exculpability 𝑎 = 1; 𝑏 = 2−10

3.4. Calculation of the Markov Chain

For each attack scenario in Table 1, we calculated the probability that the protocol will
end in the proper state using several normal steps. The start state of the evaluated protocol is
“PAYMENT” state, as can be seen in Figure 2. The protocol should end its process in “SETTLE”
state after three steps in the normal condition. Should an attack occur, the probability of this
protocol ending in “SETTLE” state should be low; and the probability that it will end in the
“ABORT” state should be high.

By using (2), the probability of success for each attack can be seen in Table 3. Double
spending has the probability of 2.646 × 10-38 to succeed. Forgery has lower probability
𝑝𝑖𝑗 ≈ 10−120. The exculpability scenario has the highest probability among the three scenarios,

but it is still low. It can be concluded that it is improbable that any of the three attack scenarios
would be carried out successfully.

Table 3. The Success Probability in Each Attack Scenario
Scenario Probability

Double spending 𝑝𝑖𝑗 ≈ 2.646 × 10−38

Forgery 𝑝𝑖𝑗 ≈ 10−120

Exculpability 𝑝𝑖𝑗 ≈ 9.313 × 10−10

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2668-2675

2674

3.5. Comparison of Result with Pi-calculus Method
Table 4 shows a comparison of results from the method used by Drier et al., and our

method. Dreier et al., evaluated Chaum’s scheme with security properties defined [20];
whereas, our evaluation does not strictly follow those definitions. However, the results of the two
evaluation methods should still be comparable. The results from Drier et al. are shown as “hold”
(where the scheme meets the security criterion for that particular scenario) and “fail” (where the
scheme does not meet the security criterion). Our results state whether the success of the
attack scenario is probable, based on the probabilities calculated earlier.

Table 4. Comparison of Results
Property Dreier et al., Our Method

Forgery Fail Improbable
Double Spending Hold Improbable
Exculpability Hold Improbable
Weak Anonymity Hold Not applicable
Strong Anonymity Hold Not applicable

The evaluation results of double spending and exculpability are similar in both methods.
It is useful to note that Dreier et al., evaluate the process of double spending only at the
interaction between User and Merchant. The Merchant cannot determine whether e-cash data
has been spent before. In our method, we evaluate the probability of double spending not only
at the interaction of User and Merchant, but also at the interaction of Merchant and Bank.

It can be seen from Table 4, that the two methods seem to differ in their results for
forgery. Our method indicates that forgery is improbable, but Dreier et al., fails the scheme in
this criterion. This is due to the different definitions of forgery used in these two evaluations.
Dreier et al., define forgery as the double spending of e-cash data, while we use the standard
definition of forgery: the creation of e-cash data by the User without using the Withdrawal
protocol. The definition used by Dreier et al., only covers the first half of the process that is
defined in our definition of forgery.

Our method cannot evaluate the anonymity properties of an e-cash scheme. Our
method only evaluates the scheme’s protocol, as the anonymity attack is usually conducted
outside the protocol of e-cash by evaluating the receipt data or the e-cash data itself.

4. Conclusion

We have presented a numerical method for the security evaluation of an e-cash
scheme. We have shown that this method can produce a quantitative result to evaluate the
security level. The usage of a Markov chain for evaluation is effective as it can be used to
evaluate the security of the e-cash scheme. From the comparison made with the pi-calculus
method in evaluating Chaum’s e-cash scheme, the results are similar. However, there is a
difference in the result of forgery evaluation between our method and the pi-calculus method.
The difference comes from the different definitions of forgery used by the two methods.
Intrinsically, the results do not contradict each other.

Yet, our method is unable to evaluate the anonymity property of the e-cash scheme.
This limitation comes from the fact that our method only evaluates the protocol and the events
directly related to it. Attacks on anonymity lie outside the boundary of the protocol. Anonymity is
dependent on how the scheme stores its user identities; thus, it is only related to the
cryptographic scheme and not to the protocol that is used in the e-cash scheme.

References
[1]. Chaum D, Fiat A, Naor M. Untraceable electronic cash. In Proceedings on Advances in Cryptology.

1990. New York.

[2]. Blazy O, Canard S, Fuchsbauer G, Gouget A, Sibert H, Traoré J. Achieving optimal anonymity in

transferable e-cash with a judge. In International Conference on Cryptology in Africa. 2011: 206-223.

[3]. Canard S, Pointcheval D, Sanders O, Traoré J. Divisible e-cash made practical. In IACR International

Workshop on Public Key Cryptography. Springer. 2015: 77-100.

TELKOMNIKA ISSN: 1693-6930

Numerical Method for Evaluating E-cash Security (Dany Eka Saputra)

2675

[4]. Bellare M, Rogaway P. Random oracles are practical: A paradigm for designing efficient protocols. In

Proceeding of the 1st ACM conference on Computer and Communications Security. 1993: 62-73.

[5]. Hess F. Efficient identity based signature schemes based on pairings. In International Workshop on

Selected Areas in Cryptography Springer. 2002: 310-324.

[6]. Fan CI, Sun WZ, Hau HT. Date attachable offline electronic cash scheme. The Scientific World

Journal. 2014: 1-19.

[7]. Kang B, Xu D. Secure electronic cash scheme with anonymity revocation. Mobile Information

System. 2016.

[8]. Cheng L, Wen Q. Cryptanalysis and improvement of a certificateless partially blind signature.

IET Information Security. 2015; 9(6): 380-386.

[9]. Abouelseoud Y. New blind signcryption schemes with application to e-cash systems. In Computing.

Communication and Networking Technologies (ICCCNT), 2014 International Conference on. IEEE.

2014: 1-6.

[10]. Canetti R, Goldreich O, Halevi S. The random oracle methodology, revisited. Journal of the ACM

(JACM). 2004; 51(4): 557-594.

[11]. Koblitz N, Menezes AJ. The random oracle model: a twenty-year retrospective. Design, Codes and

Cryptography. 2015; 77(2-3): 587-610.

[12]. Zhang J, Huo L, Liu X, Sui C, Li Z, Ma J. Transferable optimal-size fair e-cash with optimal

anonymity. In Theoretical Aspects of Software Engineering (TASE), 2015 International Symposium

on. 2015: 138-142.

[13]. Tan DN, Nam HN, Hieu MN, Van HN, Thi LT. New Blind Multi-signature Schemes based on ECDLP.

International Journal of Electrical & Computer Engineering (IJECE). 2018; 8(2).

[14]. Cai Z, Zhang Q, Li M, Gan Y, Zhang J. Multi-Domain Authentication Protocol Based on Dual-

Signature. TELKOMNIKA Telecommunication Computing Electronics and Control. 2014;

13(1): 290-298.

[15]. Koppula S, Muthukuru J. Secure digital signature scheme based on elliptic curves for internet of

things. International Journal of Electrical and Computer Engineering (IJECE). 2016; 6(3): 1002-1010.

[16]. Zhang P, Jiang H, Zheng Z, Hu P, Xu Q. A new post-quantum blind signature from lattice

assumptions. IEEE Access. 2018; 6: 27251-27258.

[17]. Dreier J, Kassem A, Lafourcade P. Formal analysis of e-cash protocol. In e-Business and

Telecommunications (ICETE), 2015 12th International Joint Conference on. IEEE 2015: 65-75.

[18]. Aggrawal D, Maurer U. Breaking RSA Generally is Equivalent to Factoring. IEEE Transaction on

Information Theory. 2016; 62(11): 6251-6259.

[19]. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM. 1978; 21(2): 120-126.

[20]. Canard S, Gouget A. Anonymity in transferable e-cash. In International Conference on Applied

Cryptography and Network Security. 2008: 207-223.

