Comparison of two methods on vector space model for trust in social commerce

Hla Sann Sint, Khine Khine Oo


The study of dealing with searching information in documents within web pages is Information retrieval (IR). The user needs to describe information with comments or reviews that consists of a number of words. Discovering weight of an inquiry term is helpful to decide the significance of a question. Estimation of term significance is a basic piece of most information retrieval approaches and it is commonly chosen through term frequency-inverse document frequency (TF-IDF). Also, improved TF-IDF method used to retrieve information in web documents. This paper presents comparison of TF-IDF method and improved TF-IDF method for information retrieval. Cosine similarity method calculated on both methods. The results of cosine similarity method on both methods compared on the desired threshold value. The relevance documents of TF-IDF method are more extracted than improved TF-IDF method.


data mining; improved TF-IDF method; information retrieval; online social commerce; TF-IDF method; web mining;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604